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SOLVING THE SYLVESTER EQUATION AX −XB = C WHEN σ(A) ∩ σ(B) 6= ∅ ∗

NEBOJŠA Č. DINČIĆ†

Abstract. The method for solving the Sylvester equation AX−XB = C in the complex matrix case, when σ(A)∩σ(B) 6= ∅,
by using Jordan normal form, is given. Also, the approach via the Schur decomposition is presented.
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1. An introduction. The Sylvester equation

(1.1) AX −XB = C,

where A ∈ Cm×m, B ∈ Cn×n and C ∈ Cm×n are given, and X ∈ Cm×n is an unknown matrix, is a

very popular topic in linear algebra, with numerous applications in control theory, signal processing, image

restoration, engineering, solving ordinary and partial differential equations, etc. It is named for famous

mathematician J. J. Sylvester, who was the first to prove that this equation in matrix case has unique

solution if and only if σ(A) ∩ σ(B) = ∅ [17]. One important special case of the Sylvester equation is the

continuous-time Lyapunov matrix equation (AX +XA∗ = C).

In 1952, Roth [15] proved that for operators A,B on finite-dimensional spaces

[
A C

0 B

]
is similar to[

A 0

0 B

]
if and only if the equation AX − XB = C has a solution X. Rosenblum [14] proved that if A

and B are operators such that σ(A) ∩ σ(B) = ∅, then the equation AX −XB = Y has a unique solution X

for every operator Y . If we define the linear operator T on the space of operators by T (X) = AX −XB,
the conclusion of the Rosenblum theorem can be restated: T is invertible if σ(A) ∩ σ(B) = ∅. Kleinecke

showed that when A and B are operators on the same space and σ(A) ∩ σ(B) 6= ∅, then the operator T is

not invertible, see [14]. For the exhaustive survey on these topics, please see [2] and [18] and the references

therein. In recent paper of Li and Zhou [12], an extensive review of literature can be found, with a brief

classification of existing methods for solving the Sylvester equation.

Drazin [6] recently gave another equivalent condition.

Theorem 1.1. [6] For any field F , any r, s ∈ N and any square matrices A ∈Mr(F ), B ∈Ms(F ) whose

eigenvalues all lie in F , the following three properties of the pair A,B are equivalent:

i) for any given polynomials f, g ∈ F [t], there exists h ∈ F [t] such that f(A) = h(A) and g(B) = h(B);

ii) A and B share no eigenvalue in common;

iii) for r × s matrices X over F , AX = XB ⇒ X = 0.
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We recall some results where the solution to the Sylvester equation is given in various forms.

Proposition 1.2. ([2, p. 9]) Let A and B be operators such that σ(B) ⊂ {z : |z| < ρ} and σ(A) ⊂ {z :

|z| > ρ} for some ρ > 0. Then the solution of the equation AX −XB = Y is

X =

∞∑
n=0

A−n−1Y Bn.

We will often use the following special form of the previous result.

Proposition 1.3. In the complex matrix case, the Sylvester equation AX − XB = C is consistent if

and only if σ(A) ∩ σ(B) = ∅ and the solution is given by

X = A−1 ·
∞∑
k=0

A−kCBk

for invertible A, and by

X = −
∞∑
k=0

AkCB−k ·B−1

for invertible matrix B.

Proposition 1.4. [9] Let A and B be operators whose spectra are contained in the open right half plane

and the open left half plane, respectively. Then the solution of the equation AX −XB = Y can be expressed

as

X =

∫ ∞
0

e−tAY etBdt.

Proposition 1.5. [14] Let Γ be a union of closed contours in the plane, with total winding numbers 1

around σ(A) and 0 around σ(B). Then the solution of the equation AX −XB = Y can be expressed as

X =
1

2πi

∫
Γ

(A− ζ)−1Y (B − ζ)−1dζ.

Solving the Sylvester equation in the case when σ(A) ∩ σ(B) 6= ∅ is rather complicated and is not

thoroughly studied yet. According to [3], only Ma [13], and Datta and Datta [4] treated the particular

cases when B(= A) has only simple eigenvalues or C = 0 and B(= AT ) are unreduced Hessenberg matrices,

respectively. In the paper [3], two special cases, when both A and B are symmetric or skew-symmetric

matrices, were considered, by using the notion of the eigenprojection.

In [11], it is shown that in the case σ(A) ∩ σ(B) = ∅ (A ∈ Rm×m, B ∈ Rn×n), the solution of the

Sylvester equation is X = q(A)−1η(A,C,B), which is a polynomial in the matrices A,B and C. Also, it

is shown that when σ(A) ∩ σ(B) 6= ∅, the solution set is contained in that of the linear algebraic equation

q(A)X = η(A,C,B). Recall that q(s) = sn + βn−1s
n−1 + · · · + β1s + β0 is the characteristic polynomial of

B and η(A,C,B) =
∑n
k=1 βkη(k − 1, A,C,B), where η(k,A,C,B) =

∑k
i=0A

k−iCBi.

In [5], the equation AX −X?B = 0 is considered by using the Kronecker canonical form of the matrix

pencil A+ λB?, where X? denotes either transpose or the conjugate transpose of X.

Recently, Li and Zhou [12] used the method based on spectral decompositions of the matrices A and B.

Note that this method also works in the case when spectra of A and B are not disjoint.
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In the paper [18], homogeneous and nonhomogeneous Sylvester-conjugate matrix equation of the forms

AX +BY = XF and AX +BY = XF +R are considered.

In this paper, we are dealing with the Sylvester equation in complex matrix case, when σ(A)∩σ(B) 6= ∅.
Because the operator T (X) = AX−XB is not invertible in this case, as Kleinecke showed, we must find the

consistency condition, and general solution in the case of consistency. We will use the Jordan normal form for

the matrices A and B (similar method as Gantmacher used in [7, Ch. VIII], but for homogeneous case only!),

so the Sylvester equation will become the set of the simpler equations of the form Jm(λ)Z − ZJn(µ) = W,

where W ∈ Cm×n is given matrix, Z ∈ Cm×n is unknown matrix, and λ, µ are complex numbers. In the

paper, we are dealing mainly with such simpler equations, discussing the consistency condition and describing

the algorithm for finding the general solution. Finally, we give the result characterizing the most general

case, as well as the approach via Schur decomposition.

