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BLOCK GENERALIZED LOCALLY TOEPLITZ SEQUENCES:

THE CASE OF MATRIX FUNCTIONS AND AN ENGINEERING APPLICATION∗

CARLO GARONI† AND STEFANO SERRA-CAPIZZANO‡

Abstract. The theory of block generalized locally Toeplitz (GLT) sequences is a powerful apparatus for computing the

spectral distribution of block-structured matrices arising from the discretization of differential problems, with a special reference

to systems of differential equations (DEs) and to the higher-order finite element or discontinuous Galerkin approximation of

both scalar and vectorial DEs. In the present paper, the theory of block GLT sequences is extended by proving that {f(An)}n
is a block GLT sequence as long as f is continuous and {An}n is a block GLT sequence formed by Hermitian matrices. It is

also provided a relevant application of this result to the computation of the distribution of the numerical eigenvalues obtained

from the higher-order isogeometric Galerkin discretization of second-order variable-coefficient differential eigenvalue problems

(a topic of interest not only in numerical analysis but also in engineering).
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1. Introduction. The theory of generalized locally Toeplitz (GLT) sequences stems from Tilli’s work

on locally Toeplitz (LT) sequences [37] and from the spectral theory of Toeplitz matrices [1, 13, 14, 15, 16, 26,

30, 36, 38, 39, 40]; we refer the reader to [12] for a gentle introduction to this subject, to [21, 22, 34, 35] for

advanced studies, and to [2, 3, 4, 5, 6, 8] for further recent developments. Starting from the original intuition

in [35, Section 3.3], the theory of block GLT sequences has been recently developed in [23] as an extension of

the theory of (scalar) GLT sequences. Just as the latter, the theory of block GLT sequences has been devised

in order to solve a specific application problem, namely the problem of computing/analyzing the spectral

distribution of matrices arising from the numerical discretization of differential problems. In particular, this

theory applies to block-structured matrices arising from either the discretization of systems of differential

equations (DEs) or the higher-order finite element (FE) or discontinuous Galerkin (DG) approximation of

both scalar and vectorial DEs; see [9, 19, 20]. More details on the theory of block GLT sequences and its

applications can be found in [20, 23].

This paper was born from the observation that the theory of block GLT sequences covered in [23] is

actually incomplete if compared to the theory of GLT sequences [21]. In particular, a crucial result in [21]

states that if {An}n is a GLT sequence formed by Hermitian matrices and f : C → C is a continuous

function, then {f(An)}n is again a GLT sequence. The version of this result with “GLT sequence” replaced

by “block GLT sequence” is important not only from a numerical analysis point of view but also from

an engineering point of view. Consider, for example, the isogeometric Galerkin discretization (based on

B-splines with arbitrary degree and smoothness) of second-order variable-coefficient differential eigenvalue
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problems, as in the engineering review [24]. The distribution of the associated numerical eigenvalues has

been deeply investigated in [24] as it allows one to provide analytical predictions for the so-called eigenvalue

errors (i.e., the errors occurring when approximating the exact eigenvalues with the numerical eigenvalues),

thus extending several spectral results from the engineering literature [18, 28, 29, 31]. Despite the careful

study conducted in [24], all the main results contained therein have been stated without a proof, because

their formal mathematical derivation requires precisely the aforementioned result about functions of block

GLT sequences.

In this paper, we extend the theory of block GLT sequences developed in [23] by proving the aforemen-

tioned result. As an application, we provide formal mathematical proofs to the main results appeared in [24].

Further applications include the computation of the spectral distribution of matrix functions of the form

f(An), where n represents the mesh-fineness parameter and An is the matrix arising from the discretization

of a system of DEs or the higher-order FE/DG approximation of a scalar/vectorial DE. Indeed, the matrices

An arising from these discretization processes are often block-structured matrices such that {An}n is a block

GLT sequence.

The paper is organized as follows. In Section 2, we recall the definition and some properties of matrix

functions. In Section 3, we report from [23] a summary of the theory of block GLT sequences, including

additional topics that we shall need later on. In Section 4, we prove our main result about functions of block

GLT sequences. In Section 5, we provide formal mathematical proofs to the main results of [24].

2. Matrix functions. Given a diagonalizable matrix A ∈ Cm×m, if λ1, . . . , λt are the distinct eigen-

values of A and V1, . . . , Vt are their respective eigenspaces, we have Cm =
⊕t

i=1 Vi. For each function

f : Λ(A)→ C, we define f(A) as the matrix such that

(2.1) f(A)v = f(λi)v for every v ∈ Vi and every i = 1, . . . , t.

In practice, f(A) is the matrix that possesses the same eigenspaces V1, . . . , Vt as A with corresponding

eigenvalues f(λ1), . . . , f(λt). Note that such a matrix f(A) exists and is unique. To show the uniqueness,

simply note that, if B is another matrix such that Bv = f(λi)v = f(A)v for every v ∈ Vi and every

i = 1, . . . , t, then B coincides with f(A) on each basis of Cm formed by eigenvectors of A, hence B = f(A).

To show the existence, fix a basis of Cm formed by eigenvectors of A, define f(A) on this basis in the unique

possible way to meet (2.1), and extend the definition to the whole Cm by linearity. It can be checked that

the matrix f(A) defined in this way satisfies (2.1).

Now, let A ∈ Cm×m be diagonalizable and let λ1, . . . , λm denote all the eigenvalues of A, i.e., all the

roots of the characteristic polynomial of A, each of them counted with its multiplicity. If {v1, . . . ,vm} is a

basis of Cm formed by eigenvectors of A,

Avi = λivi, i = 1, . . . ,m,

then for each f : Λ(A)→ C, we have

f(A)vi = f(λi)vi, i = 1, . . . ,m.
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This is a spectral decomposition of f(A), which can be rewritten in matrix form as

(2.2) f(A) = V


f(λ1)

f(λ2)
. . .

f(λm)

V −1, V =

 v1 v2 · · · vm

 .
As a straightforward consequence of (2.2), if f(λ) = λ, then f(A) = A. Moreover, if A is invertible and

f(λ) = λ−1, then f(A) = A−1. Further properties of matrix functions are given in the next lemma.

Lemma 2.1. Let A be a diagonalizable matrix. Then, the following properties hold.

1. If α, β ∈ C and f, g : Λ(A)→ C then (αf + βg)(A) = αf(A) + βg(A).

2. If f, g : Λ(A) → C then (fg)(A) = f(A)g(A) and (gf)(A) = g(A)f(A). In particular, two functions of

the same matrix always commute.

3. Suppose Λ(A) ⊂ (0,∞), so that the functions λ1/2, λ−1/2 : Λ(A)→ R are well-defined and hence also the

matrices A1/2, A−1/2 via definition (2.1). Then, we have A1/2A−1/2 = I, (A1/2)2 = A, (A−1/2)2 = A−1.

