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CONDENSED FORMS FOR LINEAR PORT-HAMILTONIAN DESCRIPTOR SYSTEMS∗

LENA SCHOLZ†

Abstract. Motivated by the structure which arises in the port-Hamiltonian formulation of constraint dynamical systems,

structure preserving condensed forms for skew-adjoint differential-algebraic equations (DAEs) are derived. Moreover, structure

preserving condensed forms under constant rank assumptions for linear port-Hamiltonian differential-algebraic equations are

developed. These condensed forms allow for the further analysis of the properties of port-Hamiltonian DAEs and to study,

e.g., existence and uniqueness of solutions or to determine the index. It can be shown that under certain conditions for regular

port-Hamiltonian DAEs the strangeness index is bounded by µ ≤ 1.
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1. Introduction. In this paper, we study linear variable coefficient descriptor systems of the form

Eẋ = [(J −R)Q− EK]x+ (B − P )u,(1.1a)

y = (B + P )TQx+ (S +N)u,(1.1b)

where J,R,K ∈ C0(I,Rn,n), Q,E ∈ C1(I,Rn,n), B,P ∈ C0(I,Rn,m), and S,N ∈ C0(I,Rm,m) on a real time

interval I = [t0, tf ] with S(t) = S(t)T , N(t) = −N(t)T for all t ∈ I. Here, C`(I,Rn,m) denotes the `-times

continuously differentiable functions from I to the real n×m matrices. Moreover, x ∈ C1(I,Rn) (or from an

appropriate subspace) denotes the state of the system, u ∈ C0(I,Rm) denotes the m-dimensional input of the

system and y ∈ C0(I,Rm) denotes the m-dimensional output of the system. Note that for simplicity we omit

the argument t in all matrix and vector valued functions. Systems of the form (1.1) have been investigated

in [2] as a new modeling framework of port-Hamiltonian systems with constrained dynamics.

Definition 1.1. [2] A linear descriptor system of the form (1.1) is called linear port-Hamiltonian de-

scriptor system or linear port-Hamiltonian differential-algebraic equations (pHDAE) if

(i) the differential-algebraic operator L : D ⊂ C1(I,Rn)→ C0(I,Rn) defined by

L(x) = QTE
d

dt
x− (QTJQ−QTEK)x

is skew-adjoint, i.e., for all t ∈ I it holds that QT (t)E(t) = ET (t)Q(t), and

d

dt
(QTE) = QT [EK − JQ] + [EK − JQ]TQ;(1.2)

(ii) the matrix function QTE ∈ C1(I,Rn,n) is bounded from below by a constant symmetric matrix

H0 ∈ Rn,n, i.e., QT (t)E(t)−H0 ≥ 0 for all t ∈ I;
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(iii) the matrix function

W :=

[
QTRQ QTP

PTQ S

]
∈ C0(I,Rn+m,n+m)

is symmetric positive semi-definite, i.e., W (t) = WT (t) ≥ 0 for all t ∈ I.

The associated Hamiltonian is defined as

H(x) :=
1

2
xTQTEx.(1.3)

Descriptor systems of the form (1.1) arise in energy based modeling where underlying physical properties

(such as conservation laws) are directly encoded into the structure of the system model. With this respect,

statement (iii) in Definition 1.1 is related to the stability and passivity of the system, while the Hamiltonian

(1.3) describes the total energy of the system, cf. [2]. The assumption that QTE is bounded by a constant

matrix from below implies that the HamiltonianH is bounded from below by a constant in order to guarantee

that the Hamiltonian can be interpreted as energy. In most of the cases assumption (ii) can be replaced by

the stronger condition that QTE is positive semi-definite on I.

Theorem 1.2. [2] A linear time-varying pHDAE (1.1) has the following properties:

1. If W ≡ 0, then d
dtH = uT y. In particular, if u ≡ 0 and W ≡ 0, then d

dtH = 0 (conservation of

energy).

2. The system satisfies the dissipation inequality

H(x(t1))−H(x(t0)) ≤
∫ t1

t0

y(t)Tu(t) dt.(1.4)

Linear port-Hamiltonian DAEs of the described form can be seen as generalization of linear port-

Hamiltonian and gyroscopic systems, see, e.g., [1, 7, 8, 16, 17], where E = Q = In and K = 0 such

that we get

ẋ = (J −R)x+ (B − P )u,

y = (B + P )Tx+ (S +N)u,

and (1.2) reduces to the condition that J has to be (pointwise) skew-symmetric. In this case, J is referred

to as structure matrix describing energy flux among energy storage elements within the system, R = RT is

the dissipation matrix describing energy dissipation/loss in the system, B ± P are port matrices, describing

the manner in which energy enters and exits the system, and S +N describes the direct feed-through from

input to output. In general, port-Hamiltonian systems generalize Hamiltonian systems in the sense that the

conservation of energy for Hamiltonian systems is replaced by the dissipation inequality (1.4) that shows

that the dynamical system is passive, see also [4].

The presented definition of a linear pHDAE is based on the concept of skew-adjoint differential-algebraic

operators. In this paper, we will derive condensed forms for skew-adjoint pairs of matrix functions as well as

for linear port-Hamiltonian DAEs that will serve as theoretical basis and main tool for the further analysis

of port-Hamiltonian DAEs. We will see that the derived condensed forms require certain constant rank

assumptions that are often required in the theory of general DAEs, see [11]. Condensed forms for structured

DAE systems have also been considered in [20]. In [12], we have considered condensed forms for linear

self-adjoint DAE systems that arise, e.g., in the necessary optimality conditions for linear optimal control
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problems. Based on the condensed forms a further analysis of the system properties as, e.g., existence and

uniqueness of solution or the index of the DAE is possible. It can be shown that for regular pHDAEs

(under certain assumptions) the index of the system is bounded such that the strangeness index is always

less or equal 1 (the differentiation index is always less or equal 2). Non-regular pHDAEs, however, can have

arbitrary high index (see Example 4.14.)

The remainder of this paper is organized as follows. After introducing some preliminary results in

Section 2, we present condensed forms for skew-adjoint pairs of matrix functions under orthogonal and

general congruence transformations using certain constant rank assumptions in Section 3. Next, we derive

condensed forms for linear port-Hamiltonian DAEs in Section 4. The derived condensed forms allow us

to analyze the corresponding DAE systems and, in particular, to draw conclusions regarding existence and

uniqueness of solutions and on the index of the DAE. We close with some concluding remarks in Section 5.

2. Preliminaries. We consider linear differential-algebraic equations (DAEs)

E ẋ = Ax+ f,(2.5)

where E ,A : I→ Rn,n are continuous matrix-valued functions, I = [t0, tf ] ⊂ R, x : I→ Rn is a continuously

differentiable unknown function, and f : I → Rn is a given continuous function. For a differentiable time

depending function x, the derivative of x with respect to t is denoted by ẋ(t) = dx(t)/dt. The same notation

is used for the derivative of matrix-valued functions. For a matrix A ∈ Rn,n, AT denotes the transposed

of A, rankA denotes the rank of A, and a real symmetric matrix A that is positive definite or positive

semi-definite is denoted by A > 0 or A ≥ 0, respectively.

At first, we gather some facts about linear skew-adjoint differential-algebraic operators and recall known

condensed forms for general linear DAEs of the form (2.5) under time-varying equivalence transformations.

For a more detailed discussion we refer to [2] and [11].

Definition 2.1. [2] A differential-algebraic operator

L = E d

dt
−A : D ⊂ C1(I,Rn)→ C0(I,Rn)(2.6)

with coefficient functions E ∈ C1(I,Rn,n), A ∈ C0(I,Rn,n) is called skew-adjoint if

E(t)T = E(t), Ė(t) = −(A(t) +A(t)T ) for all t ∈ I.(2.7)

Lemma 2.2. [2] Consider a skew-adjoint differential-algebraic operator (2.6). Let V ∈ C1(I,Rn,n), then

the operator LV defined by

LV (x) := V TEV d

dt
x− (V TAV − V TE V̇ )x

is again skew-adjoint.