2. Reducing the problem to the most elementary equations. Let the matrices A ∈ Cm×m and

B ∈ Cn×n be given, and suppose that W = σ(A)∩σ(B) = {λ1, . . . , λs} 6= ∅. It is a well-known fact (see e.g.,

[10]) that any square complex matrix can be reduced to the Jordan canonical form. Therefore, there exist

regular matrices S ∈ Cm×m and T ∈ Cn×n such that A = SJAS
−1 and B = TJBT

−1, or, more precisely,

(2.2) A = S

[
JA1 0

0 JA2

]
S−1, B = T

[
JB1 0

0 JB2

]
T−1,

where JA1
(respectively, JB1

) consists of just those Jordan matrices corresponding to the eigenvalues from

the σ(A) \W (respectively, σ(B) \W ), and JA2 and JB2 are those Jordan matrices corresponding to the

eigenvalues from the set W :

JA2 = diag{J(λ1; p11, p12, . . . , p1,k1), . . . , J(λs; ps1, ps2, . . . , ps,ks)},
JB2

= diag{J(λ1; q11, q12, . . . , q1,`1), . . . , J(λs; qs1, qs2, . . . , qs,`s)}.

Here pij , j = 1, ki, i = 1, s, and qij , j = 1, `i, i = 1, s, are natural numbers, and ki and `i are geometric

multiplicities of the eigenvalue λi, i = 1, s, of A and B, respectively; their algebraic multiplicities are given

by mi = pi1 + pi2 + · · ·+ pi,ki and ni = qi1 + qi2 + · · ·+ qi,`i , where i = 1, s. We will use the notation

J(λ; t1, . . . , tk) = diag{Jt1(λ), . . . , Jtk(λ)} = Jt1(λ)⊕ · · · ⊕ Jtk(λ),

where Jti(λ), i = 1, k, is the Jordan block

Jti(λ) =


λ 1 0 · · · 0 0

0 λ 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · λ 1

0 0 0 · · · 0 λ


ti×ti

.

Recall that a matrix A is called non-derogatory if every eigenvalue of A has geometric multiplicity 1, if and

only if corresponding to each distinct eigenvalue is exactly one Jordan block [10, p. 135].

If we substitute (2.2) in (1.1), and denote S−1XT = Y and S−1CT = D, the equation becomes

(2.3)

[
JA1 0

0 JA2

]
Y − Y

[
JB1 0

0 JB2

]
= D.
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We will partition the matrices Y = [Yij ]2×2 and D = [Dij ]2×2 in accordance with the partition of JA and

JB . Now (2.3) becomes:[
JA1 0

0 JA2

] [
Y11 Y12

Y21 Y22

]
−
[
Y11 Y12

Y21 Y22

] [
JB1

0

0 JB2

]
=

[
D11 D12

D21 D22

]
,

which reduces to the following four simpler Sylvester equations:

JA1
Y11 − Y11JB1

= D11,

JA1Y12 − Y12JB2 = D12,

JA2
Y21 − Y21JB1

= D21,

JA2
Y22 − Y22JB2

= D22.

By Proposition 1.3, the first three equations have the unique solutions, because σ(A1)∩σ(B1) = ∅, σ(A1)∩
σ(B2) = ∅, σ(A2) ∩ σ(B1) = ∅, given by the appropriate power series. The fourth equation does not have a

unique solution (when it is consistent), because σ(A2) ∩ σ(B2) = W 6= ∅, so we turn our attention to this

case.

Therefore, throughout the paper, we can, without loss of generality, consider the Sylvester equation in

the form AX −XB = C, where A and B are square complex matrices (in general of different size) already

reduced to their Jordan forms and such that σ(A) = σ(B).

If we partition X = [Xij ]s×s and C = [Cij ]s×s in accordance with already given decompositions for A

and B, and put them in the equation AX −XB = C, we have s2 simpler Sylvester equations of the form:

(2.4) J(λi; pi1, . . . , pi,ki)Xij −XijJ(λj ; qj1, . . . , qj,`j ) = Cij , i, j = 1, s.

For i 6= j we have σ(J(λi; pi1, . . . , pi,ki)) = {λi} 6= {λj} = σ(J(λj ; qj1, . . . , qj,`j )), and by Proposition 1.3,

this case also has the unique solution. Therefore, among s2 equations in (2.4) there are s2 − s of them

which are uniquely solvable, and remaining s equations (for i = j) after appropriate translation reduce to∑s
i=1(ki · `i) simple Sylvester equations of the form

Jpi,u(0)X(ii)
u,v −X(ii)

u,v Jqi,v (0) = C(ii)
u,v , u = 1, ki, v = 1, `i, i = 1, s.

Because of that, we will investigate this important particular case in detail.

2.1. Solving the equation Jm(0)X − XJn(0) = C. From the previous consideration, we see that

Jordan matrices play important role in the paper. Recall that multiplying some matrix C ∈ Cm×n by the

Jordan block (or transposed Jordan block) corresponding to 0 acts like shifting the rows (or columns) and

inserting a row (or a column) of all zeros where it is necessary: Jm(0)C shifts up, CJn(0) shifts to the right,

JTm(0)C shifts down, while CJTn (0) shifts to the left. More precisely, the following Lemma holds.

Lemma 2.1. For given matrix C = [cij ] ∈ Cm×n we have:

i) [Jm(0)C]ij =

{
ci+1,j , i = 1,m− 1,

0, i = m.

ii) [CJn(0)]ij =

{
ci,j−1, j = 2, n,

0, j = 1.

iii) [Jm(0)TC]ij =

{
ci−1,j , i = 2,m,

0, i = 1.
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iv) [CJn(0)T ]ij =

{
ci,j+1, j = 1, n− 1,

0, j = n.

Moreover, for α = 0,m− 1 and β = 0, n− 1,

v) [Jm(0)αCJn(0)β ]ij =

{
ci+α,j−β , i = 1,m− α and j = β + 1, n,

0, i = m− α+ 1,m or j = 1, β.

vi) [(Jm(0)T )αCJn(0)β ]ij =

{
ci−α,j−β , i = α+ 1,m and j = β + 1, n,

0, i = 1, α or j = 1, β.

Example 2.2. We consider the case A = J4(0), B = J3(0), i.e., the equation

(2.5) J4(0)X −XJ3(0) = C.

Because of σ(A) = σ(B) = {0} we expect no unique solution. Let us see for which C there are solutions,

and then let us characterize all of them. The matrix equation (2.5) (with C = [cij ], X = [xij ] ∈ C4×3) gives

us the following linear system:

x21 = c11, x22 − x11 = c12, x23 − x12 = c13,

x31 = c21, x32 − x21 = c22, x33 − x22 = c23,

x41 = c31, x42 − x31 = c32, x43 − x32 = c33,

0 = c41, −x41 = c42, −x42 = c43.

