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IN-SPHERE PROPERTY AND REVERSE INEQUALITIES FOR MATRIX MEANS*

TRUNG-HOA DINH!, TIN-YAU TAM?#, AND BICH-KHUE T. VO$

Abstract. The in-sphere property for matrix means is studied. It is proved that the matrix power mean satisfies in-sphere
property with respect to the Hilbert-Schmidt norm. A new characterization of the matrix arithmetic mean is provided. Some
reverse AGM inequalities involving unitarily invariant norms and operator monotone functions are also obtained.

Key words. In-sphere property of matrix means, Matrix Heinz mean, Matrix power mean, Unitarily invariant norms.

AMS subject classifications. 46L30, 15A45.

1. Introduction. A mean M of non-negative numbers is a map from R* x R to RT such that (see,
for example, [1]):

1) M(z,z) =z for every z € R™;
2) M(z,y) = M(y,x) for every x,y € Rt;
3) If z <y, then z < M(z,y) < y;
4) If z < xp and y < yo, then M(x,y) < M(zo,¥0);
5) M(x,y) is continuous;
)

6) M(tzx,ty) = tM(z,y) for t,z,y € RT.

, the geometric mean v/ ab, and the harmonic mean

. . a+
Some well-known examples are the arithmetic mean

a”l+b !
— . Property 3) says that for 0 < a < b,

a+b b—a

(1.1) — M(a,b) <

In other words, M (a,b) lies inside the interval [a,b] which is contained in the circle with the center at the

b
arithmetic mean @t and the radius equal a half of the distance between a and b. We call this the in-

sphere property of scalar means with respect to the Euclidian distance on R. In particular, for ¢ € [0, 1]
and p > 0, the t-weighted geometric mean M (a,b) = a'~'b' and the t-power mean (or binomial mean)
pp(a,b,t) = ((1 — t)aP + tb?)}/P satisfy the in-sphere property (1.1).

Now, let us denote by M, the algebra of all complex matrices of order n and by I,, the identity matrix
in M,,. Let P, and H} denote the sets of positive definite and positive semi-definite matrices of order n,
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respectively. For Hermitian matrices A and B, the notation A < B means B— A > 0. This is the well-known
Loewner order on Hermitian matrices.

One of the most important matrix generalizations of (1.1) is the famous Powers-Stgrmer inequality [2]
which states that for any A, B € H;} and for any s € [0, 1],

Tr (A;B - ;|A—B|) < Tr (A*B'™*),

where |A| = (A*A)'/2. The value Tr (A°B'~%) is called the non-logarithmic quantum Chernoff bound in
quantum hypothesis testing theory.

Another matrix generalization of (1.1) was studied by Dinh, Vo and Osaka [3]. They proved that for
any A, B € P, such that AB + BA > 0 and for any operator Kubo-Ando mean o [4],

A+B 1
; — 54— B| < AoB.

(1.2)

Then, Dinh showed in [5, Theorem 2.1] that for any A, B € P,, (without the condition AB + BA > 0) and
for any operator mean o,

A+ B

(1.3) :

%A1/2|In — A7Y2BA?|AV? < Ao B.

Notice that both (1.2) and (1.3) are matrix generalizations of (1.1).

The matrix power mean which was first studied by Bhagwat and Subramanian [6] is
(1p(A, B, 1) = (tAP + (1 —t)B")"? | A BeH}, peR.

It is worth mentioning that u,(A, B,t) is a mean in the sense of Kubo-Ando if and only if p = +1. The power
means with p > 1 have many important applications in mathematical physics and in the theory of operator
spaces, where they form the basis of certain generalizations of I, norms to non-commutative vector-valued
L, spaces [7].

In this paper, we consider some matrix generalizations of (1.1) involving unitarily invariant norms. More
precisely, we prove in Section 2 that the matrix power mean p,(A, B, t) satisfies the in-sphere property with
respect to the Hilbert-Schmidt norm. We also obtain a new characterization of the arithmetic mean. In
Section 3 we establish some reverse inequalities for the matrix Heinz mean with unitarily invariant norms.

2. In-sphere property for matrix means. Using the fact that for p € [1,2] the function /P is
operator concave and the function z2/P is operator convex, we will prove that the matrix power mean
up(A, B, t) satisfies the in-sphere property with respect to the Hilbert-Schmidt norm || - ||2.

THEOREM 2.1. Let p € [1,2] and A, B € H\'. Then fort € [0,1],

A+ B
2

1
Proof. Since ||A||s = (Tr (A?))'/2, (2.4) is equivalent to the following:

(2.5) Tr (1 (A, B.t)?) = Tr (A + B)pp(A, B,1)) < —Tr (AB).
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It is obvious that (2.5) holds for ¢ = 0 and ¢ = 1. If we can show that the set of ¢ satisfying (2.5) is a
connected subset in [0, 1], then it coincides with [0,1]. Indeed, let (2.5) hold for s,¢ € (0,1) and it suffices
to show that (2.5) is also true for (¢t 4+ s)/2. Notice that

1/p
wp(A, B, (t+5)/2) = <tJ2rSAP +(1- t;S)Bp)

1/p
= <;(tAp +(1-t)BP)+ %(SAP +(1- s)Bp))

1 1 r

For p € (1,2), the function z'/P is operator concave, hence we have

1 1 1y
A, (0 5)/2) = (A, Bot) + 54, B.))