It should be noted that we have LV (x(t)) = V T (t)L(V (t)x(t)) for all x ∈ D and all t ∈ I, which

corresponds to an equivalence transformation of the underlying homogeneous DAE system E ẋ = Ax, if V

is pointwise invertible on I. For general linear DAEs of the form (2.5) condensed forms under time-varying

equivalence transformation have been presented in [10], see also [11]. To introduce these condensed forms,

at first, we let t̂ ∈ I be fixed and consider

a matrix T which columns form a basis of kernel E(t̂),
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a matrix Z whose columns form a basis of kernel ET (t̂),

a matrix T ′ whose column form a basis of range ET (t̂), and

a matrix V whose columns form a basis of corange (ZTA(t̂)T ),

as well as the characteristic quantities

r = rank E(t̂), a = rank(ZTA(t̂)T ), s = rank(V TZTA(t̂)T ′)

with the convention rank ∅ = 0. A necessary assumption for deriving condensed forms for (2.5) according to

[10, 11] is that the quantities r, a and s are constant for all t ∈ I, i.e.,

r(t) ≡ r, a(t) ≡ a, s(t) ≡ s for all t ∈ I.(2.8)

Theorem 2.3. [10, Theorem 17] Let E, A in (2.5) be sufficiently smooth, and let (2.8) hold. Then, there

exists pointwise nonsingular matrix functions P ∈ C(I,Rn,n) and Q ∈ C1(I,Rn,n) such that the pair (E ,A)

is (globally) equivalent to a pair of matrix functions (Ẽ , Ã) = (PEQ,PAQ− PEQ̇) of the form


Is 0 0 0

0 Id 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 ,


0 A12(t) 0 A14(t)

0 0 0 A24(t)

0 0 Ia 0

Is 0 0 0

0 0 0 0




s

d

a

s

v

(2.9)

with d = r − s, v = n− d− a− s and the last block column in both matrices has width u = n− r − a− s.

Remark 2.4. A transformation of a pair of matrix functions (E ,A) of the form (PEQ,PAQ − PEQ̇)

with pointwise nonsingular matrix functions P and Q is also known as global equivalence transformation.

Passing from (2.9) to a pair of matrix functions


0 0 0 0

0 Id 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 ,


0 A12(t) 0 A14(t)

0 0 0 A24(t)

0 0 Ia 0

Is 0 0 0

0 0 0 0



(2.10)

corresponds to eliminating the ’strangeness’ by inserting the derivative of the equation corresponding to the

fourth block row of (2.9) into the equation corresponding to the first block row of (2.9). Inductively, we can

define a sequence of pairs (Ei(t),Ai(t)), i ∈ N0, where (E0(t),A0(t)) = (E(t),A(t)) and (Ei+1(t),Ai+1(t))

is derived from (Ei(t),Ai(t)) by bringing it into the form (2.9) and passing then to (2.10). Assuming (2.8)

for every occurring pair of matrices, we get sequences ri, ai, si, i ∈ N, of nonnegative integers, which are

characteristic for the given pair (E(t),A(t)). The sequence stops after finitely many steps with si = 0. The

quantity µ = min{i ∈ N | si = 0} is called the strangeness index of the pair (E(t),A(t)) (or of the DAE

(2.5)). The information obtained in this inductive procedure, in particular the characteristic quantities and

the strangeness index, can be encoded directly in a global condensed form of the original pair of matrix

functions as the following theorem shows.
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Theorem 2.5. [11, Theorem 3.21] Let the strangeness index µ be well defined for the pair (E(t),A(t)) of

smooth matrix functions and let ri, ai, si, i ∈ {0, . . . , µ} be the related characteristic values as above. Define

b0 = a0, bi = rank[A(i−1)
14 (t)]

c0 = a0 + s0, ci = rank[A(i−1)
12 (t) A(i−1)

14 (t)],

w0 = v0, wi = vi − vi−1, i = l, . . . , µ.

Then, we have

ci = bi + si, i = 0, ..., µ,

wi = si−1 − ci, i = 1, ..., µ,

and there exists pointwise nonsingular matrix functions P ∈ C(I,Rn,n) and Q ∈ C1(I,Rn,n) such that the

pair (E ,A) is (globally) equivalent to a pair of matrix functions (Ẽ , Ã) = (PEQ,PAQ− PEQ̇) of the form

(Ẽ , Ã) =

Idµ 0 W

0 0 F

0 0 G

 ,
0 ∗ 0

0 0 0

0 0 Iaµ

 ,(2.11)

with

F =


0 Fµ ∗

. . .
. . .

. . . F1

0

 , G =


0 Gµ ∗

. . .
. . .

. . . G1

0

 ,

where Fi and Gi have sizes wi × ci−1 and ci × ci−1, respectively, and W =
[
0 ∗ · · · ∗

]
is partitioned

accordingly, such that Fi and Gi together have full row rank, i.e.,

rank

[
Fi
Gi

]
= ci + wi = si−1 ≤ ci−1.

In Theorem 2.5, for convenience, we denote unspecified blocks in a matrix by ∗. The condensed form

(2.11) allows to read off the strangeness index of the system, as well as conditions for existence and uniqueness

of solutions. In particular, the strangeness index determines the number of differentiations that are required

to solve the system, e.g., the equations corresponding to the last block row of (2.11) can be solved by

differentiating and backward substitution due to the nilpotent structure of the block matrix G. A DAE

system is called strangeness-free if µ = 0. The second block row in (2.11) is of size vµ = w0 +w1 + · · ·+wµ
and corresponds to the overdetermined part of the system (e.g., redundancies or vanishing equations). If

vµ > 0, then there always exist inhomogeneities f for which the corresponding DAE system is not solvable.

On the other hand, if vµ = 0, then every consistent initial condition fixes a unique solution. In the latter

case, we call the DAE system regular.
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3. Condensed forms for skew-adjoint pairs of matrix functions. Motivated by the observation

that a linear pHDAE is related to a skew-adjoint DAE operator (see Definition 1.1), we consider general

linear DAEs

(3.12) E ẋ = Ax+ f

with skew-adjoint pair (E ,A) of matrix functions that satisfy condition (2.7). For the analysis of such systems

we will derive condensed forms for skew-adjoint pairs of matrix functions in this section.

In view of Lemma 2.2, we know that we have to restrict to congruence transformations in order to

preserve the skew-adjointness of the pair of matrix functions. For matrix pairs (E ,A), with E ,A ∈ Rn,n,

E = ET and A = −AT , the canonical form under congruence, i.e., (V TEV, V TAV ) with nonsingular V is

well known, see e. g. [14, 15]. If the transformation matrices are restricted to be real orthogonal matrices,

then the resulting staircase form has been developed in [3], modifying the staircase form of [19].

For self-adjoint pairs of matrix functions (E ,A) where E = −ET and Ė = AT − A that arise, e.g., in

the necessary optimality conditions for linear quadratic optimal control problems, a condensed form under

congruence transformations as well as global condensed forms have been derived in [12]. In this paper, we

will present the corresponding results for skew-adjoint pairs of matrix functions. Under some additional

assumptions, namely regularity of the DAE and positive semi-definiteness of the leading matrix, we can

draw some important conclusions in Theorem 3.5 that are specific for the skew-adjoint setting.

In [12], we have derived a staircase form for self-adjoint pairs of matrix functions and also presented a

recursive procedure for its construction assuming that certain matrix functions have constant rank in the

given interval I. These constant rank assumptions are equivalent to the well-definedness of the strangeness

index of (E ,A) (according to (2.8) for the sequence of characteristic quantities ri, ai, si as in Theorem 2.5).

For skew-adjoint pairs (E ,A) the construction of a staircase form follows exactly the same lines and a similar

procedure as in [12] can be constructed leading to the following result.

Theorem 3.1. Consider a skew-adjoint pair (E ,A) of matrix functions and assume that the strangeness
index is well-defined. Then, there exists a congruence transformation with a pointwise orthogonal U ∈
C1(I,Rn,n), leading to a congruent matrix pair

UT EU =

E11 · · · · · · E1,ω E1,ω+1 E1,ω+2 · · · E1,2ω 0
...

. . .
...

...
... . .

.
. .
.

...
. . .

...
... Eω−1,ω+2 . .

.

ET1,ω · · · · · · Eω,ω Eω,ω+1 0

ET1,ω+1 · · · · · · ETω,ω+1 Eω+1,ω+1

ET1,ω+2 · · · ETω−1,ω+2 0
... . .

.
. .
.

ET1,2ω . .
.

0



s1
...
...

sω

b

qω
...

q2
q1
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UTAU − UT EU̇ =

A11 · · · · · · A1,ω A1,ω+1 A1,ω+2 · · · · · · A1,2ω+1

...
. . .

...
...

... . .
.

...
. . .

...
...

... . .
.

Aω,1 · · · · · · Aω,ω Aω,ω+1 Aω,ω+2

Aω+1,1 · · · · · · Aω+1,ω Aω+1,ω+1

Aω+2,1 · · · · · · Aω+2,ω

... . .
.

... . .
.

