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UNIONS OF A CLIQUE AND A CO-CLIQUE AS STAR COMPLEMENTS

FOR NON-MAIN GRAPH EIGENVALUES∗

ZORAN STANIĆ†

Abstract. Graphs consisting of a clique and a co-clique, both of arbitrary size, are considered in the role of star complements

for an arbitrary non-main eigenvalue. Among other results, the sign of such a eigenvalue is discussed, the neigbourhoods of

star set vertices are described, and the parameters of all strongly regular extensions are determined. It is also proved that,

apart from a specified special case, if the size of a co-clique is fixed then there is a finite number of possibilities for our star

complement and the corresponding non-main eigenvalue. Numerical data on these possibilities is presented.
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1. Introduction. If µ is an eigenvalue of (the n × n adjacency matrix A = (aij) of a finite simple)

graph G with multiplicity k, then a star set for µ in G is a subset X of the set of vertices V (G) such that

|X| = k and µ is not an eigenvalue of the induced subgraph G−X. In this situation, the graph G−X (of

order n− k) is called a star complement for µ in G. The main properties of star sets, star complements and

corresponding eigenvalues can be found in [5, Chapter 5]. Obviously, star sets and star complements exist

for any eigenvalue of any graph.

An eigenvalue µ of G is a main eigenvalue if the corresponding eigenspace E(µ) is not orthogonal to the

all-1 vector j in Rn. Otherwise, it is a non-main eigenvalue.

Star complements are studied in an extensive literature. A database with around 1500 examples is

described by Cvetković et al. in [4], while surveys of results obtained before 2004 can be found in [6, 12]. For

more recent results, see [1, 15, 17]. In particular, some infinite families of star complements in regular graphs

are studied by Rowlinson in [10, 11, 13] or Rowlinson and Tayfeh-Rezaie [14] (the latter paper contains a

survey and further references).

In this paper, we consider an infinite family of graphs (that depend on two parameters) in the role of star

complements for an arbitrary non-main eigenvalue. In this context, we use C(p, q) to denote the (disjoint)

union of a clique (i.e., a complete graph) with p vertices and a co-clique (i.e., a totally disconnected graph)

with q vertices.

Main results of this paper are announced in the Abstract. Section 2 is preparatory. In the next three

sections, we consider C(p, q) as a star complement for an arbitrary non-main eigenvalue. The special case

q = 0 and certain general results are separated in Section 3. Sections 4 and 5 are devoted to the special

case q = 1 and the general case q ≥ 2, respectively. A few concluding remarks are given is Section 6. The

Appendix is reserved for numerical data that arises from the previous theoretical considerations.
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2. Preliminaries. We use the standard graph-theoretic notation. For example, we write Kn and nK1

for the complete and totally disconnected graph with n vertices, respectively. The degree of a regular graph

is denoted r. We recall that such a graph with n vertices that is neither complete nor totally disconnected

is said to be strongly regular with parameters

(2.1) (n, r, a, b)

if there exist non-negative integers a and b such that every two adjacent vertices have exactly a common neigh-

bours and every two non-adjacent vertices have exactly b common neighbours. It is well known that every con-

nected strongly regular graph has exactly three (distinct) eigenvalues and that exactly one of them is negative

(cf. [16, Theorem 3.4.7]).

We now mention certain results on star complements that are relevant to this paper. If X is a set of k

vertices of a graph G, then the adjacency matrix of G can be written in the form

(2.2)

(
AX BT

B C

)
,

where AX is the adjacency matrix of the graph induced by X. According to the Reconstruction Theorem

[5, Theorem 5.1.7], X is a star set for the eigenvalue µ of G (and consequently, the graph H determined by

the adjacency matrix C is the corresponding star complement) if and only if µ is not an eigenvalue of C and

(2.3) µI −AX = BT (µI − C)−1B.

Following an extensive literature, for a graph H with t vertices and the adjacency matrix C we define a

bilinear form

〈x,y〉 = xT (µI − C)−1y (x,y ∈ Rt).

