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SURJECTIVE ADDITIVE RANK-1 PRESERVERS ON HESSENBERG MATRICES∗
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Abstract. Let Hn(F) be the space of all n × n upper Hessenberg matrices over a field F, where n is a positive integer

greater than two. In this paper, surjective additive maps preserving rank-1 on Hn(F) are characterized.
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1. Introduction. During the past twenty years, there are various research concerning additive preserver

problems (APPs). APPs are problems similar to LPPs (linear preserver problems) except that these maps

preserve the addition while preserving the scalar multiplication is not required. In general, additive rank-1

preservers are among the most studied subjects for examples in 2003 Cao and Zhang [1] gave the structure

of additive rank-1 preserving surjections on symmetric matrix spaces over a field of characteristic not 2 or 3.

Surjective additive rank-1 preservers on the full matrix algebra over any field were characterized by Cao and

Zhang [2] in 2004. A year later, this work was extended by Zhang and Sze [7] to studying additive rank-1

preservers between spaces of full matrices of different dimensions.

This paper is motivated by the work of Cao and Zhang [2] and that of us [5] which provided the structure

of linear rank-1 preservers on the space of all n × n upper Hessenberg matrices over an arbitrary field F,

where n ≥ 3. Note that a square matrix (aij) is upper Hessenberg if aij = 0 whenever j + 1 < i. Likewise

upper triangular matrices, upper Hessenberg matrices over a field form a vector space. Moreover, we can

rewrite complex matrices into a Hessenberg decomposition [4], i.e., “for a complex matrix A, there exist a

unitary matrix P and a Hessenberg matrix H such that A = PHP
t
”. In another word, the similarity of such

matrices A and H leads to some shared properties, for examples, their rank, determinant and eigenvalues.

Particularly, Hessenberg matrices play an important role in the QR algorithm by reducing workload of each

iteration: O(n3) for a general matrix and O(n2) for the Hessenberg form of the original matrix [6].

In this paper, some properties of Hessenberg matrices are given in Section 2 and surjective additive

rank-1 preservers are characterized in Section 3 by using only basic concepts in the matrix theory.

2. Preliminaries. For convenience, we begin with the following definitions and notation used througout

this paper. Let Mmn(F), Tn(F) and Hn(F) be the set of all m×n matrices over a field F, the set of all n×n
upper triangular matrices over a filed F and the set of all n × n upper Hessenberg matrices over a field F,

respectively. Furthermore, ρ(A) and At denote the rank of a matrix A and the transpose of a matrix A,

respectively. A map ϕ on a space V is additive if ϕ(a + b) = ϕ(a) + ϕ(b) for any elements a and b in V .

A subspace V of a vector space is called a rank-1 subspace if each element in V is the zero matrix or has

rank one. In addition, a map T on Hn(F) is called a rank-1 preserver if ρ(T (A)) = 1 whenever ρ(A) = 1 for
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any A ∈ Hn(F). Besides, a map T on Hn(F) is called a rank preserver if T preserves all ranks. The symbol

x ⊗ y denotes xyt for any column vectors x and y. We also use the common notation e1, . . . , em to denote

the standard bases of Mm1(F) and Eij to denote the elementary matrix over F whose (i, j)-entry is one and

others are zero. It is easy to verify that Eij = ei ⊗ ej for all i and j.

Set

x⊗Mn1(F) = {x⊗ y | y ∈Mn1(F)} , where x ∈Mm1(F),

Mm1(F)⊗ y = {x⊗ y |x ∈Mm1(F)} , where y ∈Mn1(F),

Ω = {A ∈ Hn(F) | ρ(A) = 1} ,

Hu
n(F) = {(aij) ∈ Hn(F) | aj+1,j = 0 for all j ∈ {2, . . . , n− 1}}

and

Hd
n(F) = {(aij) ∈ Hn(F) | aj+1,j = 0 for all j ∈ {1, . . . , n− 2}} .

The following notation is first used in [3]. For an interger s with 1 ≤ s ≤ n, let

Us =
{(
x1 · · · xs 0 · · · 0

)t |xi ∈ F for all i ∈ {1, . . . , s}
}
,

Vs =
{(

0 · · · 0 xs · · · xn
)
|xi ∈ F for all i ∈ {s, . . . , n}

}
,

xVs = {xv | v ∈ Vs} for each x ∈Mn1(F)

and

Usy = {uy |u ∈ Us} for each y ∈M1n(F).

For a matrix A = (aij) in Mn(F), Chooi and Lim denoted A∼ the matrix (bij) in Mn(F) such that bij =

an+1−j,n+1−i for any i and j. Observably, the diagonal line acts as the reflection-axis for the remaining

elements but the elements on this line are fixed. Furthermore, (A + B)∼ = A∼ + B∼, (AB)∼ = B∼A∼,

(A∼)∼ = A and ρ(A) = ρ(A∼) for all A,B ∈Mn(F).

The following proposition is a useful tool to prove some of our results; however, we state without proof

because its proof is straightforward.