A2ω+1,1



s1
...
...

sω

b

qω
...
...

q1

,

where q1 ≥ s1 ≥ q2 ≥ s2 ≥ · · · ≥ qω ≥ sω, b := `1 + `2,

Ej,2ω+1−j ∈ C1(I,Rsj ,qj+1), 1 ≤ j ≤ ω − 1,

Eω+1,ω+1 =

[
∆ 0

0 0

]
, ∆ = ∆T ∈ C1(I,R`1,`1),

Ej,j = ETj,j , j = 1, . . . , ω,

Aj,2ω+2−j = −AT2ω+2−j,j =
[
Γj 0

]
∈ C0(I,Rsj ,qj ), Γj ∈ C0(I,Rsj ,sj ), 1 ≤ j ≤ ω,

Aω+1,ω+1 =

[
Σ11 Σ12

−ΣT12 Σ22

]
, Σ11 = −ΣT11 − ∆̇ ∈ C0(I,R`1,`1),

Σ22 = −ΣT22 ∈ C0(I,R`2,`2),

and the blocks Σ22, ∆ and Γj, j = 1, . . . , ω are pointwise nonsingular, implying that Σ22 has even dimen-

sion `2 = 2`. Furthermore, each of the first ω block columns (block rows) of the matrix UTEU has full column

rank (full row rank).

Proof. The proof is analogous to the proof of Theorem 4.4 in [12] for self-adjoint matrix pairs. We

also refer to [13] where the corresponding recursive procedure for the construction has be adapted to the

skew-adjoint case.

With nonsingular congruence transformations it is possible to reduce the system even further.

Corollary 3.2. Consider a skew-adjoint pair (E ,A) of matrix functions for which the strangeness index
is well-defined. Then, there exists a congruence transformation with a pointwise nonsingular T ∈ C1(I,Rn,n),
leading to the congruent matrix pair

TT ET =

E11 · · · · · · E1,ω E1,ω+1 E1,ω+2 · · · E1,2ω 0
...

. . .
...

...
... . .

.
. .
.

...
. . .

...
... Eω−1,ω+2 . .

.

ET1,ω · · · · · · Eω,ω Eω,ω+1 0

ET1,ω+1 · · · · · · ETω,ω+1 Eω+1,ω+1

ET1,ω+2 · · · ETω−1,ω+2 0
... . .

.
. .
.

ET1,2ω . .
.

0



s1
...
...

sω

b

qω
...

q2
q1
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TTAT − TT EṪ =

A1,1 · · · · · · A1,ω A1,ω+1 A1,ω+2 · · · · · · A1,2ω+1

...
. . .

...
...

... . .
.

...
. . .

...
...

... . .
.

Aω,1 · · · · · · Aω,ω Aω,ω+1 Aω,ω+2

Aω+1,1 · · · · · · Aω+1,ω Aω+1,ω+1

0 · · · 0 Aω+2,ω

... . .
.

0 . .
.

A2ω+1,1



s1
...
...

sω

b

qω
...
...

q1

,

where q1 ≥ s1 ≥ q2 ≥ s2 ≥ · · · ≥ qω ≥ sω, b := `1 + `2,

Ej,2ω+1−j ∈ C0(I,Rsj ,qj+1), 1 ≤ j ≤ ω − 1,

Eω+1,ω+1 =

[
∆ 0

0 0

]
, ∆ = ∆T ∈ C1(I,R`1,`1),

Aj,2ω+2−j = −AT2ω+2−j,j =
[
Isj 0

]
∈ C0(I,Rsj ,qj ), 1 ≤ j ≤ ω,

Ai,j = −Ėi,j , i = 1, . . . , ω − 1, j = ω + 2, . . . , 2ω + 1− i,

Aω+1,ω+1 =

[
Σ11 0

0 Σ22

]
, Σ11 = −ΣT11 ∈ C0(I,R`1,`1),

Σ22 = −ΣT22 ∈ C0(I,R2`,2`),

and the block Σ22 is pointwise nonsingular. Furthermore, each of the first ω block columns (block rows) of

the matrix TTET has full column rank (full row rank).

Proof. The proof is similar to the proof of Corollary 4.6 in [12]. Starting from the staircase form in

Theorem 3.1 we can first perform a congruence transformation

(Ẽ , Ã) = (TT1 U
TEUT1, TT1 UTAUT1 − TT1 UTE d

dt (UT1))

with TT1 = diag(Γ−11 , . . . ,Γ−1ω , L, Iqω , . . . , Iq1) where

L =

[
I`1 −Σ12Σ−122

0 I`1

]
.

Then, with block-Gaussian congruence transformations, we can eliminate all elements above the block anti-

diagonal of Ã in block-columns 1, . . . , ω.

Remark 3.3. If all eigenvalues of the matrix function ∆ ∈ C1(I,R`1,`1) in the central block Eω+1,ω+1 are

distinct, then the matrix function ∆ can be diagonalized with a smooth congruence transformation. If there

are multiple eigenvalues, then such a transformation might only be possible with some loss of smoothness

(depending on the order of coalescing of the eigenvalues), see [6].

Note that neither the orthogonal staircase form in Theorem 3.1 nor the condensed form in Corollary 3.2

is a normal form in the algebraic sense, since there is still further refinement possible using congruence

transformations. For the purpose of analyzing systems of differential-algebraic equations, however, these

condensed forms are sufficient.
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Corollary 3.4. Consider a skew-adjoint pair (E ,A) of matrix functions and suppose that the assump-

tions of Theorem 3.1 hold so that there exists a congruence transformation with a pointwise orthogonal

U ∈ C1(I,Rn,n) to the staircase form in Theorem 3.1.

i) The differential-algebraic equation (3.12) is regular if and only if sj = qj for all j = 1, . . . , ω in the

staircase form in Theorem 3.1.

ii) If ω = 0, then the DAE (3.12) is regular and strangeness-free.

iii) If ω > 0, then µ ≤ 2ω−1 differentiations will be necessary to solve the system if `2 = 0, and µ ≤ 2ω

differentiations will be necessary otherwise.

Proof. i) If sj = qj for j = 1, . . . , ω, then we can successively solve the equation by backward

substitution in a unique way, thus the system is regular. Conversely, if q1 > s1 the DAE is non-

regular, because then it has a zero row, and hence, the problem is not solvable for every smooth right

hand side. If sj = qj for j = 1, . . . , k − 1 but qk > sk, then we can successively solve the equation

from the bottom up in a unique way, until we reach the remaining system with a non-square block

A2ω+2−k,k = −ATk,2ω+2−k =
[
−Γk 0

]T
. Then again, the last qk−sk equations associated with this

block are not solvable for every smooth right hand side and, hence, the problem is not regular.

ii) If ω = 0, then the associated staircase form has the form

([
∆ 0

0 0

]
,

[
A11 A12

A21 A22

])

with A22 pointwise nonsingular and it is well known already from the unstructured case, see [9, 11],

that the associated DAE is regular and strangeness-free.

iii) Using the condensed form in Corollary 3.2, we can apply backward substitution starting with the

last block row. Then we have to differentiate the right hand side at most ω times until we reach the

middle block. If after backward substitution the middle block contains an algebraic part, then we

continue with at most ω further differentiations. If the middle block has no algebraic part, then at

most ω − 1 further differentiations are necessary.

If the pair (E ,A) is in the condensed form of Corollary 3.2, and the associated DAE (3.12) is regular,

then we can permute and re-arrange the condensed form to

Ẽ11 Ẽ12 Ẽ13 Ẽ14
ẼT12 Ẽ22 0 0

ẼT13 0 0 0

ẼT14 0 0 0

 ,

Ã11 Ã12 − ˙̃E12 Ã13 − ˙̃E13 Is − ˙̃E14
−ÃT12 Ã22 0 0

−ÃT13 0 Ã33 0

−Is 0 0 0


 ,

where s =
∑ω
i=1 si, and Ẽ22 = ∆ = ∆T as well as Ã33 = Σ22 = −ΣT22 are invertible. Moreover, Ẽ14

is block upper-triangular with square diagonal blocks, which are zero matrices. Performing some further

block-Gaussian elimination congruence transformations, we can eliminate the block to the left of Ã33. Then,

due to the skew-adjoint structure, the part Ã13 above the block Ã33 is eliminated as well, while the part
˙̃E13 remains. In the same way, the block above and to the left of Ẽ22 can be eliminated. One further

block permutation (exchanging the first two block rows and columns), partitioning the blocks further, and
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renaming the blocks, finally leads to the form

(3.13)




∆ 0 0 0

0 E33 E34 E35
0 ET34 0 0

0 ET35 0 0

 ,

A11 A13 0 0

−AT13 A33 −Ė34 Is − Ė35
0 0 A44 0

0 −Is 0 0


 ,

with A44 = −AT44 invertible (and of even dimension), and E35 block upper-triangular with square diagonal

blocks, which are zero matrices. These results are similar to the corresponding results for the self-adjoint

case presented in [12]. However, the following is specific to the skew-adjoint setting leading to an important

result in Theorem 3.5.

