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CONE-CONSTRAINED RATIONAL EIGENVALUE PROBLEMS∗

ALBERTO SEEGER†

Abstract. This work deals with the eigenvalue analysis of a rational matrix-valued function subject to complementarity

constraints induced by a polyhedral cone K. The eigenvalue problem under consideration has the general structure(
d∑

k=0

λkAk +

m∑
k=1

pk(λ)

qk(λ)
Bk

)
x = y, K 3 x ⊥ y ∈ K∗,

where K∗ denotes the dual cone of K. The unconstrained version of this problem has been discussed in [Y.F. Su and Z.J.

Bai. Solving rational eigenvalue problems via linearization. SIAM J. Matrix Anal. Appl., 32:201–216, 2011.] with special

emphasis on the implementation of linearization-based methods. The cone-constrained case can be handled by combining Su

and Bai’s linearization approach and the so-called facial reduction technique. In essence, this technique consists in solving one

unconstrained rational eigenvalue problem for each face of the polyhedral cone K.

Key words. Nonlinear eigenvalue problem, Rational matrix-valued function, Complementarity problem, Polyhedral cone,

Linearization method, Facial reduction technique.

AMS subject classifications. 15A18, 15A22, 15A39, 65H17.

1. Introduction. Let Mn be the linear space of real matrices of order n. The real version of the

polynomial eigenvalue problem consists in finding the values of λ ∈ R for which the system P (λ)x = 0

admits a nonzero solution x ∈ Rn. Here, P : R→Mn is a matrix-valued function of polynomial type

P (λ) :=

d∑
k=0

λkAk,

d is a positive integer and the Ak’s are matrices of order n. The real spectrum of P is given by

σ(P ) := {λ ∈ R : det[P (λ)] = 0}.

We leave complex eigenvalues out of the discussion. Instead of the unconstrained system P (λ)x = 0, in this

work, we analyze a cone-constrained equilibrium model

(1.1) K 3 x ⊥ Φ(λ)x ∈ K∗

involving a possibly non-polynomial matrix-valued function Φ : Λ→Mn defined on a subset of the real line.

We say that n and Λ are the order and domain of Φ, respectively. The symbol ⊥ stands for orthogonality

relative to the usual inner product of Rn, K is a closed convex cone, and K∗ is the dual cone of K. We

write sometimes the model (1.1) in the primal-dual form

Φ(λ)x = y, K 3 x ⊥ y ∈ K∗(1.2)

and view (x, y) as a couple of complementarity vectors. By an obvious reason, we refer to x as primal vector

and y as dual vector.
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Definition 1. Let K be a closed convex cone in Rn and Φ : Λ→ Mn with Λ ⊆ R. We say that λ ∈ Λ

is a K-eigenvalue of Φ if (1.1) holds for some nonzero x ∈ Rn. Such a vector x is called a K-eigenvector of

Φ. The set of K-eigenvalues of Φ is denoted by σ(Φ,K) and it is called the K-spectrum of Φ.

Definition 1 is similar to Definition 2.9 in Seeger [17], but K-spectra of matrix-valued functions are not

quite the same mathematical objects as K-spectra of matrices. The link between these objects is reflected

by the transfer formula

(1.3) σ(Φ,K) = {λ ∈ Λ : 0 ∈ S(Φ(λ),K)},

where S(A,K) denotes the K-spectrum of a matrix A ∈ Mn. If the cone K is the whole space Rn, then

(1.1) reduces to Φ(λ)x = 0 and

σ(Φ,Rn) = σ(Φ) := {λ ∈ Λ : det[Φ(λ)] = 0}

is the real spectrum of Φ. The cone-constrained eigenvalue problem (1.1) has been studied in the literature

for affine and quadratic matrix-valued functions:

Φ1(λ) := A0 + λA1,

Φ2(λ) := A0 + λA1 + λ2A2.

For getting acquainted with the theory of cone-constrained affine eigenvalue problems the reader may consult

Seeger [17], Seeger and Torki [19], Pinto da Costa and Seeger [14, 15], and references therein. Cone-

constrained quadratic eigenvalue problems are considered in Seeger [18], Brás et al. [4, 5], Fernandes et

al. [7], Iusem et al. [9, 10], and Niu et al. [13].

Two concrete examples of eigenvalue problem of type (1.1) arising in mechanics are solved in Pinto

da Costa el al. [16]. In both examples, the convex cone K is polyhedral and Φ is non-polynomial. We

would like to underline that if Φ and K are absolutely general, then the set σ(Φ,K) may have a very

complicated structure and its numerical computation could practically be impossible. In this work, we study

the eigenvalue problem (1.1) under the following two hypotheses:

K is a polyhedral cone in Rn,(1.4)

Φ is a rational matrix-valued function of order n.(1.5)

Such particular framework is flexible enough to cover a great variety of cone-constrained eigenvalue problems

arising in various fields of mathematics and engineering. To avoid trivialities it is implicitly understood in

(1.4) that K spans a linear subspace of dimension at least two. Hypothesis (1.5) means that Φ has the form

(1.6) Φ(λ) =


p1,1(λ)
q1,1(λ) · · · p1,n(λ)

q1,n(λ)

...
...

pn,1(λ)
qn,1(λ) · · · pn,n(λ)

qn,n(λ)