4. If p(λ) =
∑r
j=0 ajλ

j is a polynomial, then the matrix p(A) obtained from definition (2.1) coincides with∑r
j=0 aj A

j.

For more on matrix functions, including the definition of f(A) in the case where A is not diagonalizable,

we refer the reader to Higham’s book [27].

3. The theory of block GLT sequences. In this section, we summarize the theory of block GLT

sequences, which was originally introduced in [35, Section 3.3] and has been recently revised and systemati-

cally developed in [23]. We also cover additional topics that we shall need later on.

Sequences of matrices and block matrix-sequences. If A ∈ Cm×m, its singular values and eigenvalues

are denoted by σ1(A), . . . , σm(A) and λ1(A), . . . , λm(A), respectively. Throughout this paper, a sequence of

matrices is any sequence of the form {An}n, where An is a square matrix of size dn and dn →∞ as n→∞.

We say that the sequence of matrices {An}n, with An of size dn, is sparsely unbounded (s.u.) if

lim
M→∞

lim sup
n→∞

#{i ∈ {1, . . . , dn} : σi(An) > M}
dn

= 0.

For the next result, which is fundamental to our purposes, see [22, Section 2.6.4].

S 1. If {An}n is a s.u. sequence of Hermitian matrices, with An of size dn, then the following property holds:

for every M > 0 there exists nM such that, for n ≥ nM ,

An = Ân,M + Ãn,M , rank(Ân,M ) ≤ r(M)dn, ‖Ãn,M‖ ≤M,

where r(M) → 0 as M → ∞, the matrices Ân,M and Ãn,M are Hermitian, and for all functions

g : R→ R we have

g(Ân,M + Ãn,M ) = g(Ân,M ) + g(Ãn,M ).

Let s ≥ 1 be a fixed positive integer independent of n; an s-block matrix-sequence (or simply a matrix-

sequence if s can be inferred from the context or we do not need/want to specify it) is a special sequence of

matrices {An}n in which the size of An is dn = sn.
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Singular value and eigenvalue distribution of a sequence of matrices. Let µk be the Lebesgue

measure in Rk. Throughout this paper, all the terminology from measure theory (such as “measurable

set”, “measurable function”, “a.e.”, etc.) is referred to the Lebesgue measure. A matrix-valued function

f : D ⊆ Rk → Cr×r is said to be measurable (resp., continuous, Riemann-integrable, in Lp(D), etc.) if its

components fαβ : D → C, α, β = 1, . . . , r, are measurable (resp., continuous, Riemann-integrable, in Lp(D),

etc.). We denote by Cc(R) (resp., Cc(C)) the space of continuous complex-valued functions with bounded

support defined on R (resp., C).

Definition 3.1. Let {An}n be a sequence of matrices, with An of size dn, and let f : D ⊂ Rk → Cr×r

be a measurable function defined on a set D with 0 < µk(D) <∞.

• We say that {An}n has a (asymptotic) singular value distribution described by f , and we write {An}n ∼σ
f , if

(3.3) lim
n→∞

1

dn

dn∑
i=1

F (σi(An)) =
1

µk(D)

∫
D

∑r
i=1 F (σi(f(x)))

r
dx, ∀F ∈ Cc(R).

• We say that {An}n has a (asymptotic) spectral (or eigenvalue) distribution described by f , and we write

{An}n ∼λ f , if

(3.4) lim
n→∞

1

dn

dn∑
i=1

F (λi(An)) =
1

µk(D)

∫
D

∑r
i=1 F (λi(f(x)))

r
dx, ∀F ∈ Cc(C).

If {An}n has both a singular value and an eigenvalue distribution described by f , we write {An}n ∼σ,λ f .

We note that Definition 3.1 is well-posed as the functions

x 7→
r∑
i=1

F (σi(f(x))) and x 7→
r∑
i=1

F (λi(f(x)))

are measurable [23, Lemma 2.1]. Whenever we write a relation such as {An}n ∼σ f or {An}n ∼λ f , it is

understood that f is as in Definition 3.1; that is, f is a measurable function defined on a subset D of some

Rk with 0 < µk(D) <∞, and f takes values in Cr×r for some r ≥ 1. We refer the reader to [20, Remark 1]

for the informal meaning behind the singular value and spectral distributions (3.3) and (3.4).

In what follows, the conjugate transpose of the matrix A is denoted by A∗ and the spectrum of A by

Λ(A). If A ∈ Cm×m and 1 ≤ p ≤ ∞, we denote by ‖A‖p the Schatten p-norm of A, i.e., the p-norm of

the vector (σ1(A), . . . , σm(A)). The Schatten ∞-norm ‖A‖∞ is the largest singular value of A and coincides

with the spectral norm ‖A‖. The Schatten 1-norm ‖A‖1 is the sum of the singular values of A and is often

referred to as the trace-norm of A. The Schatten 2-norm ‖A‖2 coincides with the Frobenius norm of A. For

more on Schatten p-norms, see [10].

D 1. If {An}n ∼σ f , then {An}n is s.u.

D 2. If {An}n ∼λ f and Λ(An) ⊆ S for all n, then Λ(f) ⊆ S a.e.

For the proof of D 1, see [23, Proposition 2.3]. Property D 2 is stated in [25, Theorem 4.2] for Lebesgue-

integrable functions f ; it can be proved for general measurable functions f by the same line of argument as

in the proof of [25, Theorem 2.4]; a formal proof is given in [7, Lemma 2.2 and Corollary 2.13].
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Block Toeplitz matrices. Given a function f : [−π, π] → Cs×s in L1([−π, π]), its Fourier coefficients are

denoted by

fk =
1

2π

∫ π

−π
f(θ)e−ikθdθ ∈ Cs×s, k ∈ Z,

where the integrals are computed componentwise. The nth block Toeplitz matrix generated by f is defined

as

Tn(f) = [fi−j ]
n
i,j=1 ∈ Csn×sn.

It is not difficult to see that all the matrices Tn(f) are Hermitian if f is Hermitian a.e.

Block diagonal sampling matrices. For n ∈ N and a : [0, 1] → Cs×s, we define the block diagonal

sampling matrix Dn(a) as the block diagonal matrix

Dn(a) = diag
i=1,...,n

a
( i
n

)
=


a( 1
n )

a( 2
n )

. . .

a(1)

 ∈ Csn×sn.