We see that some conditions must be imposed to the entries of the matrix C: c41 = 0, c31 + c42 = 0,

c21 + c32 + c43 = 0. Therefore, any matrix C for which the equation (2.5) is consistent is of the form:

C =


c11 c12 c13

c21 c22 c23

c31 c32 c33

0 −c31 −c21 − c32

 .
The solutions of (2.5) are

X =


x11 x12 x13

c11 x11 + c12 x12 + c13

c21 c11 + c22 x11 + c12 + c23

c31 c21 + c32 c11 + c22 + c33

 ,
where x11, x12, x13 are arbitrary complex numbers. We can rewrite this general solution X in the following

more informative form:
x11 x12 x13

0 x11 x12

0 0 x11

0 0 0

+


0 0 0

c11 c12 c13

c21 c22 c23

c31 c32 c33

+


0 0 0

0 0 0

0 c11 c12

0 c21 c22

+


0 0 0

0 0 0

0 0 0

0 0 c11

 .
By Lemma 2.1, we can express this as:

X =

[
p2(J3(0))

01×3

]
+ J4(0)T

2∑
k=0

(
J4(0)T

)k
CJ3(0)k,

where p2(J3(0)) = x11I3 + x12J3(0) + x13J3(0)2 is arbitrary polynomial of the matrix J3(0), with complex

coefficients in general, and the degree at most 2.
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This example motivates us to prove general result concerning this topic.

Theorem 2.3. The Sylvester equation

(2.6) Jm(0)X −XJn(0) = C,

when m ≥ n, is consistent if and only if

(2.7)

n−1∑
k=0

Jm(0)m−1−kCJn(0)k = 0,

or, equivalently,

(2.8)

p−1∑
k=0

cm−k,p−k = 0, p = 1, n,

and its general solution (which depends on n complex parameters) is given as

(2.9) X =

[
pn−1(Jn(0))

0(m−n)×n

]
+ Jm(0)T

n−1∑
k=0

(
Jm(0)T

)k
CJn(0)k,

where pn−1 is an arbitrary polynomial of the degree at most n− 1.

Proof. First, we show that the conditions (2.7) and (2.8) are equivalent. Let us denote S =
∑n−1
k=0 Sk

where Sk = Jm(0)m−1−kCJn(0)k, k = 0, n− 1. By Lemma 2.1.v), for α = m− k − 1 and β = k, we have

[Sk]ij =

{
ci+m−1−k,j−k, i = 1, k + 1 and j = k + 1, n,

0, i = k + 2,m or j = 1, k.

It is easy to see that [Sk]ij = 0 for i > j and [Sk]ij = [Sk+1]i+1,j+1; therefore, it is enough to consider only

the first row (or n−th column). We have

[Sk]1j =

{
cm−k,j−k, j = k + 1, n,

0, j = 1, k.

Therefore,

[S]1j =

n−1∑
k=0

[Sk]1j =

j−1∑
k=0

cm−k,j−k, k = 1, n.

Note that the summation index is changed to k = 0, j − 1 because of k + 1 ≤ j ≤ n and 0 ≤ k ≤ n − 1.

Hence, we proved (2.7)⇔ (2.8).

(⇒) : Suppose that the equation (2.6) is consistent, which means for some Ĉ there is X̂ such that

Jm(0)X̂ − X̂Jn(0) = Ĉ. We have:

n−1∑
k=0

Jm(0)m−1−kĈJn(0)k =

n−1∑
k=0

Jm(0)m−1−k(Jm(0)X̂ − X̂Jn(0))Jn(0)k

=

n−1∑
k=0

Jm(0)m−kX̂Jn(0)k −
n−1∑
k=0

Jm(0)m−1−kX̂Jn(0)k+1

= Jm(0)mX̂ + Jm(0)m−1X̂Jn(0) + · · ·+ Jm(0)m−n+1X̂Jn(0)n−1

− Jm(0)m−1X̂Jn(0)− · · · − Jm(0)m−n+1X̂Jn(0)n−1 − Jm(0)m−nX̂Jn(0)n

= Jm(0)mX̂ − Jm(0)m−nX̂Jn(0)n = 0,
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so the consistency condition (2.7) holds.

(⇐) : Now we prove, by immediate checking, that X given by (2.9) is indeed the solution under the

consistency condition (2.7). Because of

Jm(0)

[
pn−1(Jn(0))

0(m−n)×n

]
−

[
pn−1(Jn(0))

0(m−n)×n

]
Jn(0)

=

[
Jn(0) ∗

0 Jm−n(0)

][
pn−1(Jn(0))

0(m−n)×n

]
−

[
pn−1(Jn(0))

0(m−n)×n

]
Jn(0)

=

[
Jn(0) pn−1(Jn(0))

0(m−n)×n

]
−

[
pn−1(Jn(0)) Jn(0)

0(m−n)×n

]
= 0m×n,

(by “∗” we denoted some submatrix which is not important now) we have:

Jm(0)X −XJn(0)− C = Jm(0)Jm(0)T
n−1∑
k=0

(
Jm(0)T

)k
CJn(0)k

−Jm(0)T
n−1∑
k=0

(
Jm(0)T

)k
CJn(0)kJn(0)− C

= Jm(0)Jm(0)TC +
(
Jm(0)(Jm(0)T )2 − Jm(0)T

)
CJn(0)

+ · · ·+
(
Jm(0)(Jm(0)T )n − (Jm(0)T )n−1

)
CJn−1

n (0)

=
(
Jm(0)Jm(0)T − Im

)(n−1∑
k=0

(Jm(0)T )kCJn(0)k

)
+ C − C = 0.

Indeed, let us denote Tk = (Jm(0)T )kCJn(0)k, k = 0, n− 1, and T =
∑n−1
k=0 Tk.

By Lemma 2.1.vi), for α = β = k, we have:

[Tk]ij =

{
ci−k,j−k, i = k + 1,m and j = k + 1, n,

0, i = 1, k or j = 1, k.

If we obtain that all entries in the m−th row of matrix T are zero, we have the proof. We proceed:

[Tk]mj = [(Jm(0)T )kCJn(0)k]mj =

{
cm−k,j−k, j = k + 1, n,

0, j = 1, k,

and therefore,

[T ]mj =

n−1∑
k=0

[Tk]mj =

j−1∑
k=0

cm−k,j−k, j = 1, n.

Note that again the summation index is changed to k = 0, j − 1 because of k+ 1 ≤ j ≤ n and 0 ≤ k ≤ n− 1.