In our original motivation the leading matrix E of the skew-adjoint differential-algebraic system is given

by E = QTE, where Q and E are coefficient functions of a linear pHDAE (1.1) (see Definition 1.1). We

will now assume that the matrix function E = QTE is positive semi-definite on I, a somewhat stronger

assumption than (ii) in Definition 1.1, but often satisfied in physical applications (for examples see [13]),

and furthermore that the DAE (3.12) is regular. Under these assumptions we can transform the pair (E ,A)

to the condensed form (3.13), where due to the positive semi-definiteness of E we have that ∆ is positive

definite as well as E34 ≡ 0 and E35 ≡ 0. Thus, the condensed form (3.13) reduces to


∆ 0 0 0

0 E33 0 0

0 0 0 0

0 0 0 0

 ,

A11 A13 0 0

−AT13 A33 0 Is
0 0 A44 0

0 −Is 0 0




`1
s

2`

s

(3.14)

with ∆̇ = −(A11 + AT11) on I, A44(t) = −AT44(t) for all t ∈ I and A44 of even dimension 2` is pointwise

nonsingular, as well as Ė33 = −(A33 +AT33) on I. Moreover, we know that E33 of size s× s is pointwise non-

singular due to the full column rank condition in Corollary 3.2, and also positive definite. The corresponding

DAE takes the form

∆ẋ1 = A11x1 +A13x2 + f1,

E33ẋ2 = −AT13x1 +A33x2 + x4 + f2,

0 = A44x3 + f3,

0 = −x2 + f4,

(3.15)

for a sufficiently smooth inhomogeneity f = [f1, f2, f3, f4]T . The last two equations in (3.15) can be solved

for x2 and x3 giving x2 = f4 and x3 = −A−144 f3. Differentiating the relation for x2 and inserting it into the

second equation of (3.15) gives

∆ẋ1 = A11x1 +A13f4 + f1,

x4 = E33ḟ4 +AT13x1 −A33f4 − f2,

i.e., an ordinary differential equation for x1 and subsequently the solution for x4. Thus, we require at most

one differentiation of equations to obtain the unique solution of the system. Also we see that x1 is the only

differential component in the system which is related to the dynamics, while x2, x3 and x4 are algebraic

components related to algebraic constraints on the dynamics. The algebraic component x2 and its coupling

to the second equation in (3.15) results in an index greater than 0. We formulate this result in the following

theorem.
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Theorem 3.5. Consider a regular DAE (3.12) with coefficient functions (E ,A) that form a skew-adjoint

pair. Suppose that the assumptions of Theorem 3.1 hold and that E is positive semi-definite for all t ∈ I.
Then the DAE (3.12) has strangeness index µ ≤ 1. In particular, the DAE (3.12) has strangeness index

µ = 1 if and only if s > 0 in the reduced condensed form (3.14). If s = ` = 0 in the reduced condensed form

(3.14), then the system (3.12) is an ODE.

Thus, linear regular skew-adjoint DAEs with well-defined strangeness index and positive semi-definite

leading matrix always have a strangeness index less or equal than 1 (which is equivalently to a differentiation

index less or equal than 2, cf. [11]). Here, regularity of the DAE (3.12) is an assumption that should always

be satisfied in reasonable models. Non-regular DAE systems usually result from modeling or discretization

errors, and in this case, the system should be regularized in a preprocessing step (e.g., by using feedback

regularization [5]). In the context of port-Hamiltonian DAEs we will see that undetermined components can

also be reinterpreted as port variables, see Lemma 4.9.

4. Condensed forms for linear port-Hamiltonian DAEs. In this section, we derive condensed

forms for linear pHDAEs (1.1) under equivalence transformations. In order to shorten the notation, we

introduce the matrix function D = S +N in the sequel. The development of the condensed forms is based

on the following result.

Theorem 4.1. [2] Consider a linear pHDAE system (1.1) with Hamiltonian (1.3). Let U ∈ C0(I,Rn,n)

and V ∈ C1(I,Rn,n) be pointwise invertible on I. Then the transformed system

Ẽ ˙̃x = [(J̃ − R̃)Q̃− ẼK̃]x̃+ (B̃ − P̃ )u,

y = (B̃ + P̃ )T Q̃x̃+Du,

with

Ẽ = UTEV, Q̃ = U−1QV, J̃ = UTJU, R̃ = UTRU,

B̃ = UTB, P̃ = UTP, K̃ = V −1KV + V −1V̇ , x̃ = V −1x

is again a pHDAE with the same Hamiltonian H̃(x̃) = 1
2 x̃

T Q̃T Ẽx̃ = 1
2x

TQTEx = H(x).

Thus, we can define equivalence of linear pHDAEs in the following way.

Definition 4.2. Two pHDAE systems of the form (1.1) defined by the tuples of matrix functions

(Ei, Ji, Ri, Qi,Ki, Bi, Pi, Di), i = 1, 2 are called equivalent if there exist pointwise invertible matrix functions

U ∈ C0(I,Rn,n) and V ∈ C1(I,Rn,n) such that

E2 = UTE1V, Q2 = U−1Q1V, J2 = UTJ1U, R2 = UTR1U,

B2 = UTB1, P2 = UTP1, K2 = V −1K1V + V −1V̇ , D2 = D1.
(4.16)

It should be noted that the matrix K is required to describe equivalence transformations in the time-

varying setting, see also Example 4.14. However, we can always find an equivalence transformation that

eliminates K in the pHDAE (1.1) due to the following result.

Lemma 4.3. [2] Consider a linear pHDAE

Ẽ ˙̃x = [(J̃ − R̃)Q̃− ẼK̃]x̃+ (B̃ − P̃ )u,

y = (B̃ + P̃ )T Q̃x̃+Du,
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with Hamiltonian H̃(x̃) = 1
2 x̃

T Q̃T Ẽx̃, where K̃ ∈ C(I,Rn,n). If VK̃ is a pointwise invertible solution of

the matrix differential equation V̇ = −K̃V with initial condition V (t0) = In, then defining E = ẼV −1
K̃

,

Q = Q̃V −1
K̃

, x = VK̃ x̃, J = J̃ , R = R̃, B = B̃, P = P̃ , the system

Eẋ = (J −R)Qx+ (B − P )u,

y = (B + P )TQx+Du,

is again a pHDAE with H(x) = 1
2x

TQTEx = H̃(x̃).

Remark 4.4. The matrix differential equation for VK̃ in Lemma 4.3 can be solved numerically, and

if K̃ = −K̃T , then the resulting solution is pointwise orthogonal. On the other hand, if we restrict to

equivalence transformations using only pointwise orthogonal matrices U and V in Definition 4.2, then we

will always get a skew-symmetric matrix function K̃.

We start our investigations by restricting to equivalence transformations with orthogonal matrix func-

tions U and V such that U−1 = UT and V −1 = V T in (4.16). In this case, we can assume that K = −KT

(see Remark 4.4). As before, to derive the condensed form, we have to assume constant rank of certain

matrix functions. Then, we can use the following result.

Theorem 4.5. [11, Theorem 3.9] Let E ∈ C`(I,Rm,n), ` ∈ N0 ∪ {∞}, with rank E(t) = r for all t ∈ I.
Then there exist pointwise real orthogonal matrix functions U ∈ C`(I,Rm,m) and V ∈ C`(I,Rn,n), such that

UTEV =

[
Σ 0

0 0

]
with pointwise nonsingular Σ ∈ C`(I,Rr,r).

Assuming that rankE(t) = r for all t ∈ I we can at first compute a factorization of E as in Theorem 4.5,

i.e., there exist pointwise orthogonal matrix functions U1 and V1 of size n× n such that

Ẽ1 := UT1 EV1 =

[
Σr 0

0 0

]
,

with Σr of size r× r pointwise nonsingular. The other matrix functions are transformed according to (4.16)

into

Q̃1 := UT1 QV1 =

[
Q11 Q12

Q21 Q22

]
,

and J̃1 := UT1 JU1, R̃1 := UT1 RU1, K̃1 := V T1 KV1 +V T1 V̇1, B̃1 := UT1 B, P̃1 := UT1 P , partitioned accordingly.