Proposition 1. Let x, y, u, v ∈Mn1(F). The following statements hold.

(i) x⊗ y = 0 if and only if x = 0 or y = 0.

(ii) If x⊗ y 6= 0, then x⊗ y = u⊗ v if and only if there exists α ∈ F\{0} such that u = αx and y = αv.

(iii) If x⊗ y + u⊗ v ∈ Ω, then {x, u} or {y, v} is linearly dependent.

(iv) For n ≥ 2, if u 6= 0 and v 6= 0, then there exists w ∈ Ω such that w /∈ u⊗Mn1(F) ∪Mn1(F)⊗ v.

By making use of Proposition 1 (ii), the property of the decomposition rank of a matrix and the fact

that Vn ⊆ · · · ⊆ V1 and U1 ⊆ · · · ⊆ Un, the following corollary is obtained.

Corollary 2. Let x ∈Mn1(F)\{0} and y ∈M1n(F)\{0}. The matrix xy ∈ Ω if and only if there exists

s ∈ {1, . . . , n+ 1} such that x ∈ Us and y ∈ Vs−1, where V0 = V1 and Un+1 = Un.

In general, a product of Hessenberg matrices need not be a Hessenberg matrix. However, this can be a

Hessenberg matrix under some conditions as follows.
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Proposition 3. For n ≥ 3, let A = (aij) and B = (bij) ∈ Hn(F). Then AB ∈ Hn(F) if and only if

ai,i−1 = 0 or bi−1,i−2 = 0 for all i ∈ {3, 4, . . . , n}.

Proof. The proof is simple.

In matrix theory, for each m×n matrix A of rank r, there exist nonsingular matrices P and Q in Mm(F)

and Mn(F), respectively, such that PAQ =

(
Ir 0

0 0

)
. This property is shown in the sense of Hessenberg

matrices.

Proposition 4. If A ∈ Hn(F) of rank r 6= 0, then there exist nonsingular matrices P,Q ∈ Tn(F) such

that PAQ =
∑r
i=1Esiti , where si, ti ∈ {1, . . . , n} with si ≤ ti + 1 for all i and si 6= sj, ti 6= tj for all i 6= j.

Proof. Let A = (aij) be a Hessenberg matrix of rank r 6= 0. Given R1, . . . , Rn and C1, . . . , Cn are the

row vectors and column vectors of A, respectively. Let Rs be the first nonzero row vector from the last row

of A and let asq be the leading entry of Rs. Multiply Rs by a−1
sq and then for each 1 ≤ i < s, apply the row

operation Ri − aiqRs → Ri.

Next, for each q < j ≤ n, apply the column operation Cj − asj
asq
Cq → Cj . Let X and Y be the product

of matrices obtained by these row operations and these column operations, respectively. Then X and Y are

nonsingular triangular matrices such that XAY = Esq + B with B =

(
U V

0 0

)
, where U ∈ Hs−1(F) and

V ∈Ms−1,n−s+1(F). By using the same argument with B, we obtain X2BY2 = Es2t2 +B2, where t2 6= q and

s2 < s. Furthermore, X2EsqY2 = X2

(
es ⊗ eq

)
Y2 which is the product of the s-column of X2 and the q-row

of Y2, and hence, it is the product of es and etq, which is Esq. This shows that X2EsqY2 = Esq. Continue

the same process and then let P = Xr · · ·X2X and Q = Y Y2 · · ·Yr. It follows that P and Q are nonsingular

triangular matrices; moreover,

XiEsqYi = Esq for all 3 ≤ i ≤ r,

and for each j ∈ {2, . . . , r}, we get XlEsjtjYl = Esjtj for all j + 1 ≤ l ≤ r. Then for all si, ti ∈ {1, . . . , n}
with si ≤ ti + 1 for all i and si 6= sj , ti 6= tj whenever i 6= j, it follows that PAQ =

∑r
i=1Esiti , where

Es1t1 = Esq.

The following proposition acts as a supplement of matrices main proof.

Proposition 5. Let A,B ∈ Hn(F) be nonsingular and ϕ : Hn(F)→Mn(F) the map defined by ϕ(X) =

AXB. Then Imϕ ⊆ Hn(F) if and only if A ∈ Hu
n(F) and B ∈ Hd

n(F).

Proof. The sufficiency is clear so we prove the necessity. Assume that Imϕ ⊆ Hn(F). To show that

B = (bij) ∈ Hd
n(F), we first claim that, for any 2 ≤ s ≤ n− 1, if y ∈ Vs, then yB ∈ Vs. As a result, for any

2 ≤ s ≤ n − 1, if y =
(
0 · · · 0 ys · · · yn

)
∈ Vs with ys 6= 0, then yB ∈ Vs with ysbs,s−1 = 0 so that

bs,s−1 = 0. We can conclude that B ∈ Hd
n(F) as desired.