Zero-distributed sequences. A sequence of matrices {Zn}n such that {Zn}n ∼σ 0 is referred to as a

zero-distributed sequence. Note that, for any r ≥ 1, {Zn}n ∼σ 0 is equivalent to {Zn}n ∼σ Or (throughout

this paper, Om and Im denote the m×m zero matrix and the m×m identity matrix, respectively). In what

follows, we use the natural convention 1/∞ = 0. For the next results, see [22, Section 2.6.3].

Z 1. Let {Zn}n be a sequence of matrices, with Zn of size dn. We have {Zn}n ∼σ 0 if and only if Zn =

Rn +Nn with rank(Rn)/dn → 0 and ‖Nn‖ → 0 as n→∞.

Z 2. Let {Zn}n be a sequence of matrices, with Zn of size dn. If there exists a p ∈ [1,∞] such that

‖Zn‖p/(dn)1/p → 0 as n→∞, then {Zn}n ∼σ 0.

Approximating classes of sequences. The notion of approximating classes of sequences (a.c.s.) is the

fundamental concept on which the theory of block GLT sequences is based.

Definition 3.2. Let {An}n be a sequence of matrices, with An of size dn, and let {{Bn,m}n}m be a

sequence of sequences of matrices, with Bn,m of size dn. We say that {{Bn,m}n}m is an approximating class

of sequences (a.c.s.) for {An}n if the following condition is met: for every m there exists nm such that, for

n ≥ nm,

An = Bn,m +Rn,m +Nn,m, rank(Rn,m) ≤ c(m)dn, ‖Nn,m‖ ≤ ω(m),

where nm, c(m), ω(m) depend only on m and lim
m→∞

c(m) = lim
m→∞

ω(m) = 0.

Roughly speaking, {{Bn,m}n}m is an a.c.s. for {An}n if, for large m, the sequence {Bn,m}n approximates

{An}n in the sense that An is eventually equal to Bn,m plus a small-rank matrix (with respect to the matrix

size dn) plus a small-norm matrix. It turns out that, for each fixed sequence of positive integers dn such

that dn → ∞, the notion of a.c.s. is a notion of convergence in the space E = {{An}n : An ∈ Cdn×dn}.
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More precisely, there exists a pseudometric da.c.s. in E such that {{Bn,m}n}m is an a.c.s. for {An}n if and

only if da.c.s.({Bn,m}n, {An}n)→ 0 as m→∞; see [22, Section 2.7.1]. We will therefore use the convergence

notation {Bn,m}n
a.c.s.−→ {An}n to indicate that {{Bn,m}n}m is an a.c.s. for {An}n. A useful criterion to

identify an a.c.s. is provided below [22, Section 2.7.4].

ACS 1. Let {An}n be a sequence of matrices, with An of size dn, let {{Bn,m}n}m be a sequence of sequences

of matrices, with Bn,m of size dn, and let p ∈ [1,∞]. Suppose that for every m there exists nm such

that, for n ≥ nm,

‖An −Bn,m‖p ≤ ε(m,n)(dn)1/p,

where lim
m→∞

lim sup
n→∞

ε(m,n) = 0. Then {Bn,m}n
a.c.s.−→ {An}n.

Block GLT sequences. We intentionally omit the formal definition of block GLT sequences for two reasons.

First, the definition is rather cumbersome as it requires to introduce other related (and complicated) concepts

such as “block LT operators” and “block LT sequences”. Second, the definition is not necessary to our

purposes, because everything that can be derived from it can also be derived (and in a much easier way)

from the properties GLT 1 – GLT 4 reported below. The reader who is interested in the formal definition of

block GLT sequences can find it in [23, Section 5] along with the proofs of properties GLT 1 – GLT 4.

Let s ≥ 1 be a fixed positive integer. An s-block GLT sequence (or simply a GLT sequence if s can

be inferred from the context or we do not need/want to specify it) is a special s-block matrix-sequence

{An}n equipped with a measurable function κ : [0, 1] × [−π, π] → Cs×s, the so-called symbol. We use the

notation {An}n ∼GLT κ to indicate that {An}n is an s-block GLT sequence with symbol κ. The symbol

of an s-block GLT sequence is unique in the sense that if {An}n ∼GLT κ and {An}n ∼GLT ς then κ = ς

a.e. in [0, 1] × [−π, π]. The main properties of s-block GLT sequences proved in [23] are listed below. If A

is a matrix, we denote by A† the Moore–Penrose pseudoinverse of A (recall that A† = A−1 whenever A is

invertible). If fm, f : D ⊆ Rk → Cr×r are measurable matrix-valued functions, we say that fm converges to

f in measure (resp., a.e., in Lp(D), etc.) if (fm)αβ converges to fαβ in measure (resp., a.e., in Lp(D), etc.)

for all α, β = 1, . . . , r.

GLT 1. If {An}n ∼GLT κ then {An}n ∼σ κ. If moreover each An is Hermitian, then κ is Hermitian a.e. in

[0, 1]× [−π, π] and {An}n ∼λ κ.

GLT 2. We have:

• {Tn(f)}n ∼GLT κ(x, θ) = f(θ) if f : [−π, π]→ Cs×s is in L1([−π, π]);

• {Dn(a)}n ∼GLT κ(x, θ) = a(x) if a : [0, 1]→ Cs×s is Riemann-integrable;

• {Zn}n ∼GLT κ(x, θ) = Os if and only if {Zn}n ∼σ 0.

GLT 3. If {An}n ∼GLT κ and {Bn}n ∼GLT ς then:

• {A∗n}n ∼GLT κ∗;

• {αAn + βBn}n ∼GLT ακ+ βς for all α, β ∈ C;

• {AnBn}n ∼GLT κς;

• {A†n}n ∼GLT κ−1 provided that κ is invertible a.e.

GLT 4. {An}n ∼GLT κ if and only if there exist s-block GLT sequences {Bn,m}n ∼GLT κm such that

{Bn,m}n
a.c.s.−→ {An}n and κm → κ in measure.

4. Main result. This section is devoted to stating and proving the main theoretical result of the paper.

If f : K→ K, with K being either R or C, and if κ : [0, 1]× [−π, π]→ Cs×s is measurable and Hermitian a.e.,

we denote by f(κ) the function (defined a.e. in [0, 1] × [−π, π]) that associates with (x, θ) ∈ [0, 1] × [−π, π]
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the matrix f(κ(x, θ)). If E is any set, we denote by χE and Ec the characteristic (indicator) function of E

and the complementary set of E, respectively.

Theorem 4.1. Let {An}n be an s-block matrix-sequence and let κ : [0, 1]×[−π, π]→ Cs×s be measurable.

If {An}n ∼GLT κ and each An is Hermitian then {f(An)}n ∼GLT f(κ) for any continuous function f : C→
C.