 ,
where each entry of (1.6) is a quotient of two coprime scalar polynomials, the one in the denominator

being not identically zero. Recall that two scalar polynomials are coprime if they do not have a common

factor. After carrying out an Euclidean division in each entry of (1.6) and rearranging terms, we obtain the

representation

(1.7) Φ(λ) =

d∑
k=0

λkAk︸ ︷︷ ︸
polynomial part

+

m∑
k=1

pk(λ)

qk(λ)
Bk︸ ︷︷ ︸

purely rational part

,
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where A0, . . . , Ad, B1, . . . , Bm are matrices of order n and

(1.8)


pk and qk are coprime scalar polynomials,

the degree of pk is smaller than the degree of qk,

the leading coefficient of qk is equal to 1,

for all k ∈ Nm := {1, . . . ,m}. The last requirement in (1.8) is a normalization condition that does not entail

a loss of generality. The domain of (1.7) is given by

Λ := {λ ∈ R : q1(λ) 6= 0, . . . , qm(λ) 6= 0}.

Said in other words, the domain Λ leaves aside the poles of the purely rational part

(1.9) S(λ) :=

m∑
k=1

pk(λ)

qk(λ)
Bk.

Note that (1.7) includes a polynomial matrix-valued function as particular case. Adding an expression like

(1.9) to a polynomial matrix-valued function enlarges considerably the field of applications of the theory of

K-spectra.

Example 1. An interesting example of rational matrix-valued function arising in mechanical engineering

is

(1.10) Φ(λ) = K − λM +

m∑
k=1

λ

λ− ωk
Qk,

where the ωk’s are positive parameters, K and M are symmetric matrices, and the Qk’s are symmetric

matrices of low rank. Note that (1.10) admits the representation (1.7) with d = 1 and

A0 := K +

m∑
k=1

Qk, A1 := −M, Bk := Qk, pk(λ) := ωk, and qk(λ) := λ− ωk.

See Voss [22, 23] for a physical interpretation of (1.10).

A battery of examples of rational eigenvalue problems arising in real life applications can be found in

Mehrmann and Voss [12, Section 1] and in Betcke et al. [3]. The book of Kaczorek [11] is a rich source of

information concerning the general theory of rational matrix-valued functions. Various numerical methods

for solving unconstrained rational eigenvalue problems have been proposed in the literature. In Section 3,

we explain how to adapt the linearization-based method of Su and Bai [21] to a cone-constrained setting.

2. Characterization of K-spectra in a polyhedral setting. The next theorem characterizes the

K-spectrum of a possibly non-rational matrix-valued function. We represent the polyhedral cone K as

intersection of finitely many half-spaces, say

(2.11) K = {x ∈ Rn : W>x � 0},

where W = [w1, . . . , wr] is a matrix whose columns are nonzero n-dimensional vectors and u � 0 means

that each component of u is nonnegative. Without loss of generality we assume that no column of W is a

nonnegative linear combination of the remaining ones. Before stating Theorem 1 we need to introduce some
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notation. We write u � 0 to indicate that u is a vector whose components are all positive. For a subset J

of Nr := {1, . . . , r}, the symbol |J | stands for the cardinality of J and J̄ refers to the set-complement of J

with respect to Nr. For a nonempty subset J of Nr, let WJ be the matrix whose columns are {wj : j ∈ J}.
Finally, let JW be defined by

(2.12) J ∈ JW ⇔ J ⊆ Nr, 1 ≤ |J | ≤ n− 1, and rank(WJ) = |J |.

The full rank condition in (2.12) is a short way of saying that {wj : j ∈ J} are linearly independent vectors.

Theorem 1. Let K be a polyhedral cone as in (2.11) and Φ : Λ → Mn with Λ ⊆ R. Then λ ∈ Λ is a

K-eigenvalue of Φ if and only if either one of the following conditions is true:

(a) There exists a nonzero vector x ∈ Rn such that

(2.13) Φ(λ)x = 0, W>x � 0.

(b) There exist x ∈ Rn, J ∈ JW and η ∈ R|J| such that[
Φ(λ) WJ

W>J 0

] [
x

−η

]
=

[
0

0

]
,(2.14)

W>J̄ x � 0,(2.15)

η � 0.(2.16)

Proof. Let λ ∈ Λ be a K- eigenvalue of Φ and x be an associated K- eigenvector. In particular, W>x � 0

and y := Φ(λ)x belongs to the dual cone

K∗ = {Wz : z � 0}.

If y = 0, then (a) holds and we are done. Suppose that y 6= 0. In such a case, y = WJ η for some nonempty

index set J ⊆ Nr and some vector η ∈ R|J| whose components are all positive. Thanks to the conic version

of Caratheodory’s theorem (cf. [24, Section 6.1]), we may suppose that the columns of WJ are linearly

independent, in which case |J | ≤ n. We know already that W>J x � 0 and W>
J̄
x � 0. But

〈x, y〉 = 0 ⇔ 〈x,WJη〉 = 0 ⇔ 〈W>J x, η〉 = 0 ⇔ W>J x = 0.

Hence, we can write

W>J x = 0, W>J̄ x � 0, Φ(λ)x−WJ η = 0, η � 0,(2.17)

which is precisely the system (2.14)–(2.16). Observe that |J | 6= n, because otherwise the first condition in

(2.17) would imply that x = 0. In conclusion, J ∈ JW and (b) holds. Conversely, let x be as in (a) or (b).