It remains to show the claim. Fix s ∈ {2, . . . , n−1}. Assume that y ∈ Vs. Then x⊗yt ∈ Hn(F) for every

x ∈ Us+1 by Corollary 2. Since (Ax)(yB) = A(x⊗ yt)B ∈ Hn(F) for any x ∈ Us+1 and A is nonsingular, we

obtain that both spaces {Ax |x ∈ Us+1} and Us+1 have the same dimensions. Hence, yB ∈ Vs; otherwise, it

forces the dimension of {Ax |x ∈ Us+1} to be less than or equal to s which is a contradiction. The claim is

now complete.

Similarly, by using the same manner, proving that A ∈ Hu
n(F) is enough to use the fact that if x ∈ Us+1,

then Ax ∈ Us+1 for all 1 ≤ s ≤ n− 2.
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3. Main results. This section is devoted to provide the structure of surjective additive rank-1 pre-

servers on Hn(F). For certain mappings on Hn(F), relationships between the first row and the last column

of each matrix in Hn(F) are shown as follows. Note that for a space V of matrices, set V t = {At |A ∈ V }.

Lemma 6. Let ϕ be an additive rank-1 preserver on Hn(F). Then for any i ∈ {1, 2, . . . , n}, there exist

si, qi ∈ {1, . . . , n} with si ≤ qi + 1, nonzero elements xi ∈ Usi and yi ∈ V tqi and injective additive maps

gi : V ti−1 → V tqi and di : V ti−1 → Usi , where V0 = V1 such that

(3.1) ϕ(ei ⊗ z) = xi ⊗ gi(z) for all z ∈ V ti−1

(3.2) or ϕ(ei ⊗ z) = di(z)⊗ yi for all z ∈ V ti−1.

Proof. We only show the case i = 1. The other cases can be obtained similarly. Since e1 ⊗Mn1(F) is

a rank-1 subspace and ϕ preserves all rank-1 matrices, it follows that ϕ(e1 ⊗Mn1(F)) is a rank-1 additive

group. Since ϕ(e1 ⊗Mn1(F)) ∩ Ω 6= ∅, there exist s1, q1 ∈ {1, . . . , n} with s1 ≤ q1 + 1 such that

0 6= x1 ⊗ y1 ∈ ϕ(e1 ⊗Mn1(F))

for some nonzero x1 ∈ Us1 and y1 ∈ V tq1 .

Case 1: Suppose that {u, x1} is linearly dependent for any nonzero u ⊗ v ∈ ϕ(e1 ⊗Mn1(F)). Then

u = αux1 for some αu ∈ F\{0} and u ∈ Us1 , and hence, v ∈ V tq1 . It follows that

u⊗ v = (αux1)⊗ v = x1 ⊗ (αuv) ∈ x1 ⊗ V tq1 .

Thus, ϕ(e1 ⊗Mn1(F)) ⊆ x1 ⊗ V tq1 . This implies that there exists an 1-1 additive map g1 : Mn1(F) → V tq1
such that

ϕ(e1 ⊗ z) = x1 ⊗ g1(z) for all z ∈Mn1(F).

Case 2: Suppose that {u0, x1} is linearly independent for some nonzero u0⊗ v0 ∈ ϕ(e1⊗Mn1(F)). Since

u0⊗ v0 +x1⊗ y1 ∈ ϕ(e1⊗Mn1(F)) and ϕ is an additive rank-1 preserver, u0⊗ v0 +x1⊗ y1 ∈ Ω∪{0}. Thus,

{v0, y1} is linearly dependent by (ii) and (iii) of Proposition 1. Then v0 = αv0y1 for some αv0 ∈ F\{0}. It

follows that u0 ⊗ v0 = u0 ⊗ (αv0y1) = (αv0u0) ⊗ y1. Hence, for each nonzero u ⊗ v ∈ ϕ(e1 ⊗Mn1(F)), we

obtain

u⊗ v + (αv0u0)⊗ y1 ∈ Ω ∪ {0} and u⊗ v + x1 ⊗ y1 ∈ Ω ∪ {0}.

As a result, {v, y1} is linearly dependent; otherwise, by (iii) of Proposition 1, it forces {u0, x1} to be linearly

dependent which is a contradiction. Then there exists αv ∈ F\{0}, v = αvy1 and then v ∈ V tq1 . It follows

that

u⊗ v = u⊗ (αvy1) = (αvu)⊗ y1 ∈ Us1 ⊗ y1.

Thus, ϕ(e1 ⊗Mn1(F)) ⊆ Us1 ⊗ y1. This implies that there exists an 1-1 additive map d1 : Mn1(F) → Us1
such that

ϕ(e1 ⊗ z) = d1(z)⊗ y1 for all z ∈Mn1(F).

In the similar way, we can conclude the following.
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Lemma 7. Let ϕ be an additive rank-1 preserver on Hn(F). Then for any i ∈ {1, 2, . . . , n}, there exist

pi, ri ∈ {1, . . . , n} with pi ≤ ri + 1, nonzero elements ui ∈ Upi and vi ∈ V tri and injective additive maps

hi : Ui+1 → V tri and ci : Ui+1 → Upi , where Un+1 = Un such that

ϕ(z ⊗ ei) = ui ⊗ hi(z) for all z ∈ Ui+1

or ϕ(z ⊗ ei) = ci(z)⊗ vi for all z ∈ Ui+1.