Proof. It suffices to prove the theorem for real continuous functions f : R → R, since every An is

Hermitian by assumption and κ is Hermitian a.e. by GLT 1. Indeed, suppose we have proved the theorem

for real continuous functions and let f : C→ C be any continuous complex function. Denote by α, β : R→ R
the real and imaginary parts of the restriction of f to R. Then, α, β are continuous functions such that

f(x) = α(x) + iβ(x) for all x ∈ R, and since the eigenvalues of An are real we have f(An) = α(An) + iβ(An).

In view of the relations {α(An)}n ∼GLT α(κ) and {β(An)}n ∼GLT β(κ), GLT 3 yields {f(An)}n ∼GLT

α(κ) + iβ(κ) = f(κ).

Let f : R→ R be a real continuous function. For each M > 0, let {pm,M}m be a sequence of polynomials

that converges uniformly to f over [−M,M ]:

lim
m→∞

‖f − pm,M‖∞,[−M,M ] = 0.

Note that such a sequence exists by the Weierstrass theorem; see, e.g., [32, Theorem 7.26]. Since any block

GLT sequence is s.u. (by GLT 1 and D 1), the sequence {An}n is s.u. Hence, by S 1, for all M > 0, there

exists nM such that, for n ≥ nM ,

An = Ân,M + Ãn,M , rank(Ân,M ) ≤ r(M)sn, ‖Ãn,M‖ ≤M,

where r(M) → 0 as M → ∞, the matrices Ân,M and Ãn,M are Hermitian, and for all functions g : R → R
we have

g(Ân,M + Ãn,M ) = g(Ân,M ) + g(Ãn,M ).

Thus, for every M > 0, every m and every n ≥ nM , we can write

f(An) = pm,M (An) + f(An)− pm,M (An)

= pm,M (An) + f(Ân,M ) + f(Ãn,M )− pm,M (Ân,M )− pm,M (Ãn,M )

= pm,M (An) + (f − pm,M )(Ân,M ) + (f − pm,M )(Ãn,M ).(4.5)

The matrix (f − pm,M )(Ân,M ) can be written as the sum of two terms, namely

(f − pm,M )(Ân,M ) = Rn,m,M +N ′n,m,M ,

where

Rn,m,M = (f − pm,M )(Ân,M ) · χSc((f − pm,M )(Ân,M )) = α(Ân,M ),

N ′n,m,M = (f − pm,M )(Ân,M ) · χS((f − pm,M )(Ân,M )) = β(Ân,M ),

S is the singleton S = {(f − pm,M )(0)} ⊂ C, and

α(λ) = (f − pm,M )(λ) · χSc((f − pm,M )(λ)),

β(λ) = (f − pm,M )(λ) · χS((f − pm,M )(λ)).
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Note that Rn,m,M is obtained from the spectral decomposition of (f − pm,M )(Ân,M ) by setting to 0 all the

eigenvalues that are equal to (f − pm,M )(0), while N ′n,m,M is obtained from the spectral decomposition of

(f − pm,M )(Ân,M ) by setting to 0 all the eigenvalues that are different from (f − pm,M )(0). Note that 1

rank(Rn,m,M ) ≤ rank(Ân,M ) ≤ r(M)sn,

‖N ′n,m,M‖ ≤ |f(0)− pm,M (0)|.

Concerning the matrix N ′′n,m,M = (f − pm,M )(Ãn,M ), the inequality ‖Ãn,M‖ ≤M yields

‖N ′′n,m,M‖ ≤ ‖f − pm,M‖∞,[−M,M ].

Let

Nn,m,M = N ′n,m,M +N ′′n,m,M .

By (4.5), for every M > 0, every m and every n ≥ nM , we have

f(An) = pm,M (An) +Rn,m,M +Nn,m,M ,

where

rank(Rn,m,M ) ≤ r(M)sn,

‖Nn,m,M‖ ≤ ‖N ′n,m,M‖+ ‖N ′′n,m,M‖ ≤ 2‖f − pm,M‖∞,[−M,M ].

Choose a sequence {Mm}m such that

(4.6) Mm →∞, ‖f − pm,Mm
‖∞,[−Mm,Mm] → 0.

Then, for every m and every n ≥ nMm
,

f(An) = pm,Mm
(An) +Rn,m,Mm

+Nn,m,Mm
,

rank(Rn,m,Mm
) ≤ r(Mm)sn,

‖Nn,m,Mm
‖ ≤ 2‖f − pm,Mm

‖∞,[−Mm,Mm],

which implies that

{pm,Mm
(An)}n

a.c.s.−→ {f(An)}n.

Moreover, by GLT 3,

{pm,Mm
(An)}n ∼GLT pm,Mm

(κ).

Finally, by (4.6),

‖f(κ)− pm,Mm
(κ)‖ = max

i=1,...,s
|(f − pm,Mm

)(λi(κ))|

≤ ‖f − pm,Mm‖∞,[−‖κ‖,‖κ‖] → 0 a.e.,

which implies that

pm,Mm(κ)→ f(κ) a.e.

All the hypotheses of GLT 4 are then satisfied and {f(An)}n ∼GLT f(κ).

1The inequality rank(Rn,m,M ) ≤ rank(Ân,M ) follows from the observation that if λi(Ân,M ) = 0, then we have (f −
pm,M )(λi(Ân,M )) = (f − pm,M )(0) ∈ S and λi(Rn,m,M ) = α(λi(Ân,M )) = 0.
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5. Higher-order isogeometric Galerkin discretization of second-order variable-coefficient

differential eigenvalue problems. Let R+ be the set of positive real numbers. Consider the following

eigenvalue problem: find eigenvalues λj ∈ R+ and eigenfunctions uj , for j = 1, 2, . . . ,∞, such that

(5.7)

{
−(a(x)u′j(x))′ = λjb(x)uj(x), x ∈ Ω,

uj(x) = 0, x ∈ ∂Ω,

where Ω is a bounded open interval in R and we assume that a, b ∈ L1(Ω) and a, b > 0 a.e. in Ω. The

corresponding weak formulation reads as follows: find eigenvalues λj ∈ R+ and eigenfunctions uj ∈ H1
0 (Ω),

for j = 1, 2, . . . ,∞, such that

a(uj , w) = λj(b uj , w), ∀w ∈ H1
0 (Ω),

where

a(uj , w) =

∫
Ω

a(x)u′j(x)w′(x)dx, (b uj , w) =

∫
Ω

b(x)uj(x)w(x)dx.

Isogeometric Galerkin discretization. In the standard Galerkin method, we fix a set of basis functions

{ϕ1, . . . , ϕN} ⊂ H1
0 (Ω), we define the so-called approximation space W = span(ϕ1, . . . , ϕN ), and we find

approximations of the exact eigenpairs (λj , uj), j = 1, 2, . . . ,∞, by solving the following (Galerkin) problem:

find λj,W ∈ R+ and uj,W ∈ W , for j = 1, . . . , N , such that

(5.8) a(uj,W , w) = λj,W (b uj,W , w), ∀w ∈ W .