In either case we see that x is a K- eigenvector of Φ and λ is an associated K- eigenvalue.

The matrix-valued function Φ in Theorem 1 does not need to be of rational type, but the cone K must

be polyhedral and represented as in (2.11). The next small dimensional example illustrates how Theorem 1

works in practice.

Example 2. Let K = {x ∈ R2 : x1 ≥ x2 ≥ 0}. This polyhedral cone is expressible as in (2.11) with

W =

[
1 0

−1 1

]
.
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Let Φ be the rational matrix-valued function given by

(2.18) Φ(λ) =

 −
λ(λ+2)

12 − λ
λ−3

λ+2
λ2+1 λ2 − 4

 .
By computing the roots of

det[Φ(λ)] = −λ
2(λ+ 2)(λ− 1)(λ3 − 2λ2 − 5λ+ 4)

12(λ− 3)(λ2 + 1)
,

we get the real spectrum

σ(Φ) = {−2.00000, −1.85577, 0.00000, 0.67836, 1.00000, 3.17741}.

Table 1 displays seven triplets (λ, x, y) solving (1.2). By working out the case (a) of Theorem 1, we get the

triplets numbered 1, 2, 3, 5, and 6. We now work out the case (b) of Theorem 1: the index set J = {1} yields

the triplet numbered 7, whereas J = {2} yields the triplet numbered 4. The value λ = 0 appears twice in

Table 1, but repetitions are not counted in σ(Φ,K). Summarizing,

(2.19) σ(Φ,K) = {−2.00000, −1.85577, 0.00000, 0.67836, 1.00000, 1.53349}.

This example shows that the K-spectrum and the real spectrum of Φ are not comparable in general.

Table 1

Spectral analysis of Example 2.

primal vector dual vector facial dimension

Nr. λ x1 x2 y1 y2 primal dual

1 -2 1 0 0 0 1 0

2 -1.85577 17.1344 1 0 0 2 0

3 0 2 1 0 0 2 0

4 0 1 0 0 2 1 1

5 0.67836 1.9298 1 0 0 2 0

6 1 2 1 0 0 2 0

7 1.53349 1 1 0.5941 -0.5941 1 1

A comment on the last two columns of Table 1 is in order. Suppose that (λ, x, y) solves (1.2). The

primal vector x is nonzero and belongs to a face of K. Let Fx(K) be the unique face of K that contains x

in its relative interior. The facial dimension of the primal vector x is defined as the dimension of the linear

space spanned by Fx(K). Analogously, the facial dimension of the dual vector y is the dimension of the

linear space spanned by Fy(K∗).

2.1. Cardinality issues. The next corollary is a direct consequence of Theorem 1. For notational

convenience we write

ΓJ(λ) := det

[
Φ(λ) WJ

W>J 0

]
.

Note that ΓJ has the same domain as Φ. Furthermore, if Φ is rational, then ΓJ is rational.

Corollary 1. Let K be a polyhedral cone as in (2.11) and Φ : Λ→Mn with Λ ⊆ R. Then a necessary

condition for λ ∈ Λ to be a K-eigenvalue of Φ is that

det [Φ(λ)] = 0 or ΓJ(λ) = 0 for some J ∈ JW .
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Said in other words,

(2.20) σ(Φ,K) ⊆ σ(Φ)
⋃  ⋃

J∈JW

{t ∈ Λ : ΓJ(t) = 0}

 .

The set on the right-hand side of (2.20) is a union of finitely many real spectra. Such upper bound

is coarse in general, because the inequality constraints in (2.13) and in (2.15)–(2.16) are being neglected.

Anyway, the set on the right-hand side of (2.20) can be used to identify potential candidates for membership

in σ(Φ,K). The next proposition concerns the finiteness of the K-spectrum of a rational matrix-valued

function.

Proposition 1. Let K be a polyhedral cone as in (2.11) and Φ : Λ→Mn with Λ ⊆ R. Assume that

det ◦ Φ is not identically zero on Λ,(2.21)

∀J ∈ JW , ΓJ is not identically zero on Λ.(2.22)

Then σ(Φ,K) has finite cardinality.

Proof. The composition det ◦ Φ and the ΓJ ’s are rational functions on Λ. Assumption (2.21) implies

that σ(Φ) is finite and assumption (2.22) implies that each zero-set

Γ−1
J ({0}) := {t ∈ Λ : ΓJ(t) = 0}

is finite. The upper bound (2.20) completes the proof of the proposition.

We state below a variant of Proposition 1 involving the facial structure of K. Let F(K) be the set of

nonzero faces of K. Each face F of a polyhedral cone K is yet another polyhedral cone. The dimension

of the face F is understood as the dimension of spanF , the linear subspace spanned by F . If H is a linear

subspace of Rn, then M(H) denotes the set of matrices of size n× dimH whose columns form a basis of H.

Proposition 2. Let K be a polyhedral cone in Rn and Φ : Λ→Mn be a rational matrix-valued function.

Then

(2.23) σ(Φ,K) ⊆
⋃

F∈F(K)

σ(Φ, spanF ).

In particular, under the assumption

(2.24)

{
for all F ∈ F(K), there exists V ∈M(spanF ) s.t.

det[V >Φ( · )V ] is not identically zero on Λ,

the set σ(Φ,K) has finite cardinality.