For a subset U of the vertex set V (H) and a vertex u not in V (H), we denote by H(U) the graph

obtained from H by joining u to all the vertices of U . We say that H(U) is a good extension of H for an

eigenvalue µ if µ is not an eigenvalue of H but is an eigenvalue of H(U). By equating entries in (2.3), we

conclude that H(U) is a good extension if and only if

(2.4) 〈bu,bu〉 = µ,

where bu indicates the neighbourhood of u in V (H).

Clearly, we may combine a pair of good extensions H(U1) and H(U2) to obtain two different graphs: in

the first the vertices u1 and u2 are adjacent (we write u1 ∼ u2), while in the second they are not (u1 � u2).

We say that the vertices u1 and u2 as well as the corresponding subsets U1 and U2 are compatible if µ is an

eigenvalue of multiplicity two in some of these graphs. Again, the identity (2.3) leads to the conclusion that

u1 and u2 are compatible if and only if

(2.5) 〈bu1 ,bu2〉 ∈ {−1, 0}.

The condition (2.5) is referred to as the compatibility condition. In this situation, u1 and u2 are adjacent

(resp., non-adjacent) when 〈bu1 ,bu2〉 = −1 (resp., 〈bu1 ,bu2〉 = 0). It follows from the identity (2.3) that,

for µ /∈ {−1, 0}, a subset of V (H) cannot be compatible with itself. Consequently, there is a finite number of
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extensions that can be obtained from any star complement for any eigenvalue, unless that eigenvalue belongs

to {−1, 0}.

In addition, it follows (again by the Reconstruction Theorem) that a collection of k subsets of V (H)

that correspond to good extensions and are compatible in pairs give rise to the extension G (of H) with

the adjacency matrix (2.2) having the eigenvalue µ of multiplicity k. Thus, G is determined by µ, a star

complement H for µ and the H-neighbourhoods of the vertices u ∈ X. The last fact reveals an effective tool

for constructing large graphs from their smaller parts – star complements. If µ and H are given, then an

essential part in determining G is a description of H-neighbourhoods of vertices in X, and this is one of the

main points in the forthcoming sections.

A graph G is a maximal extension of a star complement H for an eigenvalue µ if it arises from a maximal

collection of compatible subsets of V (H). Maximal extensions are of special interest since any other extension

is an induced subgraph of some maximal extension. We mention in passing that, according to [5, Theorem

5.3.1], for µ /∈ {−1, 0}, unless µ = 1 and either G ∼= K2 or G ∼= 2K2, if |V (H)| = t then |V (G)| ≤
(
t+1
2

)
.

It follows from the identity (2.3) that the eigenspace E(µ) consists of vectors(
x

(µI − C)−1Bx

)
,

where x ∈ Rk. Using this argument, we conclude that, with the notation from the above, µ is a non-main

eigenvalue of G if and only if

(2.6) 〈bu, j〉 = −1 for all u ∈ X.

We are now ready to present our results.

3. C(p, q) as a star complement for a non-main eigenvalue. We first single out the case q = 0.

The first result is not new. For example, it is mentioned in passing in [14].

Theorem 3.1. If a graph G contains the complete graph Kn as a star complement for an eigenvalue µ,

then µ is a main eigenvalue in G, unless µ ∈ {−1, 0}.

Proof. If C is the adjacency matrix of Kn, then we have (µ+1−n)(µ+1)(µI−C)−1 = (µ+2−n)I+C.

Consider the extension Kn(U) where U is a set of s vertices of Kn. Using the equalities (2.4) and (2.6), we

get

s(µ− n+ s+ 1) = µ(µ− n+ 1)(µ+ 1) and s(µ+ 1) = −(µ− n+ 1)(µ+ 1).

Solving this system, we get (µ, s) = (−1, n) or (µ, s) = (0, n− 1).

A similar conclusion can be derived for the totally disconnected graph nK1 in the role of a star comple-

ment.