Assuming the exact and numerical eigenvalues are arranged in non-decreasing order, the pair (λj,W , uj,W ) is

taken as an approximation of the pair (λj , uj) for all j = 1, . . . , N . The numbers λj,W /λj − 1, j = 1, . . . , N ,

are referred to as the (relative) eigenvalue errors. In view of the canonical identification of each function

w ∈ W with its coefficient vector with respect to the basis {ϕ1, . . . , ϕN}, solving the Galerkin problem (5.8)

is equivalent to solving the generalized eigenvalue problem

(5.9) Kuj,W = λj,W Muj,W ,

where uj,W is the coefficient vector of uj,W with respect to {ϕ1, . . . , ϕN} and

K = [a(ϕj , ϕi)]
N
i,j=1 =

[∫
Ω

a(x)ϕ′j(x)ϕ′i(x)dx

]N
i,j=1

,(5.10)

M = [(b ϕj , ϕi)]
N
i,j=1 =

[∫
Ω

b(x)ϕj(x)ϕi(x)dx

]N
i,j=1

.(5.11)

The matrices K and M are referred to as the stiffness and mass matrices, respectively. Due to our assumption

that a, b > 0 a.e. on Ω, both K and M are symmetric positive definite, regardless of the chosen basis functions

ϕ1, . . . , ϕN . Moreover, it is clear from (5.9) that the numerical eigenvalues λj,W , j = 1, . . . , N , are just the

eigenvalues of the matrix

(5.12) L = M−1K.

In the isogeometric Galerkin method [17], we assume that the physical domain Ω is described by a global

geometry function G : [0, 1] → Ω, which is invertible and satisfies G(∂([0, 1])) = ∂Ω. We fix a set of basis
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functions {ϕ̂1, . . . , ϕ̂N} defined on the reference (parametric) domain [0, 1] and vanishing on the boundary

∂([0, 1]), and we find approximations to the exact eigenpairs (λj , uj), j = 1, 2, . . . ,∞, by using the standard

Galerkin method described above, in which the approximation space is chosen as W = span(ϕ1, . . . , ϕN ),

where

(5.13) ϕi(x) = ϕ̂i(G
−1(x)) = ϕ̂i(x̂), x = G(x̂), i = 1, . . . , N.

The resulting stiffness and mass matrices K and M are given by (5.10) and (5.11), with the basis functions

ϕi defined as in (5.13). If we assume that G and ϕ̂i, i = 1, . . . , N , are sufficiently regular, we can apply

standard differential calculus to obtain for K and M the following expressions:

K =

[∫ 1

0

a(G(x̂))

|G′(x̂)|
ϕ̂′j(x̂)ϕ̂′i(x̂)dx̂

]N
i,j=1

,(5.14)

M =

[∫ 1

0

b(G(x̂))|G′(x̂)|ϕ̂j(x̂)ϕ̂i(x̂)dx̂

]N
i,j=1

.(5.15)

p-Degree Ck B-spline basis functions. Following the higher-order isogeometric Galerkin approach as in

[24], the basis functions ϕ̂1, . . . , ϕ̂N will be chosen as piecewise polynomial functions of degree p ≥ 1. More

precisely, for p, n ≥ 1 and 0 ≤ k ≤ p− 1, let B1,[p,k], . . . , Bn(p−k)+k+1,[p,k] : R→ R be the B-splines of degree

p and smoothness Ck defined on the knot sequence

{τ1, . . . , τn(p−k)+p+k+2}

=

{
0, . . . , 0︸ ︷︷ ︸
p+1

,
1

n
, . . . ,

1

n︸ ︷︷ ︸
p−k

,
2

n
, . . . ,

2

n︸ ︷︷ ︸
p−k

, . . . ,
n− 1

n
, . . . ,

n− 1

n︸ ︷︷ ︸
p−k

, 1, . . . , 1︸ ︷︷ ︸
p+1

}
.(5.16)

The basis functions ϕ̂1, . . . , ϕ̂N are defined as follows:

ϕ̂i = Bi+1,[p,k], i = 1, . . . , n(p− k) + k − 1.(5.17)

In particular, we have N = n(p− k) + k − 1.

We collect below a few properties of B1,[p,k], . . . , Bn(p−k)+k+1,[p,k] that we shall use in this paper. For

the formal definition of B-splines, as well as for the proof of the properties listed below, see [11, 33].

• The support of the ith B-spline is given by

(5.18) supp(Bi,[p,k]) = [τi, τi+p+1], i = 1, . . . , n(p− k) + k + 1.

• Except for the first and the last one, all the other B-splines vanish on the boundary of [0, 1], i.e.,

(5.19) Bi,[p,k](0) = Bi,[p,k](1) = 0, i = 2, . . . , n(p− k) + k.

• {B1,[p,k], . . . , Bn(p−k)+k+1,[p,k]} is a basis for the space of piecewise polynomial functions of degree p and

smoothness Ck, that is,

Vn,[p,k] =
{
v ∈ Ck([0, 1]) : v|[ i

n ,
i+1
n ] ∈ Pp for all i = 0, . . . , n− 1

}
,

where Pp is the space of polynomials of degree ≤ p. Moreover, {B2,[p,k], . . . , Bn(p−k)+k,[p,k]} is a basis for

the space

Wn,[p,k] =
{
w ∈ Vn,[p,k] : w(0) = w(1) = 0

}
.
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• The B-splines form a non-negative partition of unity over [0, 1]:

Bi,[p,k] ≥ 0 over R, i = 1, . . . , n(p− k) + k + 1,(5.20)

n(p−k)+k+1∑
i=1

Bi,[p,k] = 1 over [0, 1].(5.21)

• The derivatives of the B-splines satisfy

(5.22)

n(p−k)+k+1∑
i=1

|B′i,[p,k]| ≤ Cpn over [0, 1],

where Cp is a constant depending only on p. Note that the derivatives B′i,[p,k] may not be defined at some

of the grid points 0, 1
n ,

2
n , . . . ,

n−1
n , 1 in the case of C0 smoothness (k = 0). In (5.22), it is assumed that

the undefined values are excluded from the summation.

• For every y = (y1, . . . , yn(p−k)+k+1) ∈ Rn(p−k)+k+1, we have

(5.23)

∥∥∥∥∥∥
n(p−k)+k+1∑

i=1

yiBi,[p,k]

∥∥∥∥∥∥
2

L2([0,1])

=

∫ 1

0

n(p−k)+k+1∑
i=1

yiBi,[p,k]

2

≥ cp
n
‖y‖2,

where cp is a constant depending only on p and ‖y‖2 =
∑n(p−k)+k+1
i=1 y2

i .