Proof. Theorem 3.4 in Seeger and Torki [19] asserts that

S(A,K) ⊆
⋃

F∈F(K)

S(A, spanF )

for all A ∈Mn. This general inclusion for K-spectra of matrices and the transfer formula (1.3) yield (2.23).

Now, suppose that assumption (2.24) is in force. Pick any F ∈ F(K) and select a matrix V as in (2.24).
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Let ` be the dimension of F . By using the change of variables x = V u, we see that the subspace-constrained

equilibrium model

x ∈ spanF, Φ(λ)x ∈ [spanF ]
⊥

admits a nonzero solution x ∈ Rn if and only if the unconstrained system V >Φ(λ)V u = 0 admits a nonzero

solution u ∈ R`. In other words,

(2.25) σ(Φ, spanF ) = {t ∈ Λ : det[V >Φ(t)V ] = 0}.

The zero-set (2.25) is finite because the rational function det[V >Φ( · )V ] is not identically zero on Λ. This

completes the proof of the proposition.

Example 3. Consider again Φ and K as in Example 2. The polyhedral cone under consideration has

three nonzero faces:

F1 = K, F2 = {x ∈ K : x1 = x2}, F3 = {x ∈ K : x2 = 0}.

As bases for the linear subspaces spanned by these faces, we use the columns of the matrices

V1 :=

[
1 0

0 1

]
, V2 :=

[
1

1

]
, V3 :=

[
1

0

]
,

respectively. We get

(2.26) σ(Φ, spanF1) = σ(Φ) = {−2.00000, −1.85577, 0.00000, 0.67836, 1.00000, 3.17741}.

On the other hand, the sets

σ(Φ, spanF2) = {−2.11009, 1.53349, 3.49665},(2.27)

σ(Φ, spanF3) = {−2.00000, 0.00000}(2.28)

are formed with the roots of

det[V >2 Φ(λ)V2] =
λ+ 2

λ2 + 1
+ λ2 − 4− λ

λ− 3
− λ(λ+ 2)

12
,

det[V >3 Φ(λ)V3] = −λ(λ+ 2)

12
,

respectively. Hence, the K-eigenvalues of Φ are to be sought among the elements of (2.26), (2.27), and (2.28).

This observation is consistent with what we obtained in (2.19). In this example, the inclusion (2.23) is strict

because −2.11009, 3.17741, and 3.49665, are on the right-hand side of (2.23) but not on the left-hand side.

3. Pareto spectra of rational matrix-valued functions. In this section, we assume that K is the

n-dimensional Pareto cone, i.e., K = Rn+. The equilibrium model (1.2) takes the more familiar form

Φ(λ)x = y, 0 � x ⊥ y � 0,(3.29)

where nonnegativity of a vector is understood in the componentwise sense. The Pareto cone is the most

popular polyhedral cone used to formulate complementarity constraints. The set

Π(Φ) := σ(Φ,Rn+)
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is called Pareto spectrum of Φ and the elements of Π(Φ) are called Pareto eigenvalues of Φ. Since the

n-dimensional Pareto cone has 2n − 1 nonzero faces, an exhaustive computation of the Pareto spectrum

of a rational matrix-valued function of order n requires to solve 2n − 1 unconstrained rational eigenvalue

problems. The next theorem explains the details, but we need first to introduce some notation. The symbol

Jn stands for the set of nonempty subsets of Nn := {1, . . . , n}. Given a matrix A ∈ Mn, we write AJ1,J2 to

indicate the submatrix of A obtained by keeping only the rows indexed by J1 ∈ Jn and the columns indexed

by J2 ∈ Jn. In particular, AJ := AJ,J is a principal submatrix of A. For alleviating notation, we also write

ΦJ1,J2(λ) := [Φ(λ)]
J1,J2 and ΦJ(λ) := [Φ(λ)]

J,J
.

Theorem 1. Let Φ : Λ→Mn with Λ ⊆ R. Then λ ∈ Λ is a Pareto eigenvalue of Φ if and only if there

exist an index set J ∈ Jn and a vector u ∈ R|J| such that

ΦJ(λ)u = 0,(3.30)

u � 0,(3.31)

ΦJ̄,J(λ)u � 0.(3.32)

Proof. It suffices to combine [17, Theorem 4.1] and relation (1.3).

If J is the whole set Nn, then J̄ is empty and the slackness condition (3.32) must be dropped of course.

In general, if λ is a Pareto eigenvalue of Φ produced by an index set J , then an associated Pareto eigenvector

x ∈ Rn is obtained by setting

xj =

{
uj if j ∈ J,

0 if j ∈ J̄ .

Theorem 1 has a number of easy consequences. The next corollary is just one of them. Note that if Φ is a

rational matrix-valued function of order n, then ΦJ is a rational matrix-valued function of order |J |.

Corollary 2. Let Φ : Λ→Mn with Λ ⊆ R. Then

(3.33) Π(Φ) ⊆
⋃
J∈Jn

σ
(
ΦJ
)
.

In particular, the Pareto spectrum of Φ has finite cardinality if we assume that, for each J ∈ Jn, the

composite function fJ := det ◦ ΦJ is not identically zero on Λ.

We call fJ the characteristic function of ΦJ . Strictly speaking, ΦJ and fJ are defined on a domain ΛJ

possibly bigger than Λ, but for notational simplicity we consider only their restrictions to Λ. If the charac-

teristic function of at least one ΦJ is identically zero, then the Pareto spectrum of Φ may be uncountable.