Since the transformed system is again a pHDAE, we have that Q̃T1 Ẽ1 = ẼT1 Q̃1, such that we get Q12 ≡ 0,

as well as QT11Σr = ΣTr Q11 on I. Thus, we have

Q̃1 =

[
Q11 0

Q21 Q22

]
.(4.17)

Assuming that

rankQ22(t) = q for all t ∈ I,(R1)
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again using Theorem 4.5, there exist pointwise orthogonal matrix functions U22 and V22, both of size (n −
r)× (n− r), such that

UT22Q22V22 =

[
Σq 0

0 0

]
,

where Σq of size q×q is pointwise nonsingular. With U2 =

[
Ir 0

0 U22

]
, V2 =

[
Ir 0

0 V22

]
we get the transformed

matrix functions

Ẽ2 := UT2 Ẽ1V2 =

Σr 0 0

0 0 0

0 0 0

 , Q̃2 := UT2 Q̃1V2 =

Q11 0 0

Q21 Σq 0

Q31 0 0


J̃2 := UT2 J̃1U2 =

J11 J12 J13
J21 J22 J23
J31 J32 J33

 ,
as well as R̃2 := UT2 R̃1U2, K̃2 := V T2 K̃1V2 + V T2 V̇2, B̃2 := UT2 B̃1, P̃2 := UT2 P̃1, partitioned accordingly. The

skew-adjointness condition (1.2) now takes the form

 d
dt (Q

T
11Σr) 0 0

0 0 0

0 0 0

 =

 ∗ ∗ QT11ΣrK13

∗ −ΣTq (J22 + JT22)Σq 0

KT
13ΣTr Q11 0 0

 ,
and, thus, gives J22(t) = −JT22(t) for all t ∈ I, as well as QT11ΣrK13 ≡ 0 on I. Assuming that

rankQ31(t) = w for all t ∈ I,(R2)

there exist pointwise orthogonal matrix functions U31 of size (n− r − q)× (n− r − q) and V31 of size r × r
such that

UT31Q31V31 =

[
Σw 0

0 0

]
,

where Σw of size w × w is pointwise nonsingular for all t ∈ I. Finally, we obtain the following condensed

form for linear pHDAEs.

Theorem 4.6. Consider a linear pHDAE (1.1) that is defined by the tuple of matrix functions (E, J,R,
Q,K,B, P,D) with r = rankE(t) for all t ∈ I. Under the constant rank assumptions (R1) and (R2) there
exist pointwise orthogonal matrix functions U ∈ C0(I,Rn,n) and V ∈ C1(I,Rn,n) such that the system is
equivalent to a pHDAE described by

UTEV =


E11 E12 0 0 0

E21 E22 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


w

d

q

w

v

, UTQV =


Q11 Q12 0 0 0

Q21 Q22 0 0 0

Q31 Q32 Σq 0 0

Σw 0 0 0 0

0 0 0 0 0


w

d

q

w

v

,

w d q w v w d q w v

(4.18)
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where d = r − w, v = n− r − q − w, with pointwise nonsingular blocks Σq, Σw and

[
E11 E12

E21 E22

]
, and

UTJU =


J11 J12 J13 J14 J15

J21 J22 J23 J24 J25

J31 J32 J33 J34 J35

J41 J42 J43 J44 J45

J51 J52 J53 J54 J55

 , UTRU =


R11 R12 R13 R14 R15

R21 R22 R23 R24 R25

R31 R32 R33 R34 R35

R41 R42 R43 R44 R45

R51 R52 R53 R54 R55

 ,

UTB =


B1

B2

B3

B4

B5

 , ;UTP =


P1

P2

P3

P4

P5

 , K̃ := V TKV + V T V̇ =


K11 K12 K13 K14 K15

K21 K22 K23 K24 K25

K31 K32 K33 K34 K35

K41 K42 K43 K44 K45

K51 K52 K53 K54 K55

 ,

partitioned accordingly, with J33(t) = −JT33(t), K̃T (t) = −K̃(t) for all t ∈ I, and[
Q11 Q12

Q21 Q22

]T [
E11 E12

E21 E22

]
=

[
E11 E12

E21 E22

]T [
Q11 Q12

Q21 Q22

]
,[

Q11 Q12

Q21 Q22

]T [
E11 E12

E21 E22

] [
K14 K15

K24 K25

]
≡ 0

on I.

Proof. The proof follows directly from the previous discussion using the skew-adjointness condition

(1.2).

If we also allow non-orthogonal transformations, then we can further simplify the matrices in (4.18).

Theorem 4.7. Consider a linear pHDAE (1.1) that is defined by the tuple of matrix functions (E, J,R,
Q,K,B, P,D) with r = rankE(t) for all t ∈ I. Under the assumptions of Theorem 4.6 there exist pointwise
nonsingular matrix functions U ∈ C0(I,Rn,n) and V ∈ C1(I,Rn,n) such that the system is equivalent to a
pHDAE described by the tuple of matrix functions (Ẽ, J̃ , R̃, Q̃, K̃, B̃, P̃ ,D) given by

Ẽ = UTEV =


Iw 0 0 0 0

0 Id 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


w

d

q

w

v

, Q̃ = U−1QV =


0 0 0 0 0

0 Q22 0 0 0

0 0 Iq 0 0

Iw 0 0 0 0

0 0 0 0 0


w

d

q

w

v

,

w d q w v w d q w v

(4.19a)

where d = r − w, v = n− r − q − w, and Q22(t) = QT22(t) ≥ Q0 ∈ Rd,d for all t ∈ I, and

J̃ = UTJU =


J11 J12 J13 J14 J15

J21 J22 J23 J24 J25

J31 J32 J33 J34 J35

J41 J42 J43 J44 J45

J51 J52 J53 J54 J55

 , R̃ = UTRU =


R11 R12 R13 R14 R15

R21 R22 R23 R24 R25

R31 R32 R33 R34 R35

R41 R42 R43 R44 R45

R51 R52 R53 R54 R55



K̃ = V −1KV + V −1V̇ =


0 K12 K13 K14 K15

K21 0 K23 K24 K25

K31 K32 0 K34 K35

K41 K42 K43 0 K45

K51 K52 K53 K54 0

 ,(4.19b)
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B̃ = UTB =


B1

B2

B3

B4

B5

 , P̃ = UTP =


P1

P2

P3

P4

P5

 ,

partitioned accordingly, with

J44 = −JT44, J33 = −JT33, J43 = −JT34,
R33 = RT33, R44 = RT44, R32 = RT23, R42 = RT24, R43 = RT34,

Q22K24 ≡ 0, Q22K25 ≡ 0, Q22(J23 −K23) = −Q22J
T
32, Q22(J24 −K21) = −Q22J

T
42,

Q̇22 = −Q22(J22 + JT22)Q22,

as well as  R44 RT24Q22 RT34
Q22R24 Q22R22Q22 Q22R23

R34 RT23Q22 R33

 ≥ 0

on I.

Proof. Using the results of Theorem 4.6, we consider a linear pHDAE with matrix functions (E, J,R,Q,

K,B, P,D) given in condensed form (4.18). For the pair of matrix functions (E,Q) we can perform a

sequence of equivalence transformations according to (4.16) yielding


E11 E12 0 0 0

E21 E22 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 ,

Q11 Q12 0 0 0

Q21 Q22 0 0 0

Q31 Q32 Σq 0 0

Σw 0 0 0 0

0 0 0 0 0





∼




E11 E12 0 0 0

E21 E22 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 ,

Q11 Q12 0 0 0

Q21 Q22 0 0 0

Q31 Q32 Iq 0 0

Iw 0 0 0 0

0 0 0 0 0





∼




E11 E12 0 0 0

E21 E22 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 ,

Q11 Q12 0 0 0

Q21 Q22 0 0 0

0 0 Iq 0 0

Iw 0 0 0 0

0 0 0 0 0





∼




Iw 0 0 0 0

0 Id 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 ,

Q11 Q12 0 0 0

Q21 Q22 0 0 0

0 0 Iq 0 0

Iw 0 0 0 0

0 0 0 0 0
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∼




Iw 0 0 0 0

0 Id 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 ,


0 Q12 0 0 0

0 Q22 0 0 0

0 0 Iq 0 0

Iw 0 0 0 0

0 0 0 0 0



 ,

where d = r − w and J , R, K, B, P are transformed and partitioned accordingly. From the symmetry

of QTE we get that Q12 ≡ 0 as well as QT22(t) = Q22(t) for all t ∈ I. Finally, we can determine pointwise

nonsingular matrix functions Vii, i = 1, . . . , 5, such that

V̇ii = −KiiVii, Vii(t0) = I, i = 1, . . . , 5

in order to eliminate the diagonal blocks in K = [Kij ]i,j=1,...,5, resulting in a tuple of matrix functions with

a block structure as in (4.19). The skew-adjointness condition (1.2) and condition (iii) in Definition 1.1 yield

the remaining conditions for the block matrices in (4.19).

Remark 4.8. The total energy of the pHDAE (1.1) is given by

H(x) = H̃(x̃) =
1

2
x̃T ẼT Q̃x̃ =

1

2
x̃T2Q22x̃2,

for the transformed state vector x̃ = V −1x partitioned according to the condensed form (4.19). Thus, the

only contribution to the total energy comes from the component x̃2 and the matrix function Q22. The

remaining components of the state vector belong to algebraic constraints that have no energy contribution

to the system or to undetermined components that should have been considered as port variables in the

modeling (see also Lemma 4.9).

If there are undetermined components of the state vector in a pHDAE (1.1) this usually means that a

modeling error has occurred. Such undetermined components should be reinterpreted as port variables. For

a pHDAE given in condensed form (4.19) such a reinterpretation can be easily performed.