• All the B-splines, except for the first k+ 1 and the last k+ 1, are uniformly shifted-scaled versions of p−k
fixed reference functions β1,[p,k], . . . , βp−k,[p,k], namely the first p − k B-splines defined on the reference

knot sequence

0, . . . , 0︸ ︷︷ ︸
p−k

, 1, . . . , 1︸ ︷︷ ︸
p−k

, . . . , η, . . . , η︸ ︷︷ ︸
p−k

, η =

⌈
p+ 1

p− k

⌉
.

In formulas, setting

(5.24) ν =

⌈
k + 1

p− k

⌉
,

for the B-splines Bk+2,[p,k], . . . , Bk+1+(n−ν)(p−k),[p,k] we have

(5.25)
Bk+1+(p−k)(r−1)+q,[p,k](t) = βq,[p,k](nt− r + 1),

r = 1, . . . , n− ν, q = 1, . . . , p− k.

We point out that the supports of the reference B-splines βq,[p,k] satisfy

supp(β1,[p,k]) ⊆ supp(β2,[p,k]) ⊆ · · · ⊆ supp(βp−k,[p,k]) = [0, η].

Figures 1 and 2 show the graphs of the B-splines B1,[p,k], . . . , Bn(p−k)+k+1,[p,k] for the degree p = 3 and

the smoothness k = 1, and the graphs of the associated reference B-splines β1,[p,k], β2,[p,k].
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Figure 1. B-splines B1,[p,k], . . . , Bn(p−k)+k+1,[p,k] for p = 3 and k = 1, with n = 10.
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Figure 2. Reference B-splines β1,[p,k], β2,[p,k] for p = 3 and k = 1.

GLT analysis of the higher-order isogeometric Galerkin matrices. For any functions α, β ∈ L1([0, 1]),

let

Kn,[p,k](α) =

[∫ 1

0

α(x̂)B′j+1,[p,k](x̂)B′i+1,[p,k](x̂)dx̂

]n(p−k)+k−1

i,j=1

,(5.26)

Mn,[p,k](β) =

[∫ 1

0

β(x̂)Bj+1,[p,k](x̂)Bi+1,[p,k](x̂)dx̂

]n(p−k)+k−1

i,j=1

.(5.27)

The stiffness and mass matrices (5.14) and (5.15) resulting from the choice of the basis functions as in (5.17)

are nothing else than Kn,[p,k](aG) and Mn,[p,k](bG), where

aG(x̂) =
a(G(x̂))

|G′(x̂)|
, bG(x̂) = b(G(x̂))|G′(x̂)|.

The main result of this section is Theorem 5.4. It provides formal mathematical proofs to the main results

appeared in the engineering review [24] by giving the spectral distribution of the normalized sequences

{n−1Kn,[p,k](aG)}n, {nMn,[p,k](aG)}n, {n−2Ln,[p,k](aG, bG)}n, where

Ln,[p,k](aG, bG) = (Mn,[p,k](bG))−1Kn,[p,k](aG)

is the matrix whose eigenvalues are just the numerical eigenvalues produced by the considered higher-order

isogeometric Galerkin method. The proof of Theorem 5.4 is entirely based on the theory of block GLT

sequences and it is therefore referred to as (block) GLT analysis. In view of what follows, define the
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(p− k)× (p− k) blocks

K
[`]
[p,k] =

[∫
R
β′j,[p,k](t)β

′
i,[p,k](t− `)dt

]p−k
i,j=1

, ` ∈ Z,(5.28)

M
[`]
[p,k] =

[∫
R
βj,[p,k](t)βi,[p,k](t− `)dt

]p−k
i,j=1

, ` ∈ Z,(5.29)

and the matrix-valued functions κ[p,k], µ[p,k] : [−π, π]→ C(p−k)×(p−k),

κ[p,k](θ) =
∑
`∈Z

K
[`]
[p,k]e

i`θ = K
[0]
[p,k] +

∑
`>0

(
K

[`]
[p,k]e

i`θ + (K
[`]
[p,k])

T e−i`θ
)
,(5.30)

µ[p,k](θ) =
∑
`∈Z

M
[`]
[p,k]e

i`θ = M
[0]
[p,k] +

∑
`>0

(
M

[`]
[p,k]e

i`θ + (M
[`]
[p,k])

T e−i`θ
)
.(5.31)

Due to the compact support of the reference functions β1,[p,k], . . . , βp−k,[p,k], there is only a finite number of

nonzero blocks K
[`]
[p,k] and M

[`]
[p,k]; consequently, the series in (5.30) and (5.31) are actually finite sums.

We are now ready to state and prove a few lemmas that we will use in the proof of Theorem 5.4. In

what follows, we use the following notation.

• If p, n ≥ 1, 0 ≤ k ≤ p − 1 and A is a matrix of size n(p − k) + k − 1, we denote by Ã the principal

submatrix of A corresponding to the row and column indices i, j = k + 1, . . . , k + (n − ν)(p − k), where

ν = d(k + 1)/(p− k)e as in (5.24).

• If p, n ≥ 1, 0 ≤ k ≤ p − 1 and A is a matrix of size n(p − k) + k − 1, we denote by Â the block diagonal

matrix

Â =

Ik(p−k)−k
A

1

 ,
where it is understood that the block Ik(p−k)−k is not present if k(p− k)− k = 0, i.e., if k = p− 1. Note

that Â has the following key properties:

– its size (n+k)(p−k) is a multiple of p−k and it is such that the difference (n+k)(p−k)−(n(p−k)+k−1) =

k(p− k)− k + 1 > 0 is independent of n;

– it contains A as a principal submatrix in such a way that Ã is the principal submatrix of Â corresponding

to the row and column indices i, j = k(p− k) + 1, . . . , k(p− k) + (n− ν)(p− k);

– its eigenvalues (resp., singular values) are given by the eigenvalues (resp., singular values) of A plus

further k(p− k)− k + 1 eigenvalues (resp., singular values) that are equal to 1.

Lemma 5.1. Let p, n ≥ 1 and 0 ≤ k ≤ p− 1. Then,

K̃n,[p,k](1) = nTn−ν(κ[p,k]),(5.32)

M̃n,[p,k](1) = n−1Tn−ν(µ[p,k]).(5.33)

Proof. The proof of (5.32) is given in [20, Lemma 2], where the matrices K̃n,[p,k](1) and Kn,[p,k](1) are

denoted by Ãn,[p,k](1) and An,[p,k](1), respectively. The proof of (5.33) is essentially the same as the proof

of (5.32).