The condition (2.7), or equivalently (2.8), ensures that [T ]mj = 0, j = 1, n, so X given by (2.9) is, under

the condition (2.7), or equivalently (2.8), indeed the solution, so the equation (2.6) is consistent.

Remark 2.4. For the given matrix C ∈ Cm×n, m ≥ n, the set of its entries cij such that i− j = m− p
for given p = 1, n will be called p−th small subdiagonal of matrix C. The condition (2.8) actually means that
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the sum over each of n small subdiagonals must be zero, which is easy to check. However, for constructing

the solutions of the more general Sylvester equations from the most simple ones, the condition (2.7) is more

appropriate.

We remark that the particular solution in (2.9),

Xp = Jm(0)T
n−1∑
k=0

(
Jm(0)T

)k
CJn(0)k,

is completely determined by the matrix C, more precisely, by the “independent” part of C (upper (m−1)×n
submatrix), and it can be expressed in equivalent, but for computational purposes more practical form as:

[Xp]ij =


0, i = 1,

min{i−1,j}−1∑
k=0

ci−1−k,j−k, i = 2,m.

Let us step away a bit, and consider solving the equation (2.6) by the well-known Kronecker product

method. We recall the vectorization operator vec given by

vec : Cm×n → Cmn, vec(A) = vec([aij ]) = [a•1 a•2 · · · a•n]T ,

where a•k denotes the k−th column of the matrix A. Also, recall that the Kronecker product of A ∈ Cm×n

and B ∈ Cp×q is mp× nq block matrix

A⊗B = [aijB]m×n.

If we solve the equation Jm(0)X − XJn(0) = C, m ≥ n, by using the well-known method with the

operator vec and the Kronecker product, we have

(2.10) (In ⊗ Jm(0)− Jn(0)T ⊗ Im) vec(X) = vec(C);

this linear system is consistent if and only if

r([In ⊗ Jm(0)− Jn(0)T ⊗ Im, C]) = r(In ⊗ Jm(0)− Jn(0)T ⊗ Im).

The system (2.10) in matrix form (zero submatrices are omitted) is:

Jm(0)

−Im Jm(0)

−Im
. . .

. . .

−Im Jm(0)

−Im Jm(0)




X•1
X•2

...

X•n

 =


C•1
C•2

...

C•n

 ,

i.e.,

Jm(0)X•1 = C•1, Jm(0)X•2 = C•2 +X•1, . . . , Jm(0)X•n = C•n +X•(n−1).
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We can infer the consistency condition in the following way:

0 = Jm(0)mX•n = Jm(0)m−1(Jm(0)X•n) = Jm(0)m−1(C•n +X•(n−1))

= · · · =
n∑
k=1

Jm(0)m−n−1+kC•k.

We shall not pursue this approach further, because the obtained matrix of the system is an mn×mn sparse

matrix, and for the consistency of the equation we need to check rank conditions and to use some generalized

inverses.

For Example 2.2, where m = 4, n = 3, the previous formula gives:

0 =

3∑
k=1

J4(0)kC•k =


c21

c31

c41

0

+


c32

c42

0

0

+


c43

0

0

0

 ,
which is in accordance with the conclusion from Example 2.2.

We return to the main flow of the paper.

Theorem 2.5. The Sylvester equation

(2.11) Jm(0)X −XJn(0) = C,

when m ≤ n, is consistent if and only if

(2.12)

m−1∑
k=0

Jm(0)kCJn(0)n−1−k = 0,

and its general solution is

(2.13) X =
[

0m×(n−m) qm−1(Jm(0))
]
−
m−1∑
k=0

Jm(0)kC
(
Jn(0)T

)k
Jn(0)T ,

where qm−1 is an arbitrary polynomial of the degree at most m− 1.

Proof. If we take transpose of the original equation (2.11), and then multiply it by −1, we have

Jn(0)TXT −XTJm(0)T = −CT ,

which is similar, but not the same as the equation (2.6), so we cannot directly apply Theorem 2.3. But if

we notice that for any k ∈ N

Jk(0)T = P−1
k Jk(0)Pk, where Pk = P−1

k =


0 0 · · · 0 1

0 0 · · · 1 0
...

...
...

...

0 1 · · · 0 0

1 0 · · · 0 0


k×k



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 35, pp. 1-23, January 2019.
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is so-called exchange matrix, the equation becomes

PnJn(0)TXTPm − PnXTJm(0)TPm = −PnCTPm,
⇔ PnJn(0)TPnPnX

TPm − PnXTPmPmJm(0)TPm = −PnCTPm,
⇔ Jn(0)Y − Y Jm(0) = D,

where PnX
TPm = Y and −PnCTPm = D. Only now we can apply Theorem 2.3 to the equation Jn(0)Y −

Y Jm(0) = D. We have the consistency condition (2.12) because of

0 =

m−1∑
k=0

Jn(0)n−k−1DJm(0)k = −
m−1∑
k=0

Jn(0)n−1−kPnC
TPmJm(0)k

= −Pn

(
m−1∑
k=0

(PnJn(0)Pn)n−1−kCT (PmJm(0)Pm)k

)
Pm

= −Pn

(
m−1∑
k=0

(Jn(0)T )n−1−kCT (Jm(0)T )k

)
Pm

= −Pn

(
m−1∑
k=0

Jm(0)kCJn(0)n−k−1

)T
Pm.

General solution of Jn(0)Y − Y Jm(0) = D is, by Theorem 2.3:

Y =

[
pm−1(Jm(0))

0(n−m)×m

]
+

n−1∑
k=0

(
Jn(0)T

)k+1
DJm(0)k.

By the substitutions X = (PnY Pm)T , D = −PnCTPm, we have the solution (2.13):

X = Pm[pm−1(Jm(0)T ) 0m×(n−m)]Pn + Pm

m−1∑
k=0

(Jm(0)T )kDTJn(0)k+1Pn

= Pm[pm−1(Jm(0)T ) 0m×(n−m)]

[
0 Pm

Pn−m 0

]
−
m−1∑
k=0

Pm(Jm(0)T )k(PmCPn)Jn(0)k+1Pn

= Pm[0m×(n−m) pm−1(Jm(0)T )]Pm −
m−1∑
k=0

(PmJm(0)TPm)kC(PnJn(0)Pn)k+1

= [0m×(n−m) pm−1(Jm(0))]−
m−1∑
k=0

Jm(0)kC(Jn(0)T )k+1.