The next lemma provides a relationship between Lemma 6 and Lemma 7 on the first row and the last

column of each Hessenberg matrix.

Lemma 8. Let ϕ be a surjective additive rank-1 preserver on Hn(F) and let x1, y1, un, vn, g1, d1, hn, cn
be defined as appeared in Lemma 6 and Lemma 7. Then

(i) ϕ(e1 ⊗ z) = x1 ⊗ g1(z) for all z ∈Mn1(F)

and ϕ(z ⊗ en) = cn(z)⊗ vn for all z ∈Mn1(F), or

(ii) ϕ(e1 ⊗ z) = d1(z)⊗ y1 for all z ∈Mn1(F)

and ϕ(z ⊗ en) = un ⊗ hn(z) for all z ∈Mn1(F).

Proof. By Lemma 6 in case i = 1, we obtain that

(3.3) ϕ(e1 ⊗ z) = x1 ⊗ g1(z) for all z ∈Mn1(F)

(3.4) or ϕ(e1 ⊗ z) = d1(z)⊗ y1 for all z ∈Mn1(F).

By Lemma 7 in case i = n, we also obtain that

(3.5) ϕ(z ⊗ en) = un ⊗ hn(z) for all z ∈Mn1(F)

(3.6) or ϕ(z ⊗ en) = cn(z)⊗ vn for all z ∈Mn1(F).

Nevertheless,

(I) (3.3) and (3.5) cannot hold simultaneously, and

(II) (3.4) and (3.6) cannot hold simultaneously.

We prove only (I). Suppose that (3.3) and (3.5) hold simultaneously. Since x1 ⊗ g1(en) = ϕ(e1 ⊗
en) = un ⊗ hn(e1), by (ii) of Proposition 1, there exists a nonzero α ∈ F such that x1 = αun. Thus,

ϕ(e1 ⊗ z) = αun ⊗ g1(z) = un ⊗ αg1(z) ∈ un ⊗Mn1(F) for all z ∈Mn1(F).

Case 1: ϕ(Ω) ⊆ un ⊗Mn1(F). In general, each Hessenberg matrix is the sum of finitely many rank-1

matrices. Then ϕ
(
Hn(F)

)
⊆ un ⊗Mn1(F) which contradicts the surjectivity of ϕ.

Case 2: ϕ(Ω) * un ⊗Mn1(F). Then there exist nonzero x, y, u, v ∈ Mn1(F) with x ⊗ y ∈ Ω such that

ϕ(x⊗ y) = u⊗ v and {u, un} is linearly independent. We know that

ϕ(x⊗ y) = u⊗ v ∈ Ω,

ϕ
(
(x+ e1)⊗ y

)
= u⊗ v + αun ⊗ g1(y) ∈ Ω,

ϕ
(
x⊗ (y + en)

)
= u⊗ v + un ⊗ hn(y) ∈ Ω, and

ϕ
(
(x+ e1)⊗ (y + en)

)
= u⊗ v + αun ⊗ g1(y) + un ⊗ hn(y) + un ⊗ hn(e1) ∈ Ω.
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By using (iii) of Proposition 1 repeatedly, we obtain that
{
v, g1(y)

}
,
{
v, hn(y)

}
and

{
v, hn(e1)

}
are linearly

dependent so that there exists a nonzero β ∈ F such that v = βhn(e1), and hence, ϕ(x⊗ y) = u⊗βhn(e1) =

βu⊗ hn(e1) ∈Mn1(F)⊗ hn(e1).

As a conclusion, ϕ(Ω) ⊆ un ⊗Mn1(F) ∪Mn1(F) ⊗ hn(e1), it follows that ϕ
(
Hn(F)

)
⊆ un ⊗Mn1(F) ∪

Mn1(F)⊗ hn(e1) which contradicts the surjectivity of ϕ by (iv) of Proposition 1.

The proofs of Lemma 9 and Lemma 10 use the same method, thereby we prove only Lemma 10.

Lemma 9. Let ϕ be a surjective additive rank-1 preserver on Hn(F) satisfying the condition (3.3) in the

proof of Lemma 8. Then, for 1 ≤ i ≤ n− 1,

ϕ(z ⊗ ei) = ci(z)⊗ vi for all z ∈ Ui+1,

where ci and vi are given in Lemma 7.

Lemma 10. Let ϕ be a surjective additive rank-1 preserver on Hn(F) satisfying the condition (3.6) in

the proof of Lemma 8. Then, for 2 ≤ i ≤ n,

ϕ(ei ⊗ z) = xi ⊗ gi(z) for all z ∈ V ti−1,

where gi and xi are given in Lemma 6.

Proof. By the condition (3.6) in the proof of Lemma 8 and Lemma 6, we only show that (3.2) in

Lemma 6 does not hold. If (3.2) holded, then di(en) ⊗ yi = ϕ(ei ⊗ en) = cn(ei) ⊗ vn, and hence, ϕ(Ω) ⊆
Usi ⊗ vn ∪ cn(ei)⊗Mn1(F) contradicting (iv) of Proposition 1.