Lemma 5.2. Let p ≥ 1 and 0 ≤ k ≤ p− 1. Then, for all functions g ∈ L1([0, 1]),

{n−1K̂n,[p,k](g)}n ∼GLT g(x̂)κ[p,k](θ),(5.34)

{nM̂n,[p,k](g)}n ∼GLT g(x̂)µ[p,k](θ).(5.35)
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Proof. We only prove (5.34) as the proof of (5.35) is completely analogous. The proof consists of the

following three steps.

Step 1. We first prove (5.34) in the constant-coefficient case where g(x̂) = 1 identically. In this case,

by Lemma 5.1, n−1K̃n,[p,k](1) = Tn−ν(κ[p,k]). Considering that n−1K̃n,[p,k](1) is the principal submatrix of

n−1K̂n,[p,k](1) corresponding to the row and column indices i, j = k(p− k) + 1, . . . , k(p− k) + (n− ν)(p− k),

we infer that

n−1K̂n,[p,k](1) = Tn+k(κ[p,k]) +Rn,[p,k], rank(Rn,[p,k]) ≤ 2(p− k)(k + ν).

Hence, the desired relation {n−1K̂n,[p,k](1)}n ∼GLT κ[p,k](θ) follows from Z 1, GLT 2 and GLT 3.

Step 2. Now we prove (5.34) in the case where g ∈ C([0, 1]). Let

Zn,[p,k](g) = n−1K̂n,[p,k](g)− n−1Dn+k(gIp−k)K̂n,[p,k](1).

By (5.16), (5.18) and (5.22), for all r,R = 1, . . . , n− ν and q,Q = 1, . . . , p− k we have

|(nZ̃n,[p,k](g))(p−k)(r−1)+q,(p−k)(R−1)+Q|

=

∣∣∣∣∣(K̃n,[p,k](g))(p−k)(r−1)+q,(p−k)(R−1)+Q

−
((

diag
i=k+1,...,k+n−ν

g
( i

n+ k

)
Ip−k

)
K̃n,[p,k](1)

)
(p−k)(r−1)+q,(p−k)(R−1)+Q

∣∣∣∣∣
=

∣∣∣∣∫ 1

0

[
g(x)− g

( k + r

n+ k

)]
B′k+1+(p−k)(R−1)+Q,[p,k](x̂)B′k+1+(p−k)(r−1)+q,[p,k](x̂)dx̂

∣∣∣∣
=

∣∣∣∣∣
∫ τk+1+(p−k)(r−1)+q+p+1

τk+1+(p−k)(r−1)+q

[
g(x̂)− g

( k + r

n+ k

)]

· B′k+1+(p−k)(R−1)+Q,[p,k](x̂)B′k+1+(p−k)(r−1)+q,[p,k](x̂)dx̂

∣∣∣∣∣
≤ C2

pn
2

∫ (r+p)/n

(r−1)/n

∣∣∣∣g(x̂)− g
( k + r

n+ k

)∣∣∣∣ dx̂ ≤ C2
p(p+ 1)nωg

( p
n

)
,

where ωg(·) is the modulus of continuity of g and the last inequality is justified by the fact that the distance

of the point (k + r)/(n + k) from the interval [(r − 1)/n, (r + p)/n] is not larger than p/n. It follows that

each entry of Z̃n,[p,k](g) is bounded in modulus by Dpωg(1/n), where Dp is a constant depending only on p.

Moreover, by (5.18), the matrix Z̃n,[p,k](g) is banded with bandwidth bounded by a constant wp depending

only on p. Thus, by the inequality

(5.36) ‖X‖ ≤

√√√√( max
i=1,...,N

N∑
j=1

|Xij |
)(

max
j=1,...,N

N∑
i=1

|Xij |
)
, X ∈ CN×N ,

which is proved, e.g., in [21, Section 2.4.1], we get ‖Z̃n,[p,k](g)‖ ≤ wpDpωg(1/n)→ 0 as n→∞. Considering

that Z̃n,[p,k](g) is the principal submatrix of Zn,[p,k](g) corresponding to the row and column indices i, j =

k(p− k) + 1, . . . , k(p− k) + (n− ν)(p− k), we arrive at

Zn,[p,k](g) = Nn,[p,k] +Rn,[p,k],
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where ‖Nn,[p,k]‖ = ‖Z̃n,[p,k](g)‖ → 0 as n → ∞ and rank(Rn,[p,k]) ≤ 2(p − k)(k + ν). It follows from Z 1

that {Zn,[p,k](g)}n is zero-distributed. Since

n−1K̂n,[p,k](g) = n−1Dn+k(gIp−k)K̂n,[p,k](1) + Zn,[p,k](g),

we conclude that {n−1K̂n,[p,k](g)}n ∼GLT g(x̂)κ[p,k](θ) by Step 1, GLT 2 and GLT 3.

Step 3. Finally, we prove (5.34) in the general case where g ∈ L1([0, 1]). By the density of C([0, 1]) in

L1([0, 1]), there exist functions gm ∈ C([0, 1]) such that gm → g in L1([0, 1]). By Step 2,

(5.37) {n−1K̂n,[p,k](gm)}n ∼GLT gm(x̂)κ[p,k](θ).

Moreover,

(5.38) gm(x̂)κ[p,k](θ)→ g(x̂)κ[p,k](θ) in measure.

We show that

(5.39) {n−1K̂n,[p,k](gm)}n
a.c.s.−→ {n−1K̂n,[p,k](g)}n.

Once this is done, the thesis (5.34) follows immediately from GLT 4. To prove (5.39), we recall that

(5.40) ‖X‖1 ≤
N∑

i,j=1

|xij |, X ∈ CN×N ;

see, e.g., [21, Section 2.4.3]. By (5.22),

‖K̂n,[p,k](g)− K̂n,[p,k](gm)‖1 = ‖Kn,[p,k](g)−Kn,[p,k](gm)‖1

≤
n(p−k)+k−1∑

i,j=1

∣∣∣∣∫ 1

0

[
g(x̂)− gm(x̂)

]
B′j+1,[p,k](x̂)B′i+1,[p,k](x̂)dx̂

∣∣∣∣
≤
∫ 1

0

∣∣g(x̂)− gm(x̂)
∣∣ n(p−k)+k−1∑

i,j=1

|B′j+1,[p,k](x̂)| |B′i+1,[p,k](x̂)|dx̂

≤ C2
pn

2‖g − gm‖L1 .

Thus, the a.c.s. convergence (5.39) follows from ACS 1.

Lemma 5.3. Let p ≥ 1 and 0 ≤ k ≤ p − 1. Then, µ[p,k](θ) is Hermitian positive definite for all

θ ∈ [−π, π].