Both solutions from the previous proof give infinite families of graphs. In fact, since µ is not an eigenvalue

of the star complement, in the first solution we have n = 1, and then the corresponding family consists of

complete graphs. The second family, among other graphs, contains the family of complete multipartite

strongly regular graphs with spectrum [k(n−1), 0(k−1)n, (−k)n−1] (the multiplicities of eigenvalues are given

in the exponents). It is worth mentioning that a strongly regular graph has the eigenvalue 0 if and only if it is

a complete multipartite regular graph (cf. [16, Theorem 3.4.9]), and therefore complete multipartite strongly
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regular graphs are the only strongly regular graphs that can be obtained from complete star complements.

Observe that here we have a special case of so-called uniform star set introduced by Rowlinson [13]: The star

set is called uniform if all vertices in the corresponding star complement have equal number of neighbours

in X. Observe also that the regularity of G, in conjunction with the uniformity of X, yields the regularity

of the star complement G−X. We shall meet more uniform star sets in the forthcoming sections.

We now proceed with the union of a clique and a co-clique in the role of a star complement. Resuming

the notation from the introductory section, we denote such a graph by C(p, q). In addition, since complete

graphs and totally disconnected ones are discussed in the above, we always assume (somewhere without

noting) that p ≥ 2 and q ≥ 1. If C stands for the adjacency matrix of C(p, q), then the inverse matrix

(µI − C)−1 satisfies the identity

(3.7) m(µ)(µI − C)−1 = C2 + (µ+ 2− p)C + (µ(µ+ 2− p) + 1− p) I,

where m(x) = (x + 1 − p)x(x + 1) is the minimal polynomial of C. If u is a vertex adjacent to s vertices

of the clique and t (t ≥ 1) vertices of the co-clique of C(p, q), then using the conditions (2.4) and (2.6), we

arrive at the system which, after simplifying, reads as follows:

µs(µ− p+ s+ 1) + (µ+ 1)t(µ− p+ 1) = µ2(µ− p+ 1)(µ+ 1)

and

(µ+ 1) (t(µ− p+ 1) + µs) = −µ(µ− p+ 1)(µ+ 1).

Under the assumption that s /∈ {µ+ 1, (µ+ 1)2}, this system gives

(3.8) p =
(µ+ 1)3 − s2

(µ+ 1)2 − s
and t =

µ2(µ+ 1)

µ− s+ 1
.

The excluded possibilities for s are easily eliminated by the imposed restrictions p ≥ 2, q ≥ 1 (and the fact

that µ is not an eigenvalue of the star complement).

By the system (3.8), µ may take both positive or negative values, but according to our numerical

computations, the only positive integer triple (p, s, t) and a positive µ satisfying (3.8) consists of (2, 1, 1) and√
5−1
2 (producing the path with 4 vertices).

For any fixed star complement, we obviously have a finite number of possibilities for µ. On the contrary,

if µ is fixed, according to the expressions (3.8) we have finite numbers of possibilities for p and t (since they

and s are non-negative integers). In the next lemma and the subsequent text, we establish a less obvious

result.

Lemma 3.2. For any fixed t ≥ 2, there is a finite number of pairs (µ, p) such that C(p, t) is a star

complement for a non-main eigenvalue µ in a graph in which the corresponding star set contains a vertex

adjacent to all vertices of the co-clique tK1.

Proof. Expressing p of (3.8) in terms of µ and t, we get

p = − (µ+ 1)(µ3 − 2µt− t2)

t(µ+ t)

(a simple analysis of (3.8) leads to the conclusion that the equality t = −µ is impossible under our assumption

t ≥ 2), which means that (µ+ 1)(µ3 − 2µt− t2) ≡ 0 mod (µ+ t). The last gives

µ2(µ+ 1)2 − (µ+ 1)(µ+ t)2 ≡ 0 mod (µ+ t).
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Equivalently,

µ2(µ+ 1)2 ≡ 0 mod (µ+ t).

Now, for any fixed t ≥ 2 and |µ| sufficiently large, µ+ t cannot divide µ2(µ+1)2, which gives the assertion.