The following proposition is a result of the combination of Lemmas 8−10. Recall the results from these

lemmas:

(a) There exist an 1-1 additive map g1 : Mn1(F) → V tq1 and x1 ∈ Us1 \{0}, where s1, q1 ∈ {1, . . . , n} with

s1 ≤ q1 + 1 such that

ϕ(e1 ⊗ z) = x1 ⊗ g1(z) for all z ∈Mn1(F).

(b) There exist an 1-1 additive map cn : Mn1(F) → Upn and vn ∈ V trn \{0}, where pn, rn ∈ {1, . . . , n} with

pn ≤ rn + 1 such that

ϕ(z ⊗ en) = cn(z)⊗ vn for all z ∈Mn1(F).

(c) For 1 ≤ i ≤ n − 1, there exist an 1-1 additive map ci : Ui+1 → Upi and vi ∈ V tri \{0}, where pi, ri ∈
{1, . . . , n} with pi ≤ ri + 1 such that

ϕ(z ⊗ ei) = ci(z)⊗ vi for all z ∈ Ui+1.

(d) For 2 ≤ i ≤ n, there exist an 1-1 additive map gi : V ti−1 → V tqi and xi ∈ Usi\{0}, where si, qi ∈ {1, . . . , n}
with si ≤ qi + 1 such that

ϕ(ei ⊗ z) = xi ⊗ gi(z) for all z ∈ V ti−1.

Consider (a) and (b). We obtain

x1 ⊗ g1(en) = ϕ(e1 ⊗ en) = cn(e1)⊗ vn
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and then there exists α ∈ F\{0} such that cn(e1) = αx1 and g1(en) = αvn by Proposition 1. However,

cn(e1) = αx1 ∈ Us1 but cn(Mn1(F)) ⊆ Upn . This result forces s1 ≤ pn. Similarly, g1(en) = αvn ∈ V trn but

g1(Mn1(F)) ⊆ V tq1 , and hence, q1 ≤ rn.

Consider (a) and (c). In the case ϕ(e1 ⊗ e1), we get s1 ≤ p1 and q1 ≤ r1. Moreover, s1 ≤ pk and

q1 ≤ rk if we focus on ϕ(e1 ⊗ ek) for 2 ≤ k ≤ n − 1. As a result, for each i ∈ {1, . . . , n}, s1 ≤ pi and

q1 ≤ ri. Consequently, q1 = 1 and then s1 ≤ 2. If not, we get q1 ≥ 2 which forces ri ≥ 2 for all i. Since

any Hessenberg matrix can be expressed as the form
∑n
i=1 z ⊗ ei from (c), and thus, ϕ maps Hessenberg

matrices into Hessenberg matrices such that the first column is zero, which contradicts the surjectivity of ϕ.

Consider (a), (b) and (d). We can see that pn = n and rn ≥ n− 1 follow by a similar argument.

Lemma 11. Let ϕ be a surjective additive rank-1 preserver on Hn(F) which satisfies the condition:

There exist s1, rn ∈ {1, . . . , n} with s1 ≤ 2 and rn ≥ n − 1, nonzero elements x1 ∈ Us1 and vn ∈ V trn and

injective additive maps g1, cn on Mn1(F) such that

ϕ(e1 ⊗ z) = x1 ⊗ g1(z) for all z ∈Mn1(F)

and ϕ(z ⊗ en) = cn(z)⊗ vn for all z ∈Mn1(F).

Then the following statements hold.

(i) There exist bijective additive maps g1, . . . , gn and x1, . . . , xn ∈ Mn1(F) such that gi : V ti−1 → V ti−1,

where V0 = V1 and

xi ∈ Ui for all i or xi ∈


U2, if i = 1

U1, if i = 2

Ui, if i 6= 1, 2

or xi ∈

{
U2, if i = 1

Ui, if i 6= 1

such that ϕ(ei⊗z) = xi⊗gi(z) for all z ∈ V ti−1. Moreover, such x1, . . . , xn are linearly independent.

(ii) There exist bijective additive maps c1, . . . , cn and v1, . . . , vn ∈ Mn1(F) such that ci : Ui+1 → Ui+1,

where Un+1 = Un and

vi ∈ V ti for all i or vi ∈


V ti , if i 6= n, n− 1

V tn, if i = n− 1

V tn−1, if i = n

or vi ∈

{
V ti , if i 6= n

V tn−1, if i = n

such that ϕ(z⊗ ei) = ci(z)⊗ vi for all z ∈ Ui+1. Moreover, such v1, . . . , vn are linearly independent.

Proof. From the assumption, there exist s1, rn ∈ {1, . . . , n} with s1 ≤ 2 and rn ≥ n−1, nonzero elements

x1 ∈ Us1 and vn ∈ V trn and 1-1 additive maps g1, cn on Mn1(F) such that

(3.7) ϕ(e1 ⊗ z) = x1 ⊗ g1(z) for all z ∈Mn1(F)

(3.8) and ϕ(z ⊗ en) = cn(z)⊗ vn for all z ∈Mn1(F).