1 1
2 §”p(A7B7t) + §,Up(A,B,S)-

Consequently,
(2.6) Tr ((A+ B)up(A, B, (t +5)/2)) = %Tr ((A+ B)up(A, B, 1) + (A + B)up(4, B, 5)).

On the other hand, for p € [1,2] the function /7 is operator convex. Then we have

1 1 2r
A, B (04 5)/2° = (G4 B.o) + 54, 5.))

1
(2.7) < Sip(A B 1) + Spup(A, By s).

N | =

From (2.6) and (2.7), we obtain
Tr (1 (A, B, (t + 5)/2)2) — Tr (A + B)ip(A, B, (t + 5)/2))
< STx (A, B1)) + 5T (3(A, B,5)) — 5Tr ((A+ B)uy(A, B.1)) — 5Tr (A+ Bluy(A, B,5))
< —Tr(AB).

Therefore, (2.5) holds for (s + t)/2. O

Recall that a norm ||| - ||| on M, is unitarily invariant if ||[UAV|| = |||A]||] for any unitary matrices U,V
and any A € M,,. Ky Fan Dominance Theorem [9] asserts that given A, B € M, s(A) <, s(B) if and only
if |||All] < ||| B]]| for all unitarily invariant norms ||| - |||, where s(A) denotes the vector of singular values of A.

In the following theorem, we establish a new characterization of the arithmetic mean. The proof is
adapted from the proof of [5, Theorem 2.3]. For the convenience of readers, we provide a full proof.

THEOREM 2.2. Let o be any symmetric mean and |||-||| an arbitrary unitarily invariant norm on M,,. If
A+ B 1
(2.8) lI=—5— —AsBll < SllA - Bl

holds whenever A, B € P,,, then o is the arithmetic mean.
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Proof. By [4, Theorem 4.4], the symmetric operator mean o has the representation:

(2.9) AoB = %(A + B) +/ M{((AA) :B)+ (A: (AB))}du(N), A,BEeP,,

(O,00) A

where A > 0 and p is a positive measure on (0,00) with a + p((0,00)) =1 and A: B= (A"1+ B71)~lis
the parallel sum of A and B. Given two orthogonal projections P, ) acting on a Hilbert space H denote by
P A @ their infimum which is the orthogonal projection on the subspace P(H)NQ(H). If P A Q = 0, then
by [4, Theorem 3.7],

A
AP):Q=P:(\NQ)=——PANQ.
(P):Q=P:(0Q) = 127 P 1Q
Consequently, from (2.9), we get
a
5 (

(2.10) PoQ =5 (P+Q).

For 6 > 0, let us consider the following orthogonal projections
1 0 cos? 6 cosfsin 6
P= = .
( 00 )’ @ (cos@sinﬁ sin? 0 )

It is easy to see that P A QQ = 0. By (2.10) and (2.8) we have

(I=allP+ell < lIP - Il

or

(2.11) I=a)lP+Qll < [sind|-[[[H]l,

where H = sinf = Cf)se . Since it is true for all # > 0, as  in (2.11) tends 0T, we obtain 1 —«a < 0.
—cosf —sinf

Thus, o > 1. This shows that ¢ = 0 and o is the arithmetic mean. O

REMARK 2.3. Firstly, note that the matrix power mean is not symmetric. So, Theorem 2.1 is not covered
by Theorem 2.2.

Secondly, notice that for any operator mean o and for any A, B € H,} with AB + BA > 0 (2.8) follows
from (1.2). Therefore, (2.8) geometrically says that for any operator mean o, the point Ao B lies inside the

sphere centered at and the radius equal to §|||A — BYJ||. However, if we fix some symmetric operator

mean o that is different from the arithmetic mean, then we can find matrices A, B not satisfying the condition

A+ B
AB + BA > 0 and Ao B lies outside of the sphere with the center at i and the radius |||A — B|||/2.

asbl—s + al—sbs
3. Reverse inequalities. It is well-known that the Heinz mean ——— s € [0, 1], interpolates

. . . a+b e
between the geometric mean a'/2b'/2 and the arithmetic mean — and that [9] for any unitarily invariant

norm ||| - |||, for any A, B € H}', and for s € [0, 1],

AsBl_S—‘rAl_SBS A+B

(3.12) AY2BH 2] < | 5 < =1l

In this section, we will prove some inequalities reverse to (3.12).
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Observe that the following matrix generalization of (1.1)

