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IN-SPHERE PROPERTY AND REVERSE INEQUALITIES FOR MATRIX MEANS∗

TRUNG-HOA DINH† , TIN-YAU TAM‡ , AND BICH-KHUE T. VO§

Abstract. The in-sphere property for matrix means is studied. It is proved that the matrix power mean satisfies in-sphere

property with respect to the Hilbert-Schmidt norm. A new characterization of the matrix arithmetic mean is provided. Some

reverse AGM inequalities involving unitarily invariant norms and operator monotone functions are also obtained.
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1. Introduction. A mean M of non-negative numbers is a map from R+ × R+ to R+ such that (see,

for example, [1]):

1) M(x, x) = x for every x ∈ R+;

2) M(x, y) = M(y, x) for every x, y ∈ R+;

3) If x < y, then x < M(x, y) < y;

4) If x < x0 and y < y0, then M(x, y) < M(x0, y0);

5) M(x, y) is continuous;

6) M(tx, ty) = tM(x, y) for t, x, y ∈ R+.

Some well-known examples are the arithmetic mean
a+ b

2
, the geometric mean

√
ab, and the harmonic mean(

a−1 + b−1

2

)−1
. Property 3) says that for 0 ≤ a ≤ b,

(1.1)
a+ b

2
−M(a, b) ≤ b− a

2
.

In other words, M(a, b) lies inside the interval [a, b] which is contained in the circle with the center at the

arithmetic mean
a+ b

2
and the radius equal a half of the distance between a and b. We call this the in-

sphere property of scalar means with respect to the Euclidian distance on R. In particular, for t ∈ [0, 1]

and p > 0, the t-weighted geometric mean M(a, b) = a1−tbt and the t-power mean (or binomial mean)

µp(a, b, t) = ((1− t)ap + tbp)1/p satisfy the in-sphere property (1.1).

Now, let us denote by Mn the algebra of all complex matrices of order n and by In the identity matrix

in Mn. Let Pn and H+
n denote the sets of positive definite and positive semi-definite matrices of order n,
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respectively. For Hermitian matrices A and B, the notation A ≤ B means B−A ≥ 0. This is the well-known

Loewner order on Hermitian matrices.

One of the most important matrix generalizations of (1.1) is the famous Powers-Størmer inequality [2]

which states that for any A,B ∈ H+
n and for any s ∈ [0, 1],

Tr

(
A+B

2
− 1

2
|A−B|

)
≤ Tr (AsB1−s),

where |A| = (A∗A)1/2. The value Tr (AsB1−s) is called the non-logarithmic quantum Chernoff bound in

quantum hypothesis testing theory.

Another matrix generalization of (1.1) was studied by Dinh, Vo and Osaka [3]. They proved that for

any A,B ∈ Pn such that AB +BA ≥ 0 and for any operator Kubo-Ando mean σ [4],

A+B

2
− 1

2
|A−B| ≤ AσB.(1.2)

Then, Dinh showed in [5, Theorem 2.1] that for any A,B ∈ Pn (without the condition AB + BA ≥ 0) and

for any operator mean σ,

(1.3)
A+B

2
− 1

2
A1/2|In −A−1/2BA−1/2|A1/2 ≤ AσB.

Notice that both (1.2) and (1.3) are matrix generalizations of (1.1).

The matrix power mean which was first studied by Bhagwat and Subramanian [6] is

µp(A,B, t) = (tAp + (1− t)Bp)
1/p

, A,B ∈ H+
n , p ∈ R.

It is worth mentioning that µp(A,B, t) is a mean in the sense of Kubo-Ando if and only if p = ±1. The power

means with p > 1 have many important applications in mathematical physics and in the theory of operator

spaces, where they form the basis of certain generalizations of lp norms to non-commutative vector-valued

Lp spaces [7].

In this paper, we consider some matrix generalizations of (1.1) involving unitarily invariant norms. More

precisely, we prove in Section 2 that the matrix power mean µp(A,B, t) satisfies the in-sphere property with

respect to the Hilbert-Schmidt norm. We also obtain a new characterization of the arithmetic mean. In

Section 3 we establish some reverse inequalities for the matrix Heinz mean with unitarily invariant norms.