The condition (2.12) actually means that the sum of elements over each of m small subdiagonals (cij , i−
j = p− 1, where p = 1,m) must be zero. We also remark that the particular solution in (2.13),

Xp = −
m−1∑
k=0

Jm(0)kC
(
Jn(0)T

)k
Jn(0)T ,

is completely determined by the matrix C, more precisely, by the “independent” part of C (rightmost

m × (n − 1) submatrix), and it can be expressed in equivalent, but for computational purposes, a more
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practical form as:

[Xp]ij =

 −
min{m−i,n−1−j}∑

k=0

ci+k,j+1+k, j = 1, n− 1,

0, j = n.

Corollary 2.6. The homogeneous Sylvester equation

Jm(0)X = XJn(0)

is consistent and its general solution is

X =


[
pn−1(Jn(0))

0(m−n)×n

]
, m ≥ n,[

0m×(n−m) pm−1(Jm(0))
]
, m ≤ n.

where pn−1 is an arbitrary polynomial of the degree at most n− 1. The rank of the solution X is given by

r(X) = r(ps−1(Js(0))) = s− min
k=0,s−1

{k : p
(k)
s−1(0) 6= 0}, s = min{m,n}.

Corollary 2.7. All matrices commuting with Jm(0) are given by X = pm−1(Jm(0)). Any polynomial

such that pm−1(0) 6= 0 gives a nonsingular X. Also

σ(X) = {pm−1(0)}.

From Theorem 2.3 and Theorem 2.5 in the case m = n, we have the following result.

Corollary 2.8. The Sylvester equation

Jn(0)X −XJn(0) = C,

is consistent if and only if

n−1∑
k=0

Jn(0)kCJn(0)n−1−k =

n−1∑
k=0

Jn(0)n−1−kCJn(0)k = 0,

and its general solution is

X = pn−1(Jn(0))−
n−2∑
k=0

Jn(0)kC
(
Jn(0)T

)k+1

= qn−1(Jn(0)) +

n−2∑
k=0

(
Jn(0)T

)k+1
CJn(0)k,

where pn−1 and qn−1 are arbitrary polynomials of the degree at most n− 1.

2.2. Solving the equation Jm(λ)X −XJn(µ) = C for λ, µ ∈ C. If we observe that Jk(λ) = λIk +

Jk(0), k ∈ N, the equation

(2.14) Jm(λ)X −XJn(µ) = C
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becomes

(2.15) (λ− µ)X + Jm(0)X −XJn(0) = C.

Case λ = µ: Reduces to already solved equation (2.6) or (2.11).

Case λ 6= µ: Suppose, without loss of generality, that λ 6= 0. By Proposition 1.3, we have the solution

X = Jm(λ)−1
∞∑
k=0

Jm(λ)−kCJn(µ)k.

We will try to avoid this infinite sum, as well as finding all k−th powers of the inverse of a Jordan matrix.

If we rewrite (2.15) as (Jm(0) + (λ− µ)Im)X −XJn(0) = C, i.e.,

Jm(λ− µ)X −XJn(0) = C,

Jm(λ− µ) is nonsingular, so we have the unique solution by Proposition 1.3.

Theorem 2.9. The Sylvester equation (2.14) for λ 6= µ has the unique solution

X =

n−1∑
k=0

(Jm(λ− µ))−(k+1)CJn(0)k = −
m−1∑
k=0

Jm(0)kC(Jn(µ− λ))−(k+1).

Remark 2.10. Finding the inverses of the powers of nonsingular Jordan blocks appearing in previous

theorem is not hard. Indeed, by using some matrix functional calculus, it is easy to prove that

Jm(α)−k =

m−1∑
s=0

(−1)s
(
k + s− 1

s

)
α−(k+s)Jm(0)s, k ∈ N, α 6= 0.

3. The case when σ(A) = σ(B) = {0}. In this section, we solve the Sylvester equation AX−XB = C

in the case A = diag[Jm1(0), Jm2(0), . . . , Jmp(0)] and B = diag[Jn1(0), Jn2(0), . . . , Jnq (0)], where m1 ≥ m2 ≥
· · · ≥ mp > 0 and n1 ≥ n2 ≥ · · · ≥ nq > 0 and m1 + · · ·+mp = m, n1 + · · ·+ nq = n.

Lemma 3.1. Let A = Jm1
(0)⊕ · · · ⊕ Jmp

(0), m1 ≥ · · · ≥ mp > 0, and define

A〈k〉 := Jm1(0)m1−1−k ⊕ · · · ⊕ Jmp(0)mp−1−k, k = −1,mp − 1.

We have:

i) A〈−1〉 = 0,

ii) A〈k+1〉A = AA〈k+1〉 = A〈k〉, k = −1,mp − 2,

iii) A〈k〉 = I ⇔ (∀i = 1, p) mi = k + 1,

iv) (I ±A〈k〉)−1 = I ∓A〈k〉, k = −1, bmp/2c − 1.

The proof follows by the definition of A〈k〉. Note that from (ii) it particularly follows A〈0〉A = AA〈0〉 = 0

and A〈1〉A = AA〈1〉 = A〈0〉.

Remark 3.2. Recall that J1(0)0 = I1, because of 00 = 1.

In the sequel, Nm denotes the set {1, 2, . . . ,m}.
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Definition 3.3. Let M and N be two disjoint subsets of Nm × Nn such that M ∪N = Nm × Nn. The

matrix mask given by the set M is mapping

ΠM : Cm×n → Cm×n, ΠM (A) = AM ,

which maps any matrix A = [aij ] ∈ Cm×n to the matrix AM whose entries are given by

[AM ]ij =

{
aij , (i, j) ∈M,

0, (i, j) ∈ N.

If A ∈ Cm×n is partitioned on submatrices as A = [Aij ]p×q, and the set M ⊂ Np×Nq is given (therefore, N

is also known), then ΠM (A) = AM , where

[AM ]ij =

{
Aij , (i, j) ∈M,

0, (i, j) ∈ N.

Note that the mapping ΠM is linear and idempotent. Also, when M is known, it means we know N too,

because N is the complement of M . The binary relation described by the set M will frequently be represented

by a matrix also denoted by M , with entries M = [mij ] given as mij = 1 if (i, j) ∈M, mij = 0 if (i, j) ∈ N.
Note that M by construction has upper quasitriangular structure.

The matrix mask method is the subject of another my paper which is still not finished, so we will not

pursue the topic here more than it is necessary.

We will be interested in the case whenA = diag[Jm1
(0), Jm2

(0), . . . , Jmp
(0)] andB = diag[Jn1

(0), Jn2
(0),

. . . , Jnq
(0)] are given and then the sets M and N depend only on the sizes of appropriate Jordan blocks:

(3.16) M = {(i, j) ∈ Np × Nq : mi ≥ nj}, N = {(i, j) ∈ Np × Nq : mi < nj}.