Consequently, if the size of a co-clique is fixed then, unless every vertex of a star set is adjacent to

exactly one vertex of a co-clique, there is a finite number of possibilities for the size of a clique and a

non-main eigenvalue. In the forthcoming Section 5, we impose more restrictions for the neighbourhoods in

C(p, q), and then establish (in the Appendix) certain possibilities that correspond to the previous lemma.

4. Special case q = 1. In the following theorem, as well as in the forthcoming Theorem 5.1, we avoid

the presentation of a part containing a straightforward algebraic calculus (i.e., solving the systems of

non-linear equations). The system is formed on the basis of the conditions (2.4)–(2.6) and the identity (3.7),

while the calculus can be performed either by hand or by any advanced mathematical software.

Theorem 4.1. If U1 and U2 are compatible subsets of V (C(p, 1)), p ≥ 2, for a non-main eigenvalue

µ /∈ {−1, 0}, then the isolated vertex of C(p, 1) belongs to U1∩U2 and we also have p = −µ3 +2µ+1, |U1| =
|U2| = −(µ+ 1)2(µ− 1) + 1 and

|U1 ∩ U2| =
{
−µ(µ+ 1)2 + 1, if u1 ∼ u2,
−(µ+ 1)(µ2 + µ− 1) + 1, if u1 6∼ u2.

Proof. First, if at least one of the sets U1 or U2 does not contain the isolated vertex, then µ cannot be

a non-main eigenvalue, by Theorem 3.1. Using the conditions (2.4)–(2.6), we arrive at the two systems (one

for u1 ∼ u2, the other for u1 6∼ u2) in five variables (µ, p, |U1|, |U2| and |U1 ∩ U2|). Solving them under the

restriction µ /∈ {−1, 0}, we arrive at the desired result.

The largest eigenvalue of any connected graph is main (since the coordinates of an associated eigenvector

are non-zero and of the same sign). Recall (say from [16, Corollary 2.1.5]) that this is the only main eigenvalue

if and only if a graph under consideration is regular. Motivated by this fact, we consider regular extensions

of C(p, 1).

Theorem 4.2. If G is a regular extension of C(p, 1), p ≥ 2, then its order n and degree r are equal

to (µ + 1)2(µ − 2)2 and (µ2 − 2)(µ2 − µ − 1), respectively. If G is, in addition, strongly regular then its

parameters are given by

(4.9)
(
(µ+ 1)2(µ− 2)2, (µ2 − 2)(µ2 − µ− 1), −µ(µ− 1)(µ2 + µ− 1), (µ2 − 1)(µ2 − 2)

)
.

Proof. The vertices of G can be partitioned into the two sets: the star set X and the vertex set V (C(p, 1))

of the corresponding star complement. Since, by the previous theorem, the isolated vertex of C(p, 1) is

adjacent to all vertices of X, we have |X| = r. By the same theorem, every vertex of X has additional

−(µ+1)2(µ−1) neighbours in the cliqueKp of the star complement. In other words, there are−r(µ+1)2(µ−1)

edges between X and Kp. This means that every vertex of Kp has −r(µ+1)2(µ−1)
p neigbours in X, giving

r =
−r(µ+ 1)2(µ− 1)

p
+ p− 1.

After replacing p by its value obtained in Theorem 4.1, this leads to the desired value of r. Since G has

p+ 1 + r vertices, by using the value of p obtained in the previous theorem we get n = (µ+ 1)2(µ− 2)2.
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Table 1

The parameters (4.9) for small −µ’s.

µ p n r a b

−2 5 16 10 6 6

−3 22 100 77 60 56

−4 57 324 266 220 210

−5 116 784 667 570 552

−6 205 1600 1394 1218 1190

If G is strongly regular, then the number of common neighbours of two non-adjacent vertices is equal

to b (we resume the notation of (2.1)). In particular, the number of common neighbours of the isolated

vertex of C(p, 1) and any of the vertices of Kp is equal to the number of neighbours of the latter vertex

in X, so we have b = −r(µ+1)2(µ−1)
p . Replacing p and r, we arrive at b = (µ2 − 1)(µ2 − 2). The third

parameter a can be computed in various ways, for example it is expressible in terms of the remaining three

as a = r − 1− b(n−r−1)
r , from the well-known equality r(r − a− 1) = (n− r − 1)b valid for strongly regular

graphs with parameters (2.1) – see, for instance, [8], and we are done.