Proof. By Lemma 5.2,

{nM̂n,[p,k](1)}n ∼GLT µ[p,k](θ),

and since nM̂n,[p,k](1) is symmetric, we infer from GLT 1 that

(5.41) {nM̂n,[p,k](1)}n ∼λ µ[p,k](θ).

By (5.23), for every y ∈ Rn(p−k)+k−1 we have

yT (nMn,[p,k](1))y = n

∫ 1

0

n(p−k)+k−1∑
i=1

yiBi+1,[p,k](x̂)

2

dx̂

= n

∥∥∥∥∥∥
n(p−k)+k−1∑

i=1

yiBi+1,[p,k]

∥∥∥∥∥∥
2

L2([0,1])

≥ cp‖y‖2.
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Hence, by the minimax principle for eigenvalues [10, Corollary III.1.2],

λmin(nMn,[p,k](1)) = min
y 6=0

yT (nMn,[p,k](1))y

‖y‖2
≥ cp

for all n, which implies that

(5.42) λmin(nM̂n,[p,k](1)) ≥ min(cp, 1)

for all n. Taking into account that λmin(µ[p,k](θ)) is a continuous function of θ just as µ[p,k](θ), by (5.41),

(5.42) and D 2, we have

λmin(µ[p,k](θ)) ≥ min(cp, 1)

for almost every θ ∈ [−π, π], that is, for all θ ∈ [−π, π], thanks to the continuity of λmin(µ[p,k](θ)). We then

conclude that µ[p,k](θ) is Hermitian positive definite for all θ ∈ [−π, π].

Theorem 5.4. Let Ω be a bounded open interval in R and let a, b ∈ L1(Ω) with a, b > 0 a.e. Let p ≥ 1

and 0 ≤ k ≤ p− 1. Let G : [0, 1]→ Ω be such that G′ 6= 0 a.e. in [0, 1] and

aG(x̂) =
a(G(x̂))

|G′(x̂)|
∈ L1([0, 1]),

bG(x̂) = b(G(x̂))|G′(x̂)| ∈ L1([0, 1]).

Then,

{n−1Kn,[p,k](aG)}n ∼σ,λ aG(x̂)κ[p,k](θ) =
a(G(x̂))

|G′(x̂)|
κ[p,k](θ),(5.43)

{nMn,[p,k](bG)}n ∼σ,λ bG(x̂)µ[p,k](θ) = b(G(x̂))|G′(x̂)|µ[p,k](θ),(5.44)

{n−2Ln,[p,k](aG, bG)}n ∼σ,λ (bG(x̂)µ[p,k](θ))
−1(aG(x̂)κ[p,k](θ))

=
a(G(x̂))

b(G(x̂))(G′(x̂))2
(µ[p,k](θ))

−1κ[p,k](θ).(5.45)

Proof. We first note that it is enough to prove (5.43)–(5.45) with Kn,[p,k], Mn,[p,k], Ln,[p,k] replaced by,

respectively, K̂n,[p,k], M̂n,[p,k], L̂n,[p,k], that is,

{n−1K̂n,[p,k](aG)}n ∼σ,λ aG(x̂)κ[p,k](θ) =
a(G(x̂))

|G′(x̂)|
κ[p,k](θ),(5.46)

{nM̂n,[p,k](bG)}n ∼σ,λ bG(x̂)µ[p,k](θ) = b(G(x̂))|G′(x̂)|µ[p,k](θ),(5.47)

{n−2L̂n,[p,k](aG, bG)}n ∼σ,λ (bG(x̂)µ[p,k](θ))
−1(aG(x̂)κ[p,k](θ))

=
a(G(x̂))

b(G(x̂))(G′(x̂))2
(µ[p,k](θ))

−1κ[p,k](θ).(5.48)

Moreover, (5.46) and (5.47) follow immediately from Lemma 5.2 and the symmetry of K̂n,[p,k](aG) and

M̂n,[p,k](bG). It only remains to prove (5.48); this is precisely the proof that requires our main result

(Theorem 4.1). The first observation is that

n−2L̂n,[p,k](aG, bG) = (nM̂n,[p,k](bG))−1(n−1K̂n,[p,k](aG))(5.49)

∼ (nM̂n,[p,k](bG))−1/2(n−1K̂n,[p,k](aG))(nM̂n,[p,k](bG))−1/2,(5.50)
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where X ∼ Y means that the matrix X is similar to Y ; note that M̂n,[p,k](bG) is positive definite because

bG > 0 a.e. in [0, 1] by the assumptions on b and G, hence (M̂n,[p,k](bG))−1/2 is well-defined. By combining

(5.49) with Lemmas 5.2, 5.3 and GLT 3, we immediately obtain

(5.51) {n−2L̂n,[p,k](aG, bG)}n ∼GLT (bG(x̂)µ[p,k](θ))
−1(aG(x̂)κ[p,k](θ)).

The singular value distribution in (5.48) follows from (5.51) and GLT 1. Moreover, by Lemmas 5.2, 5.3,

GLT 3 and Theorem 4.1 (applied with f(z) = |z|1/2), we have

{(nM̂n,[p,k](bG))−1/2(n−1K̂n,[p,k](aG))(nM̂n,[p,k](bG))−1/2}n
∼GLT (bG(x̂)µ[p,k](θ))

−1/2(aG(x̂)κ[p,k](θ))(bG(x̂)µ[p,k](θ))
−1/2.

Considering that (nM̂n,[p,k](bG))−1/2(n−1K̂n,[p,k](aG))(nM̂n,[p,k](bG))−1/2 is symmetric, from GLT 1, we get

{(nM̂n,[p,k](bG))−1/2(n−1K̂n,[p,k](aG))(nM̂n,[p,k](bG))−1/2}n
∼λ (bG(x̂)µ[p,k](θ))

−1/2(aG(x̂)κ[p,k](θ))(bG(x̂)µ[p,k](θ))
−1/2,

which is equivalent to

{(nM̂n,[p,k](bG))−1/2(n−1K̂n,[p,k](aG))(nM̂n,[p,k](bG))−1/2}n
∼λ (bG(x̂)µ[p,k](θ))

−1(aG(x̂)κ[p,k](θ))

by Definition 3.1, since

(bG(x̂)µ[p,k](θ))
−1(aG(x̂)κ[p,k](θ))

∼ (bG(x̂)µ[p,k](θ))
−1/2(aG(x̂)κ[p,k](θ))(bG(x̂)µ[p,k](θ))

−1/2

for all (x̂, θ) ∈ [0, 1]× [−π, π]. In view of the similarity (5.50), we conclude that the eigenvalue distribution

in (5.48) is satisfied.

The reader who is interested in the engineering implications of Theorem 5.4 is referred to the recent

review [24].
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