Lemma 3.4. Suppose that A = diag[Jm1
(0), Jm2

(0), · · · , Jmp
(0)] ∈ Cm×m and B = diag[Jn1

(0), Jn2
(0),

· · · , Jnq
(0)] ∈ Cn×n, where m1 ≥ m2 ≥ · · · ≥ mp > 0 and n1 ≥ n2 ≥ · · · ≥ nq > 0 and C ∈ Cm×n. For the

set M ⊂ Np × Nq (equivalently, matrix M ∈ Cp×q) given by (3.16), we have:

i) ((AT )sCBt)M = (AT )sCMB
t, (AsC(BT )t)M = AsCM (BT )t, s, t ∈ N0,

ii) (AC − CB)M = ACM − CMB.

Proof. Suppose C is decomposed in accordance with A and B as C = [Cij ]p×q.

i) The element in the position (i, j) for both left and right hand matrix is the same, namely{
(Jmi

(0)T )sCijJnj
(0)t, (i, j) ∈M,

0, (i, j) ∈ N,

so the equality holds. The second equality is proven analogously.

ii) We have desired equality because the element in the position (i, j) of the left and right hand matrix

is the same: {
Jmi

(0)Cij − CijJnj
(0), (i, j) ∈M,

0, (i, j) ∈ N.

Let us split the matrix C as C = CM + CN , where CM = ΠM (C) and CN = ΠN (C); in the analogous

way X = XM +XN . The reason for such splitting is the fact that solving simple Sylvester equation (2.6) is

different whether m ≥ n or m < n, as shown in Theorem 2.3 and Theorem 2.5.
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Theorem 3.5. Let A = Jm1(0)⊕· · ·⊕Jmp(0), m1 ≥ · · · ≥ mp > 0, and B = Jn1(0)⊕· · ·⊕Jnq (0), n1 ≥
· · · ≥ nq > 0. Suppose M and N to be as in (3.16), CM = ΠM (C), CN = ΠN (C) and d = min{m1, n1}.
The equation AX −XB = C is consistent if and only if

(3.17)

d−1∑
k=0

A〈k〉CMB
k = 0,

d−1∑
k=0

AkCNB
〈k〉 = 0,

or, in more condensed form,

d−1∑
k=0

[
A〈k〉 0

0 Ak

] [
CM 0

0 CN

] [
Bk 0

0 B〈k〉

]
= 0.

The particular solution is given as Xp = XM +XN , where

(3.18) XM =

n1−1∑
k=0

(AT )k+1CMB
k, XN = −

m1−1∑
k=0

AkCN (BT )k+1,

and the solutions of the homogeneous equation AX −XB = 0 are given by

Xh = [Xh
ij ]p×q, Xh

ij =


[
pnj−1(Jnj

(0))

0(mi−nj)×nj

]
, (i, j) ∈M,[

0mi×(nj−mi) pmi−1(Jmi
(0))

]
, (i, j) ∈ N.

Proof. (⇒) : Let X̂ be a solution, so AX̂ − X̂B = C. By Lemma 3.4, we have:

CM = (AX̂ − X̂B)M = AX̂M − X̂MB, CN = (AX̂ − X̂B)N = AX̂N − X̂NB.

Now we have

d−1∑
k=0

A〈k〉CMB
k =

d−1∑
k=0

(
A〈k〉AX̂MB

k −A〈k〉X̂MB
k+1
)

=

d−1∑
k=0

(
A〈k−1〉X̂MB

k −A〈k〉X̂MB
k+1
)

= A〈−1〉X̂M −A〈d−1〉X̂MB
d = 0,

because of Lemma 3.1. In the analogous way one can prove the second equality in (3.17).

(⇐) : We show that Xp = Xp
M + Xp

N , where Xp
M and Xp

N are given by (3.18), is the solution of

AX −XB = C provided that (3.17) holds. By using Lemma 3.4, we have:

[Xp
M ]ij =

[
n1−1∑
k=0

(AT )k+1CMB
k

]
ij

=

[
n1−1∑
k=0

(
(AT )k+1CBk

)
M

]
ij

=

nj−1∑
k=0

(Jmi(0)T )k+1CijJnj (0)k, (i, j) ∈M.

The first condition in (3.17) says

nj−1∑
k=0

Jmi(0)〈k〉CijJnj (0)k = 0, (i, j) ∈M,
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which by Theorem 2.3 implies that Jmi(0)[Xp
M ]ij−[Xp

M ]ijJnj (0) = Cij , (i, j) ∈M, i.e., AXp
M−X

p
MB = CM .

In the analogous way AXp
N −X

p
NB = CN can be proven (there, Theorem 2.5 is used).

Therefore, we have AXp −XpB = AXp
M −X

p
MB + AXp

N −X
p
NB = CM + CN = C, so the equation is

consistent provided that (3.17) holds.

The homogeneous equation AX = XB is equivalent to the set of equations of the form Jmi(0)Xij −
XijJni

(0) = 0, i = 1, p, j = 1, q, so by Corollary 2.6, we have the expressions for appropriate submatrices

of Xh.

Remark 3.6. It may happen that some expressions for the consistency condition (3.17) include negative

powers of Jk(0), but all of them will be multiplied by some zero terms, so there is no actual problem.

The next theorem immediately follows from Proposition 1.3, but we restate it here because of the results

from the next section.

Theorem 3.7. Suppose that A(λ) = Jm1(λ)⊕· · ·⊕Jmp(λ) ∈ Cm×m and B(µ) = Jn1(µ)⊕· · ·⊕Jnq (µ) ∈
Cn×n and a = max{m1, . . . ,mp}, b = max{n1, . . . , nq}. The equation A(λ)X − XB(µ) = C, λ 6= µ, is

consistent and its unique solution is

X =

b−1∑
k=0

A(λ− µ)−(k+1)CB(0)k = −
a−1∑
k=0

A(0)kCB(µ− λ)−(k+1).

4. The general case when σ(A) = σ(B). Let us consider general case AX −XB = C when σ(A) =

σ(B) = {λ1, . . . , λs}, C = [Cij ]s×s and suppose that the matrices are in their Jordan forms:

A = diag{J(λ1; p11, p12, . . . , p1,k1), . . . , J(λs; ps1, ps2, . . . , ps,ks)},
B = diag{J(λ1; q11, q12, . . . , q1,`1), . . . , J(λs; qs1, qs2, . . . , qs,`s)},

where pi1 ≥ · · · ≥ pi,ki > 0, qj1 ≥ · · · ≥ qj,`j > 0, i, j = 1, s.