Observing the parameters (4.9), we conclude that the only strongly regular graphs that correspond to a

positive µ are 2K2 and the pentagon. Here is a partial converse of the previous result.

Theorem 4.3. Every strongly regular graph with parameters (4.9) (where µ is its negative eigenvalue)

contains the graph C(−µ3 + 2µ+ 1, 1) as a star complement for µ.

Proof. Under the notation from the previous proof, the degree of the complementary strongly regular

graph G is p = −µ3 +2µ+1, while its third parameter is equal to n−2(r+1)+b. In fact, the last expression

is equal to zero, which means that G contains the star K1,p as an induced subgraph, which again means

that G contains an induced subgraph isomorphic to C(p, 1). In addition, µ is not an eigenvalue of the latter

induced subgraph, while its multiplicity in G is computed in terms of parameters as (µ2− 2)(µ2−µ− 1) (cf.

[16, p. 74]). The last expression is equal to n− |V (C(p, 1))|, and the result follows.

Some sets of parameters (4.9) obtained for small −µ’s are given in Table 1.

For µ = −2, we have that two subsets of V (C(5, 1)) with four vertices each (the isolated vertex and

three other from K5) are compatible if they have two or three common vertices. In the former case the

corresponding vertices of X are non-adjacent, while in the latter they are adjacent. Observing that any

pair of such distinct subsets has two or three common vertices, we conclude that all of them are compatible

and give rise to a unique maximal extension. This is the strongly regular graph commonly known as the

complement of the Clebsch graph. According to [2], there is a unique strongly regular graph with parameters

as in the second row of Table 1 and there is no strongly regular graph with parameters as in the third row

(see also [7, 9]). At present, it is not known whether strongly regular graphs with data as in the remaining

rows exist or not.

Suppose for a moment that there exists a strongly regular graph, say G, with parameters (324, 266, 220,

210) (as in the third row). By Theorem 4.3, G contains C(57, 1) as a star complement. If so, then the

corresponding star set X induces a strongly regular graph, say GX , with parameters (266, 220, 183, 176).

Now, does the non-existence of G implies the non-existence of GX? Unfortunately, the answer is negative.
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Namely, by identifying the vertices of GX with points and the vertices of K57 with blocks, we arrive at

a partially balanced incomplete block design with two associate classes (for more details on such designs,

see [16, Subsection 3.8.2]), say P , containing 266 points arranged into 57 blocks in such a way that every

point appears in 45 blocks and every block has constant size equal to 210. In addition, considering the

edges between GX and K57, we conclude that every two points determined by the adjacent vertices (such

points are called the first associates) occur together in 36 blocks, while every two points determined by

the non-adjacent vertices (the second associates) occur together in 33 blocks. Now, the non-existence of G

implies that at least one of GX or P does not exist. In addition, if P does exist then its 266×57 point-block

incidence matrix N satisfies NNT = 45I + 36A + 33(J − I − A), where A is the adjacency matrix that

determines GX . In other words, the existence of P implies the existence of GX . Altogether, only what we

can conclude on the basis of the non-existence of G is summarized in the following corollary.

Corollary 4.4. There is no partial incomplete block design described in the above discussion.

And so, the (non-)existence of a strongly regular graph with parameters (266, 220, 183, 176) remains an

open problem.