By Lemma 10 and Lemma 9, we obtain that for all 2 ≤ i ≤ n, there exist si, qi ∈ {1, . . . , n} with si ≤ qi + 1,

a nonzero element xi ∈ Usi and a 1-1 additive map gi : V ti−1 → V tqi such that

(3.9) ϕ(ei ⊗ z) = xi ⊗ gi(z) for all z ∈ V ti−1
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and for each 1 ≤ i ≤ n− 1, there exist pi, ri ∈ {1, . . . , n} with pi ≤ ri + 1, a nonzero element vi ∈ V tri and a

1-1 additive map ci : Ui+1 → Upi such that

(3.10) ϕ(z ⊗ ei) = ci(z)⊗ vi for all z ∈ Ui+1.

It follows from (3.7) and (3.9) that for each nonzero z ∈ V ti−1 we get

ϕ(ei ⊗ z) = xi ⊗ gi(z) ∈ Ω for all 1 ≤ i ≤ n,

where V t0 = Mn1(F).

Now, first of all, since ϕ maps onto Hn(F), for each A ∈ Hn(F), there exists B =
∑n
i=1(ei⊗ zti) ∈ Hn(F)

such that ϕ(B) = A, where each zi is the i-row of B. It follows that

(3.11) A = ϕ
( n∑
i=1

(ei ⊗ zti)
)

=

n∑
i=1

ϕ
(
(ei ⊗ zti)

)
=

n∑
i=1

(
xi ⊗ gi(zti)

)
.

Consequently, every Hessenberg matrix A is represented by the sum of the form xi ⊗ gi(zti), where each zi
is the i-row of B such that ϕ(B) = A.

Since s1 ≤ 2, we get x1 ∈ U1 or x1 ∈ U2 and then Im g1 ∈ V t1 , where V0 = V1, besides, xi ∈ Usi and

Im gi ∈ V tqi for all 2 ≤ i ≤ n.

Case 1: x1 ∈ U1. In fact, Enn is an element of Hn(F) so that Enn =
∑
j

(
xj ⊗ gj(ztj)

)
for some j. It

follows that there exists an element in {x2, x3, . . . , xn} such that its n-position must not be zero, say xn.

Since xn ∈ Usn , we get sn = n, and hence, xn ∈ Un and Im gn ∈ V tn−1 by making use of Corollary 2.

Furthermore, with the same argument, En−1,n−2 ∈ Hn(F) which forces that there exists an element in

{x2, x3, . . . , xn}\{xn} such that its (n− 1)-position must not be zero by the structure of xn and Im gn, say

xn−1. If the n-position of xn−1 is not equal to zero, we obtain that xn−1 ∈ Un, and thus, Im gn−1 ∈ V tn−1

which is impossible, therefore, xn−1 must be in Un−1 and Im gn−1 ∈ V tn−2, and hence, {xn−1, xn} is linearly

independent. Similarly, the i-position of xi must not be zero; moreover, xi ∈ Ui and Im gi ∈ V ti−1 for all

i ≥ 2, and hence, {x2, . . . , xn} is linearly independent. In addition, by the structure of x1, we conclude that

{x1, . . . , xn} is linearly independent.

Case 2: x1 ∈ U2. In a similar manner, we obtain that the i-position of xi must not be zero; moreover,

xi ∈ Ui and Im gi ∈ V ti−1 for all i ≥ 3, and hence, {x1, x3, . . . , xn} is linearly independent. Since E11 is an

element of Hn(F) and the structure of xi for all i ≥ 3, we get

(3.12) E11 = x1 ⊗ g1(zt1) + x2 ⊗ g2(zt2)

for some z1, z2 ∈M1n(F); moreover, x2 ∈ U1 or x2 ∈ U2. By (iii) of Proposition 1, we know that {x1, x2} is

linearly dependent or {g1(zt1), g2(zt2)} is linearly dependent. In case x2 ∈ U1, {x1, x2} is linearly dependent,

which is impossible; for another, if {x1, x2} is linearly dependent, then the 2-position of x2 is not equal to

zero and forces the second row of the right hand side of (3.12) is not zero, which is a contradiction. Therefore,

{x1, x2} is linearly independent and then {x1, . . . , xn} is linearly independent.

Furthermore, gi is a bijective additive map on V ti−1 for all i ∈ {1, . . . , n} by applying (3.7), (3.9), (3.11)

and the fact that {x1, . . . , xn} is linearly independent. The proof of (i) is complete.

It implies from (3.8) and (3.10) that (ii) holds.
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Now, we are ready to present our main result.

Theorem 12. Let ϕ be a surjective additive map on Hn(F). Then ϕ preserves rank-1 matrices if and

only if there exist a field automorphism θ on F and nonsingular P ∈ Hu
n(F) and Q ∈ Hd

n(F) such that

ϕ(A) = PAθQ for all A ∈ Hn(F) or ϕ(A) = P (Aθ)∼Q for all A = (aij) ∈ Hn(F), where Aθ =
(
θ(aij)

)
.