Example 2. Consider the rational matrix-valued function of order 3 given by

Φ(λ) =

 λ −1 −1
1
λ − 1

λ2 λ

−1 1 2

 .
If we write (3.30)–(3.32) for J = {1, 2}, then we get the system

(3.34)

[
λ −1
1
λ − 1

λ2

] [
u1

u2

]
=

[
0

0

]
, u1 > 0, u2 > 0, −u1 + u2 ≥ 0.
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Clearly, fJ is identically zero and (3.34) has a solution u ∈ R2 if and only if λ ≥ 1. The Pareto spectrum

of Φ contains then the interval [1,∞[. By working out the case J = {1, 3}, we see that Φ admits λ = 1/2

as Pareto eigenvalue. Each remaining index set J leads to a system (3.30)–(3.32) that is unsolvable. Hence,

Π(Φ) = {1/2} ∪ [1,∞[. This situation is rather abnormal, because most rational matrix-valued funcions

arising in practice have finitely many Pareto eigenvalues.

Theorem 1 suggests to identify the Pareto eigenvalues of a rational Φ : Λ→Mn by applying the so-called

Facial Reduction Technique:

(FRT)


for each J ∈ Jn compute the real spectrum of ΦJ and,

for each λ ∈ σ
(
ΦJ
)
, check whether the kernel of the matrix ΦJ(λ)

contains a u � 0 satisfying the slackness condition ΦJ̄,J(λ)u � 0.

The FRT consists then in solving a collection of 2n − 1 unconstrained rational eigenvalue problems and

checking, for each one of these problems, whether there exists a positive eigenvector satisfying a certain

system of inequalities.

3.1. Linearization of rational matrix-valued functions. We now explain how the FRT works in

practice when Φ : Λ→ Mn is rational. We start by considering the index set J = Nn. In this case, ΦJ = Φ

and the system (3.30)–(3.32) reduces to

(3.35) Φ(λ)x = 0, x � 0,

which is a rational eigenvalue problem with eigenvalues constrained to the real line, except for the fact that

the eigenvector x ∈ Rn must be positive. Often times Φ is given in the entrywise format (1.6) but, as

mentioned before, an Euclidean polynomial division in each entry of Φ allows to separate the polynomial

part and the purely rational part of Φ. So, we may assume that Φ is given in the form (1.7) with

d, (A0, . . . , Ad)︸ ︷︷ ︸
data for P

, m, (p1, q1, B1), . . . , (pm, qm, Bm)︸ ︷︷ ︸
data for S

readily available. Let dk be the degree of qk and rk be the rank of Bk. We suppose that each Bk is given in

a rank-revealing factorization

(3.36) Bk = LkR
>
k ,

where Lk, Rk are full rank matrices of size n × rk. In applications, the rk’s are usually much smaller than

n. Since the degree of pk is smaller than the degree of qk, the rational function pk/qk can be represented as

(3.37)
pk(λ)

qk(λ)
= a>k (Ck + λDk)−1bk,

where ak, bk are column vectors in Rdk , Ck is a matrix of order dk, and Dk is a nonsingular matrix of order

dk. In the parlance of control theory, the quadruple (ak, bk, Ck, Dk) is called a realization of the rational

function pk/qk. Algorithms for constructing realizations of rational functions can be found in the specialized

literature, cf. [20]. By substituting (3.36) and (3.37) into (1.9), we get

S(λ) =

m∑
k=1

a>k (Ck + λDk)−1bk LkR
>
k .
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As mentioned in Su and Bai [21, Section 3], this can be rewritten in the more compact form

S(λ) = L(C + λD)−1R>,

where C,D are matrices of order

κ =

m∑
k=1

rkdk

and L,R are rectangular matrices of size n×κ. Furthermore, D is nonsingular because eachDk is nonsingular.

Summarizing, we may assume that Φ : Λ→Mn is given from the very beginning in the realization format

Φ(λ) =

d∑
k=0

λkAk + L(C + λD)−1R>,(3.38)

Λ = {λ ∈ R : det(C + λD) 6= 0}.(3.39)

Note that the set-complement of (3.39) is finite because D is nonsingular. A small dimensional example is

helpful to fix the ideas.

Example 3. Consider again the rational matrix-valued function Φ given by (2.18). We have

Φ(λ) =

[
0 −1

0 −4

]
︸ ︷︷ ︸

A0

+ λ

[
− 1

6 0

0 0

]
︸ ︷︷ ︸

A1

+ λ2

[
− 1

12 0

0 1

]
︸ ︷︷ ︸

A2

+ S(λ),

where the purely rational part written in rank-revealing format is

(3.40) S(λ) =
λ+ 2

λ2 + 1

[
0

1

] [
1

0

]>
+

1

λ− 3

[
1

0

] [
0

−3

]>
.

For the first rational function in (3.40), we may consider for instance the realization

(a1, b1, C1, D1) =

([
−1/2

3/2

]
,

[
1

1

]
,

[
0 1

−1 0

]
,

[
1 0

0 1

])
.

For the second rational function in (3.40) we can take (a2, b2, C2, D2) = (1, 1,−3, 1) . Hence, Φ is representable

as in (3.38) with purely rational part expressed in terms of the matrices

L =

[
0 0 1

−1/2 3/2 0

]
, R =

[
1 1 0

0 0 −3

]
, C =

 0 1 0

−1 0 0

0 0 −3

 , and D =

 1 0 0

0 1 0

0 0 1

 .
The matrices C and D are not unique because a rational function has several realizations.