2. In-sphere property for matrix means. Using the fact that for p ∈ [1, 2] the function x1/p is

operator concave and the function x2/p is operator convex, we will prove that the matrix power mean

µp(A,B, t) satisfies the in-sphere property with respect to the Hilbert-Schmidt norm || · ||2.

Theorem 2.1. Let p ∈ [1, 2] and A,B ∈ H+
n . Then for t ∈ [0, 1],

(2.4) ‖A+B

2
− µp(A,B, t)‖2 ≤

1

2
‖A−B‖2.

Proof. Since ||A||2 = (Tr (A2))1/2, (2.4) is equivalent to the following:

(2.5) Tr (µp(A,B, t)2)− Tr ((A+B)µp(A,B, t)) ≤ −Tr (AB).
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It is obvious that (2.5) holds for t = 0 and t = 1. If we can show that the set of t satisfying (2.5) is a

connected subset in [0, 1], then it coincides with [0, 1]. Indeed, let (2.5) hold for s, t ∈ (0, 1) and it suffices

to show that (2.5) is also true for (t+ s)/2. Notice that

µp(A,B, (t+ s)/2) =

(
t+ s

2
Ap + (1− t+ s

2
)Bp

)1/p

=

(
1

2
(tAp + (1− t)Bp) +

1

2
(sAp + (1− s)Bp)

)1/p

=

(
1

2
µp
p(A,B, t) +

1

2
µp
p(A,B, s)

)1/p

.

For p ∈ (1, 2), the function x1/p is operator concave, hence we have

µp(A,B, (t+ s)/2) =

(
1

2
µp
p(A,B, t) +

1

2
µp
p(A,B, s)

)1/p

≥ 1

2
µp(A,B, t) +

1

2
µp(A,B, s).

Consequently,

(2.6) Tr ((A+B)µp(A,B, (t+ s)/2)) ≥ 1

2
Tr ((A+B)µp(A,B, t) + (A+B)µp(A,B, s)).

On the other hand, for p ∈ [1, 2] the function x2/p is operator convex. Then we have

µp(A,B, (t+ s)/2)2 =

(
1

2
µp
p(A,B, t) +

1

2
µp
p(A,B, s)

)2/p

≤ 1

2
µ2
p(A,B, t) +

1

2
µ2
p(A,B, s).(2.7)

From (2.6) and (2.7), we obtain

Tr (µp(A,B, (t+ s)/2)2)− Tr ((A+B)µp(A,B, (t+ s)/2))

≤ 1

2
Tr (µ2

p(A,B, t)) +
1

2
Tr (µ2

p(A,B, s))− 1

2
Tr ((A+B)µp(A,B, t))− 1

2
Tr ((A+B)µp(A,B, s))

≤ −Tr (AB).

Therefore, (2.5) holds for (s+ t)/2.

Recall that a norm ||| · ||| on Mn is unitarily invariant if |||UAV ||| = |||A||| for any unitary matrices U, V

and any A ∈Mn. Ky Fan Dominance Theorem [9] asserts that given A,B ∈Mn, s(A) ≺w s(B) if and only

if |||A||| ≤ |||B||| for all unitarily invariant norms ||| · |||, where s(A) denotes the vector of singular values of A.

In the following theorem, we establish a new characterization of the arithmetic mean. The proof is

adapted from the proof of [5, Theorem 2.3]. For the convenience of readers, we provide a full proof.

Theorem 2.2. Let σ be any symmetric mean and ||| · ||| an arbitrary unitarily invariant norm on Mn. If

(2.8) |||A+B

2
−AσB||| ≤ 1

2
|||A−B|||

holds whenever A,B ∈ Pn, then σ is the arithmetic mean.
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Proof. By [4, Theorem 4.4], the symmetric operator mean σ has the representation:

(2.9) AσB =
α

2
(A+B) +

∫
(0,∞)

λ+ 1

λ
{((λA) : B) + (A : (λB))}dµ(λ), A,B ∈ Pn,

where λ ≥ 0 and µ is a positive measure on (0,∞) with α + µ((0,∞)) = 1 and A : B = (A−1 + B−1)−1 is

the parallel sum of A and B. Given two orthogonal projections P,Q acting on a Hilbert space H denote by

P ∧Q their infimum which is the orthogonal projection on the subspace P (H) ∩Q(H). If P ∧Q = 0, then

by [4, Theorem 3.7],

(λP ) : Q = P : (λQ) =
λ

λ+ 1
P ∧Q.