Lemma 4.9. Consider a linear pHDAE (1.1) given in condensed form (4.19) and let the state vector

x̃ = [x̃T1 , x̃
T
2 , x̃

T
3 , x̃

T
4 , x̃

T
5 ]T be partitioned according to the block structure of (4.19). If v > 0, then there are

undetermined components of the state vector that can be reinterpreted as port variables of a DAE system

Ê ˙̂x = [(Ĵ − R̂)Q̂− ÊK̂]x̂+ (B̂ − P̂ )û,

ŷ = (B̂ + P̂ )T Q̂x̂+ D̂û,
(4.20)

where

Ê =


Iw 0 0 0

0 Id 0 0

0 0 0 0

0 0 0 0

 , Q̂ =


0 0 0 0

0 Q22 0 0

0 0 Iq 0

Iw 0 0 0

 , K̂ =


0 K12 K13 K14

K21 0 K23 K24

K31 K32 0 K34

K41 K42 K43 0

 ,

Ĵ =


J11 J12 J13 J14
J21 J22 J23 J24
J31 J32 J33 J34
J41 J42 J43 J44

 , R̂ =


R11 R12 R13 R14

R21 R22 R23 R24

R31 R32 R33 R34

R41 R42 R43 R44

 , x̂ =


x̃1
x̃2
x̃3
x̃4

 ,

B̂ =


B1

1
2 (JT51 −RT51 −K15)

B2
1
2 (JT52 −RT52 −K25)

B3
1
2 (JT53 −RT53)

B4
1
2 (JT54 −RT54)

 , P̂ =


P1

1
2 (JT51 −RT51 +K15)

P2
1
2 (JT52 −RT52 +K25)

P3
1
2 (JT53 −RT53)

P4
1
2 (JT54 −RT54)

 , û =

[
u

x̃5

]
,
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D̂ =

[
D 0

B5 − P5 I

]
, ŷ =

[
y

x̃5

]
.

If ‖
[
J51 −R51 · · · J54 −R54

]
‖ and ‖B5 − P5‖ is sufficiently small, then the system (4.20) is again a

pHDAE.

Proof. In a pHDAE in condensed form (4.19), the components x̃5 of dimension v are undetermined

components of the state vector x̃. These components can be reinterpreted as port variables by rewriting the

system as


˙̃x1
˙̃x2
0

0

 =


L14 L12Q22 −K12 L13 −K13 −K14

L24 −K21 L22Q22 L23 −K23 −K24

L34 L32Q22 L33 0

L44 L42Q22 L43 0



x̃1
x̃2
x̃3
x̃4

+


B1 − P1 −K15

B2 − P2 −K25

B3 − P3 0

B4 − P4 0

[ ux̃5
]
,

[
y

x̃5

]
=

[
(B1 + P1)T (B2 + P2)T (B3 + P3)T (B4 + P4)T

L51 L52 L53 L54

]
0 0 0 0

0 Q22 0 0

0 0 Iq 0

Iw 0 0 0



x̃1
x̃2
x̃3
x̃4

+

[
D 0

B5 − P5 I

] [
u

x̃5

]
,

where we define Lij := Jij −Rij for i, j = 1, . . . , 5. By using the above definitions it can be easily checked

that the properties (i) and (ii) in Definition 1.1 of a pHDAE are satisfied for (4.20). For condition (iii) in

Definition 1.1 we need that Ŵ = ŴT ≥ 0, where Ŵ is given by

Ŵ =

[
Q̂T R̂Q̂ Q̂T P̂

P̂T Q̂ Ŝ

]

and Ŝ =

[
S 1

2 (BT5 − PT5 )
1
2 (B5 − P5) I

]
with S given from D = S + N . Using the properties of the Schur

complement it follows that Ŵ ≥ 0 if
Q̂T R̂Q̂− 1

4
Q̂T


JT
51 −RT

51

...

JT
54 −RT

54

[
J51 −R51 · · · J54 −R54

]
Q̂ Q̂T


P1

...

P4

− 1
4
Q̂T


JT
51 −RT

51

...

JT
54 −RT

54

 (B5 − P5)

[
PT
1 · · · PT

4

]
Q̂− 1

4
(BT

5 − PT
5 )

[
J51 −R51 · · · J54 −R54

]
Q̂ S − 1

4
(BT

5 − PT
5 )(B5 − P5)

 ≥ 0

and if J51, . . . , J54 = 0, R51, . . . , R54 = 0 and B5 = 0, P5 = 0, this condition is trivially satisfied,

since the original system was assumed to be a pHDAE (fulfilling (iii) of Definition 1.1). Otherwise, if

‖
[
J51 −R51 · · · J54 −R54

]
‖ and ‖B5 − P5‖ is sufficiently small (e.g., if the undetermined part results

from (small) modeling or approximation errors), this condition is satisfied as well.

In many practical examples and applications, not only QTE but also the product EQT is symmetric,

i.e.,

E(t)QT (t) = Q(t)ET (t) for all t ∈ I

(for examples see [13]). In this case, the condensed form (4.19) simplifies as follows.

Corollary 4.10. Consider a linear pHDAE (1.1) that is defined by the tuple of matrix functions (E, J,

R,Q,K,B, P,D) with r = rankE(t) for all t ∈ I, which satisfies E(t)QT (t) = Q(t)ET (t) for all t ∈ I.
Under the assumption of Theorem 4.6 there exist pointwise nonsingular matrix functions U ∈ C0(I,Rn,n)
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and V ∈ C1(I,Rn,n) such that the system is equivalent to a pHDAE described by (Ẽ, J̃ , R̃, Q̃, K̃, B̃, P̃ ,D)

given by

Ẽ := UTEV =

Ir 0 0

0 0 0

0 0 0

 r

q

v

, Q̃ := U−1QV =

Q22 0 0

0 Iq 0

0 0 0

 r

q

v

,

r q v r q v

(4.21a)

where v = n− r − q, with Q22(t) = QT22(t) ≥ Q0 ∈ Rr,r for all t ∈ I, and

J̃ := UTJU =

J22 J23 J25
J32 J33 J35
J52 J53 J55

 , R̃ := UTRU =

R22 R23 R25

R32 R33 R35

R52 R53 R55

 ,(4.21b)

K̃ := V −1KV + V −1V̇ =

 0 K23 K25

K32 0 K35

K52 K53 0

 ,(4.21c)

B̃ := UTB =

B2

B3

B5

 , P̃ := UTP =

P2

P3

P5

 ,
partitioned accordingly, with

J33 = −JT33, R33 = RT33, R32 = RT23,

Q22K25 ≡ 0, Q22(J23 −K23) = −Q22J
T
32, ,

Q̇22 = −Q22(J22 + JT22)Q22,

as well as [
Q22R22Q22 Q22R23

RT23Q22 R33

]
≥ 0

on I.

Proof. From the symmetry condition E(t)QT (t) = Q(t)ET (t) for all t ∈ I we get that Q21 ≡ 0 in (4.17),

and consequently w = 0. The rest follows from Theorem 4.7.

Another additional property that occurs frequently in practical applications is the case that the matrix

function Q is pointwise invertible (see again [13]). This assumption can possibly be met after reinterpretation

of state variables as port variables (as in Lemma 4.9).

Corollary 4.11. Consider a linear pHDAE (1.1) that is defined by the tuple of matrix functions

(E, J,R,Q,K,B, P,D) with r = rankE(t) for all t ∈ I and pointwise invertible matrix function Q. Un-

der the assumption of Theorem 4.6 there exist pointwise nonsingular matrix functions U ∈ C0(I,Rn,n) and

V ∈ C1(I,Rn,n) such that the system is equivalent to a pHDAE described by the tuple (Ẽ, J̃ , R̃, Q̃, K̃, B̃, P̃ ,D)

given by

Ẽ := UTEV =

[
Ir 0

0 0

]
, Q̃ := U−1QV =

[
Q22 0

0 In−r

]
,(4.22a)
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with Q22(t) = QT22(t) > 0 for all t ∈ I and

J̃ := UTJU =

[
J22 J23
J32 J33

]
, R̃ := UTRU =

[
R22 R23

RT23 R33

]
,

K̃ := V −1KV + V −1V̇ =

[
0 K23

K32 0

]
, B̃ := UTB =

[
B2

B3

]
, P̃ := UTP =

[
P2

P3

]
,

(4.22b)

partitioned accordingly, with

J33 = −JT33, K23 = JT32 + J23, R22 = RT22, R33 = RT33,

Q̇22 = −Q22(J22 + JT22)Q22,

as well as R̃ ≥ 0 on I.

Proof. From the condition that Q is pointwise nonsingular we get that Q22 in (4.17) is pointwise non-

singular and, thus, q = n − r. It follows that d = r, and w = 0 as well as v = 0 in the condensed form

(4.19).

If the matrix function Q in (1.1) is pointwise nonsingular, the results from Theorem 3.5 can be applied.