As shown in the next proposition, computing the real spectrum of the rational matrix-valued function

(3.38) is equivalent to solving an affine eigenvalue problem

(3.41) (A + λB)z = 0
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involving a pair of block structured matrices:

A :=


Ad−1 Ad−2 · · · A0 L

−In 0 · · · 0
. . .

. . .
...

−In 0

R> −C

 , B :=


Ad

In
. . .

In
−D

 .

Written in full extent the affine eigenvalue problem (3.41) reads:

Ad−1z1 +Ad−2z2 + . . .+A0zd + Lz0 + λAdz1 = 0

−z1 + λz2 = 0

...

−zd−1 + λzd = 0

R>zd − (C + λD)z0 = 0.

The matrices A and B are of order dn+ κ. Note that B is nonsingular if and only if the leading matrix Ad
is nonsingular.

Proposition 3 (Su and Bai, 2011). Let Φ : Λ→ R be given by (3.38). Let λ ∈ Λ.

(a) If z := (z1, z2, . . . , zd, z0)
> ∈ Rdn+κ is a nonzero vector in the kernel of A + λB, then x := zd is a

nonzero vector in the kernel of Φ(λ).

(b) Conversely, if x is a nonzero vector in the kernel of Φ(λ), then

z :=
(
λd−1x, λd−2x, . . . , x, (C + λD)−1RTx

)>
is a nonzero vector in the kernel of A + λB.

In conclusion, to check whether (3.35) holds for some pair (λ, x) ∈ Λ × Rn amounts to check whether

(3.41) has a solution (λ, z) ∈ Λ × Rdn+κ with zd � 0. The affine eigenvalue problem (3.41) can be handled

with any eigensolver available in the literature. The case of a general index set J can be treated along the

same lines. Let {e1, . . . , en} be the canonical basis of Rn and EJ be the matrix whose columns are the

vectors {ej : j ∈ J}. Since

ΦJ(λ) = E>J Φ(λ)EJ ,

a representation of ΦJ in realization format is

ΦJ(λ) =

d∑
k=0

λkAJk + LJ(C + λD)−1R>J ,

where AJk = E>J AkEJ is the principal submatrix of Ak induced by the index set J and

LJ := E>J L, RJ := E>J R.

Hence, the rational eigenvalue problem (3.30) can be converted into an affine eigenvalue problem involving
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a pair of block structured matrices:

AJ :=


AJd−1 AJd−2 · · · AJ0 LJ
−Ip 0 · · · 0

. . .
. . .

...

−Ip 0

R>J −C

 , BJ :=


AJd

Ip
. . .

Ip
−D

 ,

where Ip is the identity matrix of order p := |J |. The situation is essentially the same as with the case

J = Nn, except that now AJ and BJ are matrices of order d |J | + κ. In particular, the component zd of

the eigenvector z belongs to R|J|. Below we reformulate Theorem 1 for the particular case of a rational

matrix-valued function given in realization format. In order to express the slackness condition (3.32) in

terms of z we introduce the block structured matrices

AJ̄,J :=
[
AJ̄,Jd−1 AJ̄,Jd−2 · · · AJ̄,J0 LJ̄

]
,

BJ̄,J :=
[
AJ̄,Jd 0 · · · 0 0

]
,

where LJ̄ = E>
J̄
L and AJ̄,J = E>

J̄
AEJ for all A ∈Mn.

Theorem 4. Let Φ : Λ → R be given by (3.38). Then λ ∈ Λ is a Pareto eigenvalue of Φ if and only if

there exist an index set J ∈ Jn and a vector z ∈ Rd|J|+κ such that

(AJ + λBJ)z = 0,(3.42)

zd � 0,(3.43)

(AJ̄,J + λBJ̄,J)z � 0.(3.44)

Proof. Condition (3.44) must be dropped of course when J = Nn. This case is taken care by Proposition 3

and the fact that the positivity condition (3.31) is equivalent to the positivity condition (3.43). Suppose

that J is strictly contained in Nn. Let z ∈ Rd|J|+κ be as in (3.42)–(3.44) and define u := zd. By using

(3.42)–(3.43), we get

zk = λd−ku for k ∈ Nd(3.45)

z0 = (C + λD)−1RTu(3.46)

and deduce that u is a positive vector in the kernel of ΦJ(λ). It remains to check that u satisfies the slackness

condition (3.32). Condition (3.44) amounts to saying that

(3.47) AJ̄,Jd−1z1 +AJ̄,Jd−2z2 + · · ·+AJ̄,J0 zd + LJ̄z0 + λAJ̄,Jd z1 � 0.

By substituting (3.45)–(3.46) into (3.47) and rearranging terms, we get(
d∑
k=0

λkAJ̄,Jk + LJ̄(C + λD)−1R>J

)
u � 0.

On the other hand, a left multiplication in (3.38) by E>
J̄

followed by right multiplication by EJ yield

ΦJ̄,J(λ) =

d∑
k=0

λkAJ̄,Jk + LJ̄(C + λD)−1R>J .
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This shows that u satisfies (3.32). Conversely, suppose that u ∈ R|J| satisfies the system (3.30)–(3.32). In

such a case, a direct computation shows that

z :=
(
λd−1u, λd−2u, . . . , u, (C + λD)−1RTu

)>
satisfies (3.42)–(3.44).