Consequently, from (2.9), we get

(2.10) PσQ =
α

2
(P +Q).

For θ > 0, let us consider the following orthogonal projections

P =

(
1 0

0 0

)
, Q =

(
cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

)
.

It is easy to see that P ∧Q = 0. By (2.10) and (2.8) we have

(1− α)|||P +Q||| ≤ |||P −Q|||,

or

(2.11) (1− α)|||P +Q||| ≤ | sin θ| · |||H|||,

where H =

(
sin θ − cos θ

− cos θ − sin θ

)
. Since it is true for all θ > 0, as θ in (2.11) tends 0+, we obtain 1−α ≤ 0.

Thus, α ≥ 1. This shows that µ = 0 and σ is the arithmetic mean.

Remark 2.3. Firstly, note that the matrix power mean is not symmetric. So, Theorem 2.1 is not covered

by Theorem 2.2.

Secondly, notice that for any operator mean σ and for any A,B ∈ H+
n with AB +BA ≥ 0 (2.8) follows

from (1.2). Therefore, (2.8) geometrically says that for any operator mean σ, the point AσB lies inside the

sphere centered at
A+B

2
and the radius equal to

1

2
|||A−B|||. However, if we fix some symmetric operator

mean σ that is different from the arithmetic mean, then we can find matrices A,B not satisfying the condition

AB +BA ≥ 0 and AσB lies outside of the sphere with the center at
A+B

2
and the radius |||A−B|||/2.

3. Reverse inequalities. It is well-known that the Heinz mean
asb1−s + a1−sbs

2
, s ∈ [0, 1], interpolates

between the geometric mean a1/2b1/2 and the arithmetic mean
a+ b

2
, and that [9] for any unitarily invariant

norm ||| · |||, for any A,B ∈ H+
n , and for s ∈ [0, 1],

(3.12) |||A1/2B1/2||| ≤ |||A
sB1−s +A1−sBs

2
||| ≤ |||A+B

2
|||.

In this section, we will prove some inequalities reverse to (3.12).
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Observe that the following matrix generalization of (1.1)

(3.13)
A+B

2
≤ As/2B1−sAs/2 +

1

2
A1/2|In −A−1/2BA−1/2|A1/2

is false in general. Indeed, for s = 1/2, let us consider the following positive definite matrices

A =

(
0.699 1.1455

1.1455 4.9308

)
, B =

(
0.9249 0.7064

0.7064 0.5928

)
.

Using Mathlab, one can see that the matrix

A1/4B1/2A1/4 +
1

2
A1/2|In −A−1/2BA−1/2|A1/2 − A+B

2

has eigenvalues 1.2956 and −0.0234. Therefore, (3.13) is false. However, the eigenvalues of A1/4B1/2A1/4

are 0.1531 and 2.1184 and the eigenvalues of
A+B

2
− 1

2
A1/2|In−A−1/2BA−1/2|A1/2 are 0.9665 and 0.0327.

That means,
A+B

2
− 1

2
A1/2|In −A−1/2BA−1/2|A1/2 ≺w A1/4B1/2A1/4,

or, equivalently, for any unitarily invariant norm ||| · |||,

(3.14) |||A+B

2
− 1

2
A1/2|In −A−1/2BA−1/2|A1/2||| ≤ |||A1/4B1/2A1/4|||.

In the following theorem, we establish (3.14) for general A,B ∈ Pn in the context of operator monotone

functions. The proof is adapted from [3, Proposition 3.1].

Theorem 3.1. Let f be an operator monotone function on [0,∞) with f((0,∞)) ⊂ (0,∞) and f(0) = 0.