It is not hard to see that the equations on which solvability depends are precisely of the form

J(λi; pi1, pi2, . . . , pi,ki)Xii −XiiJ(λi; qi1, qi2, . . . , qi,`i) = Cii, i = 1, s,

and, after translation for −λi, they reduce to the form

J(0; pi1, pi2, . . . , pi,ki)Xii −XiiJ(0; qi1, qi2, . . . , qi,`i) = Cii, i = 1, s,

for which Theorem 3.5 is applicable.

The results from the previous two sections can be summed up in the following theorem. We remark the

notation Cij = [C
(ij)
uv ]u=1,ki,v=1,`j

∈ Cpi×qj .

Theorem 4.1. Suppose that

A = diag{J(λ1; p11, p12, . . . , p1,k1), . . . , J(λs; ps1, ps2, . . . , ps,ks)},
B = diag{J(λ1; q11, q12, . . . , q1,`1), . . . , J(λs; qs1, qs2, . . . , qs,`s)},

where pi1 ≥ · · · ≥ pi,ki > 0, and qj1 ≥ · · · ≥ qj,`j > 0, i, j = 1, s. Let us denote: di = min{pi1, qi1}, C(ii)
Mi

=

ΠMi
(C(ii)), C

(ii)
Ni

= ΠNi
(C(ii)), where

Mi = {(u, v) : piu ≥ qiv}, Ni = {(u, v) : piu < qiv} ⊂ Nki × N`i , i = 1, s.
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The Sylvester equation AX −XB = C is consistent if and only if

di−1∑
k=0

[
Ai(0)〈k〉 0

0 Ai(0)k

][
C

(ii)
Mi

0

0 C
(ii)
Ni

] [
Bi(0)k 0

0 Bi(0)〈k〉

]
= 0, i = 1, s,

where we used the notation

Ai(0) = diag[Jpi1(0), . . . , Jpi,ki
(0)], Bi(0) = diag[Jqi1(0), . . . , Jqi,`i (0)], i = 1, s.

In that case, the particular solution Xp = [X
(ij)
p ]s×s is given by:

X(ii)
p =

di−1∑
k=0

(Ai(0)T )k+1C
(ii)
Mi

Bi(0)k −
di−1∑
k=0

Ai(0)kC
(ii)
Ni

(Bi(0)T )k+1, i = 1, s,

X(ij)
p =

qj1−1∑
k=0

Ai(λi − λj)−(k+1)C(ij)Bj(0)k

= −
pi1−1∑
k=0

Ai(0)kC(ij)Bj(λj − λi)−(k+1) ∈ Cki×`j , i 6= j;

the homogeneous solution Xh = diag[X
(ii)
h ], i = 1, s, is given by

[
X

(ii)
h

]
uv

=


[
pqiv−1(Jqiv (0))

0(piu−qiv)×qiv

]
, (u, v) ∈Mi,[

0piu×(qiv−piu) ppiu−1(Jpiu(0))
]
, (u, v) ∈ Ni.

Remark 4.2. The consistency condition from the previous theorem can be written in more condensed

form as:
d−1∑
k=0

[
A(0)〈k〉 0

0 A(0)k

] [
CM 0

0 CN

] [
B(0)k 0

0 B(0)〈k〉

]
= 0,

where d = min{max{pi1 : i = 1, s},max{qj1 : j = 1, s}}, M = M1 ⊕ · · · ⊕Ms, N = N1 ⊕ · · · ⊕Ns, and we

used the notation

A(0) = diag[A1(0), . . . , As(0)], B(0) = diag[B1(0), . . . , Bs(0)].

Also, the diagonal blocks in Xp can be given by single explicit formula

Xdiag
p =

d−1∑
k=0

(
(A(0)T )k+1CMB(0)k −A(0)kCN (B(0)T )k+1

)
.

The previous theorem has several important corollaries which deal with the cases when matrices A and

B are non-derogatory or diagonalizable.

Corollary 4.3. Suppose that matrices A and B are non-derogatory, i.e.,

A = Jp1(λ1)⊕ · · · ⊕ Jps(λs), B = Jq1(λ1)⊕ · · · ⊕ Jqs(λs),

and di = min{pi, qi}, C(ii)
Mi

= C(ii) if pi ≥ qi, C
(ii)
Ni

= C(ii) if pi < qi, i = 1, s. The equation AX −XB = C

is consistent if and only if

di−1∑
k=0

[
Jpi(0)pi−1−k 0

0 Jpi(0)k

][
C

(ii)
Mi

0

0 C
(ii)
Ni

] [
Jqi(0)k 0

0 Jqi(0)qi−1−k

]
= 0, i = 1, s,
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and its particular solution Xp = [X
(ij)
p ]s×s is given by:

X(ii)
p =


di−1∑
k=0

(Jpi(0)T )k+1C(ii)Jqi(0)k, pi ≥ qi,

−
di−1∑
k=0

Jpi(0)kC(ii)(Jqi(0)T )k+1, pi < qi;

X(ij)
p =

qj−1∑
k=0

Jpi(λi − λj)−(k+1)C(ij)Jqj (0)k

= −
pi−1∑
k=0

Jpi(0)kC(ij)Jqj (λj − λi)−(k+1) ∈ Cpi×qj , i 6= j;

the homogeneous solution Xh = diag[X
(ii)
h ], i = 1, s, is given by

X
(ii)
h =


[
pqi−1(Jqi(0))

0(pi−qi)×qi

]
, pi ≥ qi,[

0pi×(qi−pi) ppi−1(Jpi(0))
]
, pi < qi.

Corollary 4.4. Suppose that A and B are diagonalizable matrices, i.e.,

A = λ1Ik1 ⊕ · · · ⊕ λsIks , B = λ1I`1 ⊕ · · · ⊕ λsI`s .

Then the Sylvester equation AX −XB = C is consistent if and only if C(ii) = 0, i = 1, s, its homogeneous

solution Xh = X
(11)
h ⊕ · · · ⊕ X(ss)

h is arbitrary block-diagonal matrix and the particular solution is Xp =

[X
(ij)
p ]s×s with X

(ii)
p = 0, i = 1, s, and

X(ij)
p = (λi − λj)−1C(ij), i 6= j.

The fact that AX − XA 6= In for A,X ∈ Cn×n is well-known result, usually proven by the trace of a

matrix:

n = tr(In) 6= tr(AX −XA) = tr(AX)− tr(XA) = tr(AX)− tr(AX) = 0.