A+B

(313) S AS/2B175A5/2 + %A1/2|In _ A71/28A71/2‘A1/2

is false in general. Indeed, for s = 1/2, let us consider the following positive definite matrices

_( 0.699  1.1455 )

0.9249 0.7064
1.1455 4.9308 '

0.7064 0.5928

Using Mathlab, one can see that the matrix

A+B

A1/4Bl/2A1/4 + 1A1/2|In _ A—1/2BA—1/2|A1/2 _
2 2

has eigenvalues 1.2956 and —0.0234. Therefore, (3.13) is false. However, the eigenvalues of A'/4B1/2A1/4

A+B 1
are 0.1531 and 2.1184 and the eigenvalues of B §A1/2|In — A71/2BA~1/2| A2 are 0.9665 and 0.0327.
That means,

A+B 1
2 2

or, equivalently, for any unitarily invariant norm ||| - |||,

A1/2|In _A—l/ZBA—1/2|A1/2 < A1/4Bl/2A1/4,

A+ B
2

1
(3.14) Il g A2\ — ATVZBATZ AV < | AVEBYZAVE.

In the following theorem, we establish (3.14) for general A, B € P,, in the context of operator monotone
functions. The proof is adapted from [3, Proposition 3.1].

THEOREM 3.1. Let f be an operator monotone function on [0, 00) with f((0,00)) C (0,00) and f(0) = 0.

Let g(t) = % (t € (0,00)) and g(0) = 0. Then for any A, B € P,

A+B 1 _ _
IS L, - amepani ey < | pa) a8y Fa)
< [l (Ag(BIII,
where ||| - ||| #s an arbitrary unitarily invariant norm on M,,.

Proof. Let us prove the first inequality. Suppose that A < B. We have A~Y/2BA~1/2 > I,,. Therefore,
A+ B—AYV2|I, — A7Y2BA7Y/2|AY2 = 24,
Since g is operator monotone, we have g(A) < g(B). Then
FA)2g(A) f(A)V2 < £(A)29(B) F(A)"?,

or

A< f(A)Pg(B)f(A)Y2.

Therefore,
AN < [ll£(A)2g(B) (A2
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Next, we consider the general case. For the matrix I,, — A=Y/2BAY2 let P = (I, — A~'/2BA~1/2)*
and Q = (I,, — A_l/QBA_l/Q)_ be its positive and negative parts according to its spectral decomposition,
respectively. Then we have

I, —A7YV2BA™ Y2 =P _—Q and |I,—A"'2BA Y2 =P +Q.
Consequently,
A—B= A1/2PA1/2 o A1/2QA1/2 and A1/2|In _ A—1/2BA—1/2|A1/2 — A1/2PA1/2 + Al/zQAl/Q.

It is obvious that A — AY2PAY2 ¢ Hf. Since A — AY/2PAY?2 = B — AY2QA'Y? < B from the above
argument we have

A— AV2PAY2 < f(A— AV2PAV2)2g(BYf(A — AV2PAY/Z)L/2,
Consequently,
A~ AY2PAV2|| < ||f(A — AV PAY2)2g(B) (A~ AY2PAV)|.
On the other hand,
/(A — AYZPAY2)2g(B) f(A — A2PAYZ)2|

= If(A— AYV2PAV2)2g(B)2g(B)/2 f(A — AV2PAY2)2|
<|lg(B)/?f(A— AMV2PAY)g(B) 2|

< |lg(B)2f(A)g(B)"2]

< |I£(A)2g(B)f(A) 2.

Therefore,

IlA+ B — AY2|I,, — A7Y2BAY2|AV2||| = 2|||A — A2 PAY?|
< 2| f(A)2g(B) fFA).

The second inequality in Theorem 3.1 follows immediately from the Hiai-Ando log-majorization theorem
[8]. d

COROLLARY 3.2. Let A,B € P, and s € [0,1]. Then we have

A+B 1

== — A"l — ATV2BATI2 AV < || AVZBY2)).

We now use Corollary 3.2 to obtain a reverse inequality for the matrix Heinz mean.
THEOREM 3.3. Let A,B € P, and s € [0,1]. Then we have
A+B 1 AsBl_S—FAl_SBSHI
2 2 2 '

Proof. Since A, B € P, the function f(s) = ||A*B'~% + A'=*B*||| is continuous and convex on [0, 1],
and twice differentiable on (0,1) and f/(1/2) =0 (see [9, p. 265]). Hence, f(s) attains the global minimum
on [0,1] at s = 1/2. That means,

(3.15) I AVR|L, — ATVPBATRIAVE) < ||

IlA4° B + A2 B2||| > 2|| A2 BY2|, s € [0,1].

By Corollary 3.2, we get (3.15). 0
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REMARK 3.4. By using similar arguments one can prove another reverse inequality for the matrix Heinz
mean as follows: for any A, B € H;} such that AB+ BA >0 and s € [0, 1],

A+B 1 ASBl=s 4 Al—sps
I25= - SlA- Bl < . I
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