5. Case q ≥ 2. The neighbourhoods of star set vertices are described in the following theorem.

Theorem 5.1. Let the vertices u1 and u2 be compatible for a star complement C(p, q) and a negative

non-main eigenvalue µ (µ 6= −1). If, for i ∈ {1, 2}, ui is adjacent to si vertices of Kp and ti vertices of

qK1, and the number of common neighbours in Kp (resp., qK1) is cp (resp., cq), then the following equalities

hold:

p = − (µ+ 1)(µ3 − 2µt1 − t21)

t1(µ+ t1)
, s1 = s2 = µ+ 1− µ2(µ+ 1)

t1
, t2 = t1,

cp = −
(µ+ 1)

(
µ2(µ+ t1)− t1(t1 − cq)

)
µt1

for u1 ∼ u2,

cp = −
(µ+ 1)

(
µ(µ2 + µt1 − t1)− t1(t1 − cq)

)
µt1

for u1 6∼ u2.

Proof. Solving the system that arise from the conditions (2.4)–(2.6), we arrive at the solution given in

the theorem and also at another solution giving the unchanged expressions for p and s1, different expressions

for s2 and cp (which are not important for this proof) and also

(5.10) t2 = −µ
2(µ+ t1)

µ2 − t1
.

By Theorem 3.1, both t1 and t2 are non-zero. In what follows, we prove that t2 of (5.10) cannot be

positive. Namely, considering s1 (given in the theorem) we get t1 < µ2. According to this, if t2 is positive

then there also must be t1 < −µ. Rewriting the equality (5.10) as

−µ2(µ+ t1) = t2(µ2 − t1),

we conclude that t2 < −µ must hold (otherwise, the right-hand side is larger than the left). The equality

(5.10) also gives

µ2(µ+ t1 + t2) = t1t2.

Since the left-hand side must be positive, we have t1 + t2 > −µ, and then this side is larger than µ2. On the

contrary, since max{t1, t2} < −µ, the right-hand side is less than µ2, and we are done.
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Under the notation from the last result, strongly regular extensions that may appear in the case t1 =

t2 = cq = 1 are considered in the previous section. In addition, it is not difficult to see that the case

t1 = t2 = 1, cq = 0 cannot occur (cp cannot be an integer). In what follows, we show that there is no

strongly regular extension for t1 ≥ 2. We start with a lemma.

Lemma 5.2. The parameter cp of Theorem 5.1 cannot be an integer, unless t1 = cq.

Proof. Assuming that cp (for u1 ∼ u2) is an integer, we get

−(µ+ 1)
(
µ2(µ+ t1)− t1(t1 − cq)

)
≡ 0 mod µt1.

Since it holds −(µ+1)µ3 ≡ 0 mod µt1 (this is because s1 is an integer) and also −(µ+1)µ2t1 ≡ 0 mod µt1,

we get that there must be −(µ + 1)t1(t1 − cq) ≡ 0 mod µt1, i.e., (t1 − cq) ≡ 0 mod µ. Since cq ≤ t1 and

t1 < −µ (the last is because p is also an integer), we conclude that the last congruence is possible only if

t1 = cq. The other possibility for cp (for u1 6∼ u2) is considered in a very similar way.

The announced result reads as follows.

Theorem 5.3. There is no strongly regular extension of C(p, q), for p, q ≥ 2.

Proof. If G is a strongly regular extension of C(p, q), p, q ≥ 2, then by Theorem 5.1 and the previous

lemma, we have q = t1 = t2 = cq. This, in particular, means that every vertex of qK1 is adjacent to all

vertices of the star set X, which implies that the number of common neighbours of every two non-adjacent

vertices of G is equal to its degree. Bearing in mind the existence of Kp, we conclude that the last is

impossible, and the result follows.

Regular (but not strongly regular) extensions of the above star complements may exist for specified

values of p, q and µ. Some of these values are given in the Appendix.

6. Concluding remarks. Observe first that every regular graph G containing C(p, q) as a star com-

plement for some eigenvalue admits an equitable partition of its vertices into the sets V (Kp), V (qK1) and X.

In particular, the same holds for q = 0 where we deal with equitable partitions defined in [3]; Equivalently

V (Kp) and X are regular sets in sense introduced in the same paper. Equitable partitions were introduced by

Sachs 1960’s and then extensively studied in frameworks of graph spectra, automorphism groups of graphs,

walk partitions, coloration or distance-regular graphs (for details and further references, see [8]).