Corollary 4.12. Consider a linear pHDAE (1.1) with pointwise invertible matrix function Q. Suppose

that the assumptions of Theorem 3.1 hold for the skew-adjoint pair of matrix functions (QTE,QTJQ −
QTEK). Then, the undamped and uncontrolled DAE system (1.1a) with R ≡ 0 and u ≡ 0 has strangeness

index µ ≤ 1. In particular, the undamped and uncontrolled system is strangeness-free if and only if the

matrix function J33 of size (n− r)× (n− r) in the condensed form (4.22) is pointwise invertible for all t ∈ I
(and, thus, is of even dimension).

Proof. If Q is pointwise invertible, then the index of the DAE (1.1a) with R ≡ 0 and u ≡ 0 is the same

as the index of the skew-adjoint DAE

QTEẋ = QTJQx−QTEKx.

Moreover, using the condensed form (4.22) we see that the matrix function QTE is symmetric positive

semi-definite for all t ∈ I such that the result follows from Theorem 3.5.

The condensed forms (4.19),(4.21) and (4.22) are very useful if we want to determine the strangeness

index of a pHDAE (1.1a). To simplify the notation we write a pHDAE (1.1a) in condensed form (4.19) as[
Ir 0 0

0 0 0

]
ẋ =

[
A11 A12 A13

A21 A22 0

]
x+

[
f1
f2

]
(4.23)

with

A11 :=

[
L14 L12Q22 −K12

L24 −K21 L22Q22

]
∈ C(I,Rr,r), A12 :=

[
L13 −K13

L23 −K23

]
∈ C(I,Rr,q),

A13 :=

[
−K14 −K15

−K24 −K25

]
∈ C(I,Rr,w+v)

A21 :=

L34 L32Q22

L44 L42Q22

L54 L52Q22

 ∈ C(I,Rq+w+v,r), A22 :=

L33

L43

L53

 ∈ C(I,Rq+w+v,q),
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where we use the definition Lij := Jij −Rij for i, j = 1, . . . , 5 and

f1 :=

[
B1 − P1

B2 − P2

]
u, f2 :=

B3 − P3

B4 − P4

B5 − P5

u
are seen as given input functions (or inhomogeneities). Note that r = w + d. Then the pair of matrix

functions corresponding to the DAE system (4.23) can be transformed into an equivalent pair of matrix

functions in a similar manner as before. We get

([
Ir 0 0

0 0 0

]
,

[
A11 A12 A13

A21 A22 0

])
∼

Ir 0 0

0 0 0

0 0 0

 ,
Ã11 Ã12 Ã13

Ã21 Σa 0

Ã31 0 0



∼




E11 E21 0 0

E21 E22 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 ,

Â11 Â12 Â13 Â14

Â21 Â22 Â23 Â24

Â31 Â32 Σa 0

Σs 0 0 0

0 0 0 0





∼




Is 0 0 0

0 Ir−s 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 ,

Â11 Â12 Â13 Â14

Â21 Â22 Â23 Â24

Â31 Â32 Σa 0

Σs 0 0 0

0 0 0 0




with pointwise nonsingular matrix functions Σa of size a×a and Σs of size s×s, assuming that rankA22(t) = a

for all t ∈ I, as well as rank Ã31(t) = s for all t ∈ I.

Finally, we obtain the following result.

Theorem 4.13. Consider a linear pHDAE (1.1) given in condensed form (4.19) and assume that

rank

J33(t)−R33(t)

J43(t)−R43(t)

J53(t)−R53(t)

 = a ≤ q for all t ∈ I.

Furthermore, let Z be a matrix function of size (q +w + v)× (q − a) and pointwise maximal rank such that

Z(t)T

J33(t)−R33(t)

J43(t)−R43(t)

J53(t)−R53(t)

 = 0

for all t ∈ I and assume that

rankZT (t)

J34(t)−R34(t) (J32(t)−R32(t))Q22(t)

J44(t)−R44(t) (J42(t)−R42(t))Q22(t)

J54(t)−R54(t) (J52(t)−R52(t))Q22(t)

 = s for all t ∈ I.

Then, the following hold:

1. the pHDAE (1.1) is an ODE if and only if q = w = v = 0;
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2. the pHDAE (1.1) is strangeness-free if and only if s = 0;

3. the pHDAE (1.1) is regular and strangeness-free if and only if s = w = v = 0 and q = a. In this

case, the pHDAE in condensed form (4.19) reduces to

[
Ir 0

0 0

] [
˙̃x1
˙̃x2

]
=

[
(J22 −R22)Q22 J23 −R23 −K23

(J32 −RT23)Q22 J33 −R33

] [
x̃1
x̃2

]
+

[
B2 − P2

B3 − P3

]
u,

y =

[
B2 + P2

B3 + P3

]T [
Q22 0

0 Ia

] [
x̃1
x̃2

]
+Du,

with J33(t) = −JT33(t), R33(t) = RT33(t), Q22(t) = QT22(t) ≥ Q0 ∈ Rr,r for all t ∈ I, where the matrix

function J33 −R33 is pointwise invertible on I and

0 = Q22

[
JT32 + J23 −K23

]
, Q̇22 = −Q22(J22 + JT22)Q22,

as well as

[
Q22R22Q22 Q22R23

RT23Q22 R33

]
≥ 0

on I;
4. if the pHDAE (1.1) is regular with Q = I in the condensed form (4.19), then the strangeness index

µ is less or equal 1 (the differentiation index is less or equal 2).

Proof. The first three statements of the theorem follow directly from the previous discussion. In order

to prove 4, we consider the corresponding system

[
Ir 0

0 0

]
ẋ =

[
J22 −R22 −JT32 −R23

J32 −RT23 J33 −R33

]
x− (B − P )u,

where J22 = −JT22, J33 = −JT33, and R = RT =

[
R22 R23

RT23 R33

]
≥ 0. To analyze the index only the triple of

matrix functions

(E, J,R) =

([
Ir 0

0 0

]
,

[
J22 −JT32
J32 J33

]
,

[
R22 R23

RT23 R33

])

has to be considered, and we can use structure preserving congruence transformations of the form

(Ẽ, J̃ , R̃) = (UTEU,UTJU,UTRU)

with pointwise nonsingular matrix function U ∈ C1(I,Rn,n) (as in Theorem 4.1 with V = U) to transfer this

triple into a more suitable representation. Note that ẼK̃ = UTEU̇ is not necessarily equal to zero.
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At first, we can obtain

(E, J,R)

∼

Ir 0 0

0 0 0

0 0 0

 ,
J̃11 −J̃T21 −J̃T31
J̃21 J̃22 −J̃T32
J̃31 J̃32 J̃33

 ,
R̃11 R̃12 R̃13

R̃T12 ΣR 0

R̃T13 0 0


=

Ir 0 0

0 0 0

0 0 0

 ,
J̃11 −J̃T21 −J̃T31
J̃21 J̃22 −J̃T32
J̃31 J̃32 J̃33

 ,
R̃11 R̃12 0

R̃T12 ΣR 0

0 0 0



∼



Ir 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 ,

J̃11 −J̃T21 −J̃T31 −J̃T41
J̃21 J̃22 −J̃T32 −J̃T42
J̃31 J̃32 ∆J 0

J̃41 J̃42 0 0

 ,

R̃11 R̃12 0 0

R̃T12 ΣR 0 0

0 0 0 0

0 0 0 0




∼





Ir 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


,



J̃11 −J̃T21 −J̃T31 −J̃T41 −J̃T51 −J̃T61
J̃21 J̃22 −J̃T32 −J̃T42 −ΣT52 0

J̃31 J̃32 J̃33 −J̃T43 0 0

J̃41 J̃42 J̃43 ∆J 0 0

J̃51 Σ52 0 0 0 0

J̃61 0 0 0 0 0


,



R̃11 R̃12 R̃13 0 0 0

R̃T12 R̃22 R̃23 0 0 0

R̃T13 R̃T23 R̃33 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




with ΣR = ΣTR, ∆J = −∆T

J and Σ52 pointwise nonsingular, using a number of transformation as in Theo-

rem 4.5. Here, in the first step, the block R̃13 has to be identical to zero due to the positive semi-definiteness

of R. In the above sequence of transformations, we always have ẼK̃ = 0. In a last step, we can transform

the block J̃61 into the form
[
Σ61 0

]
, with pointwise nonsingular matrix function Σ61. Note that, due to the

regularity of the system, the block J̃61 needs to have full row rank. Using the corresponding transformation

on the whole triple of matrix functions we get

(E, J,R) ∼





Ẽ11 Ẽ12 0 0 0 0 0

Ẽ21 Ẽ22 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


,



∗ ∗ −J̃T31 −J̃T41 −J̃T51 −J̃T61 −ΣT61
∗ ∗ −J̃T32 −J̃T42 −J̃T52 −J̃T62 0

J̃31 J̃32 J̃33 −J̃T43 −J̃T53 −ΣT52 0

J̃41 J̃42 J̃43 J̃44 −J̃T54 0 0

J̃51 J̃52 J̃53 J̃54 ∆J 0 0

J̃61 J̃62 Σ52 0 0 0 0

Σ61 0 0 0 0 0


,



∗ ∗ R̃13 R̃14 0 0 0

∗ ∗ R̃23 R̃24 0 0 0

R̃T13 R̃T23 R̃33 R̃34 0 0 0

R̃T14 R̃T24 R̃T34 R̃44 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0




.