3.2. Analysis of a particular case. By way of application, we analyze a cone-constrained eigenvalue

problem involving the rational matrix-valued function of Example 1. To be more precise, we solve the

cone-constrained eigenvalue problem (3.29) for

(3.48) Φ(λ) := K − λM +

m∑
k=1

λ

λ− ωk
hkh

>
k ,

where ω1, . . . , ωm are positive parameters, h1, . . . , hm are vectors of Rn and K,M are symmetric matrices

of order n. We assume that M is positive definite. We explain in detail how to compute all the Pareto

eigenvalues of such Φ. For a pedagogical reason we distinguish three phases:

Phase I. We separate the polynomial part and the purely rational part of Φ. After carrying out an

Euclidean polynomial division we see that

P (λ) = K +

m∑
k=1

hkh
>
k − λM,(3.49)

S(λ) =

m∑
k=1

ωk
λ− ωk

hkh
>
k .(3.50)

Note that (3.49) is affine with A0 := K +
∑m
k=1 hkh

>
k as constant part and A1 := −M as linear part. Since

M is positive definite, so is every principal submatrix of M . In particular, the characteristic function of each

ΦJ is not identically zero. Corollary 2 implies that Φ has finitely many Pareto eigenvalues.

Phase II. The second phase consists in writing Φ in realization format. Clearly, the purely rational part

(3.50) is expressible as L(C + λD)−1R> with C = −Im, D := Diag(1/w1, . . . , 1/wm), and R = L = H :=

[h1, . . . , hm]. Thus,

Φ(λ) = A0 + λA1 +H(−Im + λD)−1H>.

Phase III. The third and final phase consists in solving the system (3.42)–(3.44) for each index set J

taken from Jn. There are 2n − 1 index sets in all. In this example, we have d = 1. Hence,

AJ =

[
AJ0 HJ

H>J Im

]
, BJ =

[
AJ1 0

0 −D

]
AJ̄,J =

[
AJ̄,J0 HJ̄

]
, BJ̄,J =

[
AJ̄,J1 0

]
,

and the system (3.42)–(3.44) becomes([
AJ0 HJ

H>J Im

]
+ λ

[
AJ1 0

0 −D

])[
u

w

]
=

[
0

0

]
,(3.51)

([
AJ̄,J0 HJ̄

]
+ λ

[
AJ̄,J1 0

]) [ u

w

]
� 0,(3.52)

u � 0.(3.53)
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Note that AJ and BJ are symmetric matrices of order |J |+m and that −BJ is positive definite. Symmetry

is not here a crucial property. We could have perfectly well started with asymmetric matrices K and M .

Of three phases mentioned above, the most expensive in computational cost is Phase III. In general,

the number of systems of the type (3.42)–(3.44) that must we worked out is 2n − 1. This number increases

exponentially with n and this fact is a recurrent nightmare of the theory of Pareto eigenvalues. A bothersome

aspect of the Pareto cone Rn+ is that of having as much as 2n− 1 nonzero faces. If n is beyond a few dozens,

then computing all the Pareto eigenvalues of a rational matrix-valued function is prohibitively expensive.

Table 2 reports a numerical experiment with the following data:

K =

 4 −1 1

−1 2 0

1 0 3

 , M =

 3 −2 0

−2 6 0

0 0 4

 , H =

 1 0

0 1

0 −1

 , ω1 = 1, ω2 = 4.(3.54)

The real spectrum of the matrix-valued function Φ given by (3.48) has 5 elements, namely,

σ(Φ) = {0.17219, 0.57792, 0.87265, 2.37506, 4.50218}.

This set is not to be confused with the Pareto spectrum of Φ, which has 11 elements in all. In this example,

the sets σ(Φ) and Π(Φ) are not comparable and they have only two elements in common. Note that if we

write (3.51)–(3.52) for J = {2}, then we get a system that is unsolvable. This explain why the index set

J = {2} produce no Pareto eigenvalue, cf. Table 2.

Table 2

Pareto eigenvalues of (3.48) with data given by (3.54).

primal vector dual vector

J λ x1 x2 x3 y1 y2 y3

{1} 0.66667 1 0 0 0 0.33333 1

2 1 0 0 0 3 1

{2} none

{3} 0.69722 0 0 1 1 1.21110 0

{1, 2} 0.31015 1 6.90008 0 0 0 2.08405

0.67100 6.51259 1 0 0 0 7.71415

2.25262 3.65307 1 0 0 0 5.94221

{1, 3} 0.79645 1 0 2.30215 0 3.46739 0

2.04069 6.20466 0 1 0 21.16046 0

{2, 3} 0.81215 0 1 2.49263 3.11693 0 0

{1, 2, 3} 0.87265 1 1.73270 4.17893 0 0 0

2.37506 4.49424 1.40866 1 0 0 0

4. By way of conclusion. We convey the reader to Su and Bai [21, Section 5] for information on the

cost of solving a classical rational eigenvalue problem. A word of caution is here appropriate: computing the

Pareto spectrum of rational matrix-valued function Φ could be unaffordable if the order n is not of moderate

size. This is because a complete enumeration of the Pareto eigenvalues of Φ requires to solve 2n− 1 classical

rational eigenvalue problems. Furthermore, after solving an eigenvalue problem of the type (3.42), we should

not forget to check the positivity condition (3.43) and the slackness condition (3.44). In some applications,

it may happen that only some particular Pareto eigenvalues are of interest, for instance, those admitting an

associated eigenvector in the relative interior of a facet of the Pareto cone. In such a case, we have to solve

just n unconstrained rational eigenvalue problems because Rn+ has only n facets.