Inspecting the structure of strongly regular graphs (containing various cliques and co-cliques), at the

first sight one may expect many families of those with star complements described in the title of this paper.

The fact is that they occur only in special cases considered in Sections 3 and 4.

The main purpose of this paper was to describe considered star complements and adjacencies between

them and the corresponding star sets on a basis of theoretical reasoning. The next natural step is a deter-

mination of possible (maximal) extensions. This step requires a computer search which extends beyond our

considerations.

7. Appendix. If C(p, q) is a star complement for a negative non-main eigenvalue µ (µ 6= −1) and a

related star set contains at least two compatible vertices, then the corresponding parameters are expressed

in Theorem 5.1. By Lemma 5.2, all compatible vertices share the same neighbourhood in the co-clique qK1,

and therefore we may ignore the remaining isolated vertices (by saying that q = t1 = t2 = cq). Under this

assumption, by Lemma 3.2, there is a finite number of pairs (µ, p) such that C(p, q) is a star complement for µ,
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Table 2

The parameters of Theorem 5.1 (for a negative integer µ ≥ −10 and q = t1).

µ p s1, s2 q, t1, t2, cq cp ∼ cp �
-3 19 7 2 3 1

-4 39 21 2 12 9

-4 49 13 3 4 1

-5 101 21 4 5 1

-6 105 55 3 30 25

-6 115 40 4 15 10

-6 181 31 5 6 1

-7 155 92 3 56 50

-7 295 43 6 7 1

-8 203 105 4 56 49

-8 449 57 7 8 1

-9 304 208 3 144 136

-9 292 100 6 36 28

-9 649 73 8 9 1

-10 351 216 4 135 126

-10 333 171 5 90 81

-10 901 91 9 10 1

Table 3

The parameters of Theorem 5.1 which correspond to regular graphs (for a negative integer µ ≥ −1000).

µ p s1, s2 q, t1, t2, cq cp ∼ cp � r

-10 351 216 4 135 126 910

-33 5248 3840 9 2816 2784 19 557

-55 19 845 16 281 10 13 365 13 311 110 495

-65 17 408 10 752 25 6656 6592 45 526

-76 34 125 27 000 16 21 375 21 300 163 436

-99 55 909 43 561 22 33 957 33 859 253 139

-145 146 016 120 960 25 100 224 100 080 850 915

-246 481 915 411 600 36 351 575 351 330 3 302 874

-260 273 911 156 066 112 88 985 88 726 636 658

-385 1 330 176 1 161 216 49 1 013 760 1 013 376 10 472 105

-442 824 229 509 355 169 314 874 314 433 2 157 538

-445 1 408 960 1 171 864 75 974 728 974 284 8 372 840

-451 1 032 750 756 000 121 553 500 553 050 3 853 917

-568 3 219 993 2 857 680 64 2 536 191 2 535 624 28 617 112

-589 3 960 964 3 578 176 57 3 232 432 3 231 844 40 986 739

-801 7 048 000 6 336 000 81 5 696 000 5 695 200 69 767 271
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whenever q ≥ 2. For such a q and a negative integer µ ≥ −10, we compute the parameters from Theorem 5.1.

Since all the remaining parameters are expressed in terms of µ and t1 and we have q = t1 < −µ (see this

detail in the proof of Lemma 5.2), the computation is realized easily, and the data is summarized in Table 2.

If we consider a regular extension then its degree satisfies r = |X|, and then we also have s1r
p +p−1 = p−1,

giving r = p−1
p−s1 which must be an integer. Computing r and all the previous parameters for a negative

integer µ ≥ −1000, we arrive at the data presented in Table 3. The total number of vertices in a regular

graph with data as in this table is p+ q + r.
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[17] Z. Stanić. Some star complements for the second largest eigenvalue of a graph. Ars Math. Contemp., 1:126–136, 2008.

https://www.win.tue.nl/~aeb/graphs/srg/srgtab.html