Proof. The sufficient part is clear. We prove only the necessary part. Assume that ϕ preserves rank-1

matrices. By Lemma 8, which can be written as follows:

(i) there exist s1, rn ∈ {1, . . . , n} with s1 ≤ 2 and rn ≥ n− 1, nonzero elements x1 ∈ Us1 and vn ∈ V trn
and injective additive maps g1, cn on Mn1(F) such that

ϕ(e1 ⊗ z) = x1 ⊗ g1(z) for all z ∈Mn1(F)

and ϕ(z ⊗ en) = cn(z)⊗ vn for all z ∈Mn1(F), or

(ii) there exist pn, q1 ∈ {1, . . . , n} with pn ≤ 2 and q1 ≥ n− 1, nonzero elements un ∈ Upn and y1 ∈ V tq1
and injective additive maps d1, hn on Mn1(F) such that

ϕ(e1 ⊗ z) = d1(z)⊗ y1 for all z ∈Mn1(F)

and ϕ(z ⊗ en) = un ⊗ hn(z) for all z ∈Mn1(F).

Case 1: Assume that (i) holds. Lemma 11 yields that the sets {x1, . . . , xn} and {v1, . . . , vn} are linearly

independent, where x1, x2 ∈ U1 ∪ U2, xi ∈ Ui for all i ∈ {3, . . . , n}, vi ∈ V ti for all i ∈ {1, . . . , n − 2}
and vn−1, vn ∈ V tn−1 ∪ V tn. Furthermore, gi and ci are also bijective additive maps on V ti−1 and on Ui+1,

respectively, for all i ∈ {1, . . . , n}.

Let X =

 | |
x1 . . . xn
| |

 and Y =

 vt1
...

vtn

. Then X ∈ Hu
n(F) which is nonsingular and

Xei = xi for all i. Put P1 = X−1. Then ei = P1xi for all i and P1 ∈ Hu
n(F). Similarly, Y ∈ Hd

n(F) which is

nonsingular and eiY = vti for all i. Put Q1 = Y −1. Then ei = vtiQ1 for all i and Q1 ∈ Hd
n(F).

Let ϕ1 : Hn(F) → Mn(F) be defined by ϕ1(X) = P1ϕ(X)Q1 for all X ∈ Hn(F). Then P1ϕ(X)Q1 ∈
Hn(F) for all X ∈ Hn(F), i.e., ϕ1 : Hn(F) → Hn(F) from Proposition 5. In fact, ϕ1 is a surjective additive

rank-1 preserver obtained from ϕ. Fix i ∈ {1, . . . , n}. For each z ∈ Mn1(F) with ei ⊗ z ∈ Hn(F), by

applying (3.9) in the proof of Lemma 11, we obtain that

ϕ1(ei ⊗ z) = P1ϕ(ei ⊗ z)Q1 = P1

(
xi ⊗ gi(z)

)
Q1 = ei ⊗Qt1gi(z),

similarly, ϕ1(z ⊗ ei) = P1ϕ(z ⊗ ei)Q1 = P1

(
ci(z) ⊗ vi

)
Q1 = P1

(
ci(z)

)
⊗ ei. Let ψi(z) = Qt1gi(z), where

z ∈ V ti−1 when V t0 = Mn1(F), and φi(z) = P1

(
ci(z)

)
, where z ∈ Vi+1 when Un+1 = M1n(F). Then ψi and φi

are bijective additive maps on V ti−1 and on Ui+1, respectively, for all i by the virtue of gi and ci, respectively.

Let c ∈ F and i, j ∈ {1, . . . , n} with i ≤ j + 1. Since

ei ⊗ ψi(cej) = ϕ1(ei ⊗ cej) = ϕ1(cei ⊗ ej) = φj(cei)⊗ ej ,

it follows that there exists αij(c) ∈ F\{0} such that ψi(cej) = αij(c)ej owing to (ii) of Proposition 1. Besides,

αij : F→ F is a bijective additive map.

As a result, ϕ1(cEij) = αij(c)Eij for any c ∈ F and i, j such that i ≤ j + 1, where αij(c) ∈ F\{0}.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 35, pp. 24-34, January 2019.

33 Surjective Additive Rank-1 Preservers on Hessenberg Matrices

Let ϕ2 : Hn(F)→ Hn(F) be defined by ϕ2(X) = P2ϕ1(X)Q2 for all X ∈ Hn(F), where

Q2 = diag
(
α1n(1)α11(1)−1, . . . , α1n(1)α1n(1)−1

)
, P2 = diag

(
α1n(1)−1, . . . , αnn(1)−1

)
and αij(1)−1 is the inverse of αij(1) for all i, j. Then ϕ2 is a surjective additive rank-1 preserver on Hn(F).

Furthermore,

ϕ2(cEij) = βij(c)Eij , where βij(c) = αij(c)αin(1)−1α1n(1)α1j(1)−1.