Let g(t) = t
f(t) (t ∈ (0,∞)) and g(0) = 0. Then for any A,B ∈ Pn,

|||A+B

2
− 1

2
A1/2|In −A−1/2BA−1/2|A1/2||| ≤ |||f(A)1/2g(B)f(A)1/2|||

≤ |||f(A)g(B)|||,

where ||| · ||| is an arbitrary unitarily invariant norm on Mn.

Proof. Let us prove the first inequality. Suppose that A ≤ B. We have A−1/2BA−1/2 ≥ In. Therefore,

A+B −A1/2|In −A−1/2BA−1/2|A1/2 = 2A.

Since g is operator monotone, we have g(A) ≤ g(B). Then

f(A)1/2g(A)f(A)1/2 ≤ f(A)1/2g(B)f(A)1/2,

or

A ≤ f(A)1/2g(B)f(A)1/2.

Therefore,

|||A||| ≤ |||f(A)1/2g(B)f(A)1/2|||.
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Next, we consider the general case. For the matrix In − A−1/2BA−1/2, let P = (In − A−1/2BA−1/2)+

and Q = (In − A−1/2BA−1/2)− be its positive and negative parts according to its spectral decomposition,

respectively. Then we have

In −A−1/2BA−1/2 = P −Q and |In −A−1/2BA−1/2| = P +Q.

Consequently,

A−B = A1/2PA1/2 −A1/2QA1/2 and A1/2|In −A−1/2BA−1/2|A1/2 = A1/2PA1/2 +A1/2QA1/2.

It is obvious that A − A1/2PA1/2 ∈ H+
n . Since A − A1/2PA1/2 = B − A1/2QA1/2 ≤ B from the above

argument we have

A−A1/2PA1/2 ≤ f(A−A1/2PA1/2)1/2g(B)f(A−A1/2PA1/2)1/2.

Consequently,

|||A−A1/2PA1/2||| ≤ |||f(A−A1/2PA1/2)1/2g(B)f(A−A1/2PA1/2)1/2|||.

On the other hand,

|||f(A−A1/2PA1/2)1/2g(B)f(A−A1/2PA1/2)1/2|||

= |||f(A−A1/2PA1/2)1/2g(B)1/2g(B)1/2f(A−A1/2PA1/2)1/2|||

≤ |||g(B)1/2f(A−A1/2PA1/2)g(B)1/2|||

≤ |||g(B)1/2f(A)g(B)1/2|||

≤ |||f(A)1/2g(B)f(A)1/2|||.

Therefore,

|||A+B −A1/2|In −A−1/2BA−1/2|A1/2||| = 2|||A−A1/2PA1/2|||
≤ 2|||f(A)1/2g(B)f(A)1/2|||.

The second inequality in Theorem 3.1 follows immediately from the Hiai-Ando log-majorization theorem

[8].

Corollary 3.2. Let A,B ∈ Pn and s ∈ [0, 1]. Then we have

|||A+B

2
− 1

2
A1/2|In −A−1/2BA−1/2|A1/2||| ≤ |||A1/2B1/2|||.

We now use Corollary 3.2 to obtain a reverse inequality for the matrix Heinz mean.

Theorem 3.3. Let A,B ∈ Pn and s ∈ [0, 1]. Then we have

(3.15) |||A+B

2
− 1

2
A1/2|In −A−1/2BA−1/2|A1/2||| ≤ |||A

sB1−s +A1−sBs

2
|||.

Proof. Since A,B ∈ Pn, the function f(s) = |||AsB1−s + A1−sBs||| is continuous and convex on [0, 1],

and twice differentiable on (0, 1) and f ′(1/2) = 0 (see [9, p. 265]). Hence, f(s) attains the global minimum

on [0, 1] at s = 1/2. That means,

|||AsB1−s +A1−sBs||| ≥ 2|||A1/2B1/2|||, s ∈ [0, 1].

By Corollary 3.2, we get (3.15).
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Remark 3.4. By using similar arguments one can prove another reverse inequality for the matrix Heinz

mean as follows: for any A,B ∈ H+
n such that AB +BA ≥ 0 and s ∈ [0, 1],

|||A+B

2
− 1

2
|A−B|||| ≤ |||A

sB1−s +A1−sBs

2
|||.
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