In this last transformation ẼK̃ 6= 0, so that the structure in the upper left 2 × 2-blocks of J̃ and R̃ is not

preserved (the corresponding blocks are denoted with *). However, from the above representation we can

now draw conclusions about the index of the corresponding DAE system: the equation belonging to the last
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block row, an algebraic relation for x̃1 (using a splitting of the transformed state vector x̃ according to the

block structure above), is responsible for strangeness index µ > 0. Since the first block equations must be

used for the determination of x̃7, as the system is assumed to be regular, there cannot be further (higher

index) coupling between the first and second block equations, such that the strangeness index has to be

bounded by µ ≤ 1. Note also, that J44 − R44 has to be regular, in order to be able to uniquely determine

x̃4.

From Theorem 4.13 we see that a linear pHDAE (1.1) with pointwise nonsingular matrix function Q

given in condensed form (4.22) is regular and strangeness-free if and only if J33 −R33 in (4.22) is pointwise

nonsingular on I. Moreover, a regular port-Hamiltonian DAE with pointwise nonsingular matrix function

Q will always be of strangeness index less than or equal to 1. For linear non-regular pHDAEs (1.1) the

strangeness index can also be larger than 1 (differentiation index larger than 2) as the following example

shows.

Example 4.14. Consider the system
1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

 ˙̃x =


0 1 0 0

0 0 1 0

−1 0 0 0

−1 0 0 0

 x̃+


−1

1

1

0

u, x̃(0) = x̃0

y =
[
1 1 0 0

]
x̃

(4.24)

of strangeness index µ = 2. This system can be written as pHDAE in condensed form (4.19) with w = 2,

d = q = v = 0 and

Ẽ =


1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

 , Q̃ =


0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

 , J̃ =


0 0 0 1

0 0 0 0

0 0 0 1
2

−1 0 − 1
2 0

 , R̃ =


0 0 0 0

0 0 0 0

0 0 1 1
2

0 0 1
2 0

 ,

K̃ =


0 0 0 0

0 0 −1 0

0 0 0 0

0 0 0 0

 , B̃ =


0

0

1

1

 , P̃ =


1

−1

0

0

 .
It can easily be checked that the conditions in Definition 1.1 are satisfied. Following Lemma 4.3, system

(4.24) is equivalent to the system
1 0 0 0

0 1 −t 0

0 0 0 0

0 0 0 0

 ẋ =


0 1 −t 0

0 0 0 0

−1 0 0 0

−1 0 0 0

x+


−1

1

1

0

u, x(0) = x0

y =
[
1 1 −t 0

]
x

with vanishing matrix K = 0, using a transformation x = VK̃ x̃ , x0 = VK̃(0)x̃0 where VK̃ =


1 0 0 0

0 1 t 0

0 0 1 0

0 0 0 1

,
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and

E =


1 0 0 0

0 1 −t 0

0 0 0 0

0 0 0 0

 , Q =


0 0 0 0

0 0 0 0

1 0 0 0

0 1 −t 0

 , J = J̃ , R = R̃, B = B̃, P = P̃ .

In the above example, we can also see that v = 0 in the condensed form (4.19) does not necessarily

imply that the system is regular.

For linear pHDAEs that are not strangeness-free an index reduction is necessary. Usually, the dif-

ferentiation and elimination step used in the index reduction procedure proposed in [11] will destroy the

port-Hamiltonian structure of the system. However, a modification of the regularization procedure has been

presented in [2] that preserve the pHDAE structure and, under some (local) constant rank assumption, al-

lows us to reformulated any linear pHDAE as an implicitly defined standard port-Hamiltonian system plus

an algebraic constraint.

5. Conclusions. We have considered linear port-Hamiltonian DAEs that arise in energy-based model-

ing of constrained dynamical systems and the corresponding skew-adjoint differential-algebraic operator that

is related to this structure. For skew-adjoint differential-algebraic equations we have developed structure pre-

serving condensed forms under orthogonal and non-orthogonal congruence transformations in Theorem 3.1

and Corollary 3.2. These condensed forms require some constant rank assumptions that are usually satisfied

in the common applications and are trivially satisfied for systems with constant coefficients. The constant

rank restriction can also be removed by considering the system in a piecewise manner, see [11]. Based

on the derived condensed forms an analysis of existence and uniqueness of solutions and of the index of

skew-adjoint DAEs is possible (Corollary 3.4). In particular, for linear regular skew-adjoint DAEs with

well-defined strangeness index and positive semi-definite leading matrix we have shown that the strangeness

index is always less than or equal to 1 (Theorem 3.5).

In the second part of the paper, we have derived condensed forms for linear port-Hamiltonian DAEs

under orthogonal and non-orthogonal equivalence transformations (Theorem 4.6 and Theorem 4.7). Under

additional structural properties these condensed forms can be further simplified (Corollary 4.10 and Corol-

lary 4.11). Again, the derived condensed forms allow us to analyze existence and uniqueness of solutions as

well as the index of linear port-Hamiltonian DAEs. The additional structural properties (the symmetry of

the product EQT and the pointwise regularity of the matrix function Q) are satisfied e. g. in the index-2

formulation of the equations of motions of linear constrained multibody systems or in the port-Hamiltonian

formulation of linear electrical RLC-circuits, see [13]. It was stated in [18] that port-Hamiltonian DAEs are

of differentiation index at most one (i.e., strangeness-free). That this is not the case can be seen from the

preceding results and in the examples presented in [13].

As a main result we have obtained that regular linear port-Hamiltonian DAEs with pointwise non-

singular matrix function Q always have a strangeness index less than or equal to 1 (Corollary 4.12 and

Theorem 4.13). For linear non-regular port-Hamiltonian DAEs (1.1) the strangeness index can also be larger

than 1 (differentiation index larger than 2). In case of higher-index pHDAEs a regularization procedure is

necessary. We refer to [2], where a structure preserving regularization procedure for port-Hamiltonian DAEs

has been presented. Moreover, the derived condensed forms allow an easy reinterpretation of undetermined

components of the state vector as port variables (Lemma 4.9).



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 35, pp. 65-89, March 2019.

89 Condensed Forms for Linear Port-Hamiltonian Descriptor Systems

REFERENCES

[1] L. Barkwell and P. Lancaster. Overdamped and gyroscopic vibrating systems. Trans. ASME J. Appl. Mech., 59:176–181,

1992.

[2] C. Beattie, V. Mehrmann, H. Xu, and H. Zwart. Linear port-Hamiltonian descriptor systems. Math. Control Signals

Systems, 30:17. 27pp, 2018.

[3] R. Byers, V. Mehrmann, and H. Xu. A structured staircase algorithm for skew-symmetric/symmetric pencils. Electron.

Trans. Numer. Anal., 26:1–33, 2007.

[4] C.I. Byrnes, A. Isidori, and J.C. Willems. Passivity, feedback equivalence, and the global stabilization of minimum phase

nonlinear systems. IEEE Trans. Automat. Control, 36:1228–1240, 1991.

[5] S. Campbell, P. Kunkel, and V. Mehrmann. Regularization of linear and nonlinear descriptor systems. In: L. Biegler,

S. Campbell, and V. Mehrmann (editors), Control and Optimization with Differential-Algebraic Constraints, SIAM,

Philadelphia, PA, 17–34, 2012.

[6] L. Dieci and T. Eirola. On smooth decompositions of matrices. SIAM J. Matrix Anal. Appl, 20:800–819, 1999.

[7] M. Friswell, J. Penny, S. Garvey, and A. Lees. Dynamics of Rotating Machines. Cambridge University Press, Cambridge,

2010.

[8] E. Hairer, C. Lubich, and G. Wanner. Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary

Differential Equations. Springer-Verlag, Berlin, 2002.

[9] P. Kunkel and V. Mehrmann. Canonical forms for linear differential-algebraic equations with variable coefficients. J.

Comput. Appl. Math., 56:225–251, 1994.

[10] P. Kunkel and V. Mehrmann. A new look at pencils of matrix valued functions. Linear Algebra Appl., 212/213:215–248,

1994.

[11] P. Kunkel and V. Mehrmann. Differential-Algebraic Equations. Analysis and Numerical Solution. EMS Publishing House,
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