For each k ∈ {1, . . . , n}, we know that ϕ2(E1k) = E1k and ϕ2(Ekn) = Ekn. Hence,

(3.13) β1k(1) = 1 = βkn(1) for all k.

In addition, it can be shown similarly that βij is a bijective additive map on F.

Next, let c ∈ F. We claim that β1j(c) = β1n(c) = βin(c) for all i, j ∈ {1, . . . , n}. Without loss of

generality, since cE1j +cE1n+Eij +Ein ∈ Ω and ϕ2 is an additive rank-1 preserver, β1j(c)E1j +β1n(c)E1n+

βij(1)Eij + βin(1)Ein ∈ Ω. We obtain β1n(c)βij(1) = β1j(c)βin(1) = β1j(c) by (3.13). In particular, letting

c = 1 implies βij(1) = 1. Hence, β1n(c) = β1j(c) for all j. Similarly, βin(c) = β1n(c) for all i.

In addition, by using the same argument as above, we obtain that βpq(c) = β1n(c) for all p, q ∈ {1, . . . , n}.
Put θ = β1n. Then θ is a bijective additive map on F such that for all i, j ∈ {1, . . . , n}, we get

ϕ2(cEij) = βij(c)Eij = β1n(c)Eij = θ(c)Eij .

Besides, θ(ab) = θ(a)θ(b) for all a, b ∈ F, and hence, θ is a field automorphism on F.

Now, for each i, j ∈ {1, . . . , n}, we know that ϕ(cEij) = Pθ(c)EijQ, where P = XP−1
2 and Q = Q−1

2 Y .

Hence, for each A ∈ Hn(F), we obtain that ϕ(A) = ϕ
(∑

cijEij

)
=
∑
Pθ(cij)EijQ = P

(∑
θ(cij)Eij

)
Q =

PAθQ, where Aθ =
(
θ(aij)

)
.

Case 2: Assume that (ii) holds. By properties of the ∼ of any matrices and making use of Case 1, there

exist P ∈ Hu
n(F) and Q ∈ Hd

n(F) such that ϕ(A) =
(
PAθQ

)∼
= Q∼(Aθ)∼P∼, where Q∼ ∈ Hu

n(F) and

P∼ ∈ Hd
n(F).

Corollary 13. Let ϕ be a surjective additive map on Hn(F). Then ϕ is a rank preserver if and only if

there exist a field automorphism θ on F and nonsingular P ∈ Hu
n(F) and Q ∈ Hd

n(F) such that ϕ(A) = PAθQ

for all A ∈ Hn(F) or ϕ(A) = P (Aθ)∼Q for all A = (aij) ∈ Hn(F), where Aθ =
(
θ(aij)

)
.

Finally, we would like to compare our main result, Theorem 12, and Theorem 3.23 in [5] which provided

the structure of linear rank-1 preservers on Hn(F) as follows:

If T is a linear map on Hn(F) preserving rank-1 matrices, then

(i) ImT is an n-dimensional rank-1 subspace, or

(ii) there exist nonsingular upper Hessenberg matrices X and Y such that T (A) = XAY for all
A ∈ Hn(F), or T (A) = XA∼Y for all A ∈ Hn(F).

Suppose that T is a surjective linear rank-1 preservers on Hn(F). Then T is also a surjective additive

rank-1 preservers on Hn(F). By making use of Theorem 12, there exists a field automorphism θ on F such

that T (A) = PAθQ or T (A) = P (Aθ)∼Q. On the other hand, T (A) = XAY or T (A) = XA∼Y . In fact,

this θ is the identity map on F.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 35, pp. 24-34, January 2019.

Prathomjit Khachorncharoenkul and Sajee Pianskool 34

Acknowledgments. The first author was partially supported by The 90th Anniversary of Chulalongkorn

University Fund (Ratchadaphiseksomphot Endowment Fund), Thailand. Moreover, the authors would like

to thank the referees for helpful comments.

REFERENCES

[1] C.G. Cao and X. Zhang. Additive rank-one preserving surjections on symmetric matrix spaces. Linear Algebra and its

Applications, 362:145–151, 2003.

[2] C.G. Cao and X. Zhang. Additive surjections preserving rank one and applications. Georgian Mathematical Journal,

11:209–217, 2004.

[3] W.L. Chooi and M.H. Lim. Linear preservers on triangular matrices. Linear and Multilinear Algebra, 269:241–255, 1998.

[4] G.H. Golub and C.F. Van Loan. Matrix Computations, third edition. Johns Hopkins University Press, Baltimore, 1996.

[5] P. Khachorncharoenkul and S. Pianskool. Rank-1 preservers on Hessenberg matrices. Linear and Multilinear Algebra,

62:96–113, 2014.

[6] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical Recipes in C: The Art of Scientific Computing,

second edition. Cambridge University Press, Cambridge, 1992.

[7] X. Zhang and N.S. Sze. Additive rank-one preservers between spaces of rectangular matrices. Linear and Multilinear

Algebra, 53:417–425, 2005.