We end this work with some bibliographical comments and suggestions for further research. The

linearization-based method of Su and Bai [21] is a trimmed linearization. The technique appeared in the
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context of polynomial eigenvalue problems with singular coefficient matrices in Byers et al. [6] and for ratio-

nal eigenvalue problems in Su and Bai [21], see also the work of Alam and Behera [2] published a few years

latter. A natural question to ask now is the following one: how to handle a cone-constrained eigenvalue

problem like (1.1) when the matrix-valued function Φ : Λ→Mn is not rational? Such sort of situation arises

in real life applications after all. For instance, Pinto da Costa et al. [16] were led to find all the values of λ

in the open interval Λ :=]0, π[ for which the complementarity system

(4.55)


24φ1(λ) 12φ1(λ) 0 6φ2(λ)

12φ1(λ) 24φ1(λ) 6φ2(λ) 0

0 6φ2(λ) 8φ3(λ) 2φ4(λ)

6φ2(λ) 0 2φ4(λ) 8φ3(λ)



x1

x2

x3

x4

 =


y1

y2

0

0

 ,

(4.56)

[
0

0

]
≤
[
x1

x2

]
⊥
[
y1

y2

]
≥
[
0

0

]
admits a nonzero solution (x1, x2, x3, x4, y1, y2). The equilibrium model (4.55)–(4.56) arises in the buckling

analysis of columns. The convex cone K behind (4.56) is of the product type R2
+ × R2 and the entries of

the matrix Φ(λ) in (4.55) depend on the so-called stability functions that, for a canonical finite element of

length L, flexural stiffness EI and submitted to a compressive force P , are defined by

φ1(λ) :=
λ cosλ

sinλ
φ2(λ),

φ2(λ) :=
λ2

3

[
1− λ cosλ

sinλ

]−1

,

φ3(λ) :=
3

4
φ2(λ) +

1

4

λ cosλ

sinλ
,

φ4(λ) :=
3

2
φ2(λ)− 1

2

λ cosλ

sinλ
,

with λ := (L/2)
√
P/EI playing the role of a non-dimensional load parameter. Note that the φk’s are

non-rational functions. Pinto da Costa et al. [16] do not rely on linearization techniques for finding the

eigenvalues of each ΦJ . These authors simply apply a standard bisection algorithm on Λ to find the roots

of the characteristic function fJ := det ◦ ΦJ . Their strategy is computationally viable because the domain

Λ is a bounded interval and the order n = 4 is small. It is worthwhile mentioning that the matrix-valued

function Φ in (4.55) can be written in the rational-trigonometric format

Φ(λ) =

m∑
k=0

pk(λ, cosλ, sinλ)

qk(λ, cosλ, sinλ)
Ak,

where pk : R3 → R and qk : R3 → R are multivariate polynomials. We are not aware of any special method

in the literature for finding the eigenvalues of a rational-trigonometric matrix-valued function. This issue

was raised in [16] and remains open for future research.

How to handle the case of a cone-constrained eigenvalue problem involving a smooth matrix-valued

function Φ : R→Mn on the whole real line and with an order n which is not necessarily small? If the cone

K under consideration is the Pareto cone as in Section 3, then we see at least two possibilities:
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• Newton’s method is a natural approach to compute eigenvalues or eigenpairs of nonlinear eigenvalue

problems efficiently and accurately provided that good initial guesses are available. For a discussion

on this technique, see Güttel and Tisseur [8] and references therein. If we consider this option, then

what we can do is to apply Newton’s method to each ΦJ separately. After finding a pair (λ, u)

satisfying ΦJ(λ)u = 0 and a suitable normalization condition for u, we must check the positivity

condition (3.43) and the slackness condition (3.44). If either (3.43) or (3.44) is violated, then our

candidate (λ, u) must be thrown out and we need to continue our search.

• Another simple idea is to adapt the technique of Adly and Seeger [1] from a linear pencil to a smooth

Φ. This means applying the semismooth Newton method to the system

Φ(λ)x− y = 0,

ψ(x, y) = 0,

〈1n, x〉 − 1 = 0,

of 2n+ 1 equations in the same number of unknown variables. Here, 1n is the n-dimensional vector

of ones and ψ : Rn × Rn → Rn is the Fischer-Burmeister complementarity function or any other

locally Lipschitz semismooth function satisfying

ψ(x, y) = 0 ⇔ 0 � x ⊥ y � 0.

Both options mentioned above work perfectly well if we are searching for one or a bunch of solutions λ.

In a context as general as the present one, finding all the solutions λ is not realistic of course. The theory

of cone-constrained nonlinear eigenvalue problems is still in the making and there is yet a long way to go

before being able to handle efficiently the case of general matrix-valued functions of large order.
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[3] T. Betcke, N.J. Higham, V. Mehrmann, C. Schröder, and F. Tisseur. NLEVP: A collection of nonlinear eigenvalue

problems. ACM Trans. Math. Software, 39(2):Article 7, 2013.
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