This result appears as the corollary of Theorem 4.1.

Theorem 4.5. The matrix equation AX −XA = I is inconsistent.

Proof. According to Theorem 4.1, if B = A then di = pi1, C
(ii)
Mi

= I, i = 1, s, and the equation

AX −XA = I is consistent if and only if

pi1−1∑
k=0

diag[Jpi1(0)pi1−1−k, . . . , Jpi,ki
(0)pi,ki

−1−k] · diag[Jpi1(0)k, . . . , Jpi,ki
(0)k]

=

pi1−1∑
k=0

diag[Jpi1(0)pi1−1, . . . , Jpi,ki
(0)pi,ki

−1] = 0, i = 1, s,

which is not true. Therefore, the equation AX −XA = I is inconsistent.

Recall that the similar result holds on any unital Banach algebra [16, p. 351].
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Example 4.6. Let A = J2(1)⊕J1(1)⊕J2(0), B = J2(1)⊕J2(1)⊕J3(0)⊕J1(0) (so s = 2, λ1 = 1, λ2 = 0,

p11 = 2, p12 = 1, p21 = 2, q11 = 2, q12 = 2, q21 = 3, q22 = 1). We have: A1(0) = J2(0) ⊕ J1(0), A2(0) =

J2(0), B1(0) = J2(0)⊕ J2(0), B2(0) = J3(0)⊕ J1(0). Also d1 = min{p11, q11} = 2, d2 = min{p21, q21} = 2.

We decompose matrices C and X in accordance with the forms of A and B:

C =

[
C(11) C(12)

C(21) C(22)

]
5×8

, X =

[
X(11) X(12)

X(21) X(22)

]
5×8

and then further decompose C(11) and C(22) in accordance with the mask matrices M1 =

[
1 1

0 0

]
(because

p11 ≥ q11 and p11 ≥ q12) and M2 =
[

0 1
]

(because p21 ≥ q22):

C(11) =

[
C

(11)
11 C

(11)
12

C
(11)
21 C

(11)
22

]
=

[
C

(11)
11 C

(11)
12

0 0

]
+

[
0 0

C
(11)
21 C

(11)
22

]
= C

(11)
M1

+ C
(11)
N1

,

C(22) =
[
C

(22)
11 C

(22)
12

]
=
[

0 C
(22)
12

]
+
[
C

(22)
11 0

]
= C

(22)
M2

+ C
(22)
N2

;

similar is done for the matrix X. By Theorem 4.1, consistency conditions are (we simply write Jk instead

of Jk(0) and omit zero block-matrices):

0 =

1∑
k=0


J1−k

2

J−k1

Jk2
Jk1



C

(11)
11 C

(11)
12

0 0

0 0

C
(11)
21 C

(11)
22



Jk2

Jk2
J1−k

2

J1−k
2

 ,

0 =

1∑
k=0

[
J1−k

2

Jk2

] [
0 C

(22)
12

C
(22)
11 0

]
Jk3

Jk1
J2−k

3

J−k1

 ,

i.e., J2C
(11)
11 + C

(11)
11 J2 = 0, J2C

(11)
12 + C

(11)
12 J2 = 0, C

(11)
21 J2 = 0, C

(11)
22 J2 = 0, J2C

(22)
12 = 0, C

(22)
11 J2

3 +

J2C
(22)
11 J3 = 0.

If we put C = [cij ], X = [xij ] ∈ C5×8, consistency condition says that all matrices C for whom the

equation is solvable are of the form

C =

[
C(11) C(12)

C(21) C(22)

]
=


c11 c12 c13 c14 c15 c16 c17 c18

0 −c11 0 −c13 c25 c26 c27 c28

0 c32 0 c34 c35 c36 c37 c38

c41 c42 c43 c44 c45 c46 c47 c48

c51 c52 c53 c54 0 −c45 c57 0

 .
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By Theorem 4.1, the particular solution Xp = [X
(ij)
p ] is:

X(11)
p =

1∑
k=0

(A1(0)T )k+1C
(11)
M1

B1(0)k −
1∑
k=0

A1(0)kC
(11)
N1

(B1(0)T )k+1

=

[
J2(0)TC

(11)
11 J2(0)TC

(11)
12

−C(11)
21 J2(0)T −C(11)

22 J2(0)T

]
,

X(22)
p =

1∑
k=0

(A2(0)T )k+1C
(22)
M2

B2(0)k −
1∑
k=0

A2(0)kC
(22)
N2

(B2(0)T )k+1

=
[
−C(22)

11 J3(0)T − J2(0)C
(22)
11 (J3(0)T )2 J2(0)TC

(22)
12

]
,

X(12)
p =

2∑
k=0

A1(1)−(k+1)C(12)B2(0)k

=

[
J2(1)−1C

(12)
11 + J2(1)−2C

(12)
11 J3(0) + J2(1)−3C

(12)
11 J3(0)2 J2(1)−1C

(12)
12

C
(12)
21 + C

(12)
21 J3(0) + C

(12)
21 J3(0)2 C

(12)
22

]
,

X(21)
p = −

1∑
k=0

A2(0)kC(21)B1(1)−(k+1)

=
[
−C(21)

11 J2(1)−1 − J2(0)C
(21)
11 J2(1)−2 −C(21)

12 J2(1)−1 − J2(0)C
(22)
12 J2(1)−2

]
.

Therefore,

X(11)
p =

 0 0 0 0

c11 c12 c13 c14

−c32 0 −c34 0

 , X(22)
p =

[
−c46 − c57 −c47 0 0

c45 −c57 0 c48

]

X(12)
p =

 c15 − c25 c15 + c16 − 2c25 − c26 c15 + c16 + c17 − 3c25 − 2c26 − c27 c18 − c28

c25 c25 + c26 c25 + c26 + c27 c28

c35 c35 + c36 c35 + c36 + c37 c38



X(21)
p =

[
−c41 − c51 c41 + 2c51 − c42 − c52 −c43 − c53 c43 − c44 + 2c53 − c54

−c51 c51 − c52 −c53 c53 − c54

]
.

The homogeneous solution is given by Xh = [X
(ii)
h ] where:

X
(11)
h =

[
p1(J2(0)) p1(J2(0))[

01×1 p0(J1(0))
] [

01×1 p0(J1(0))
] ] ,

X
(22)
h =

[ [
02×1 p1(J2(0))

] [
p0(J1(0))

01×1

] ]
or, in extended form:

X
(11)
h =

 x11 x12 x13 x14

0 x11 0 x13

0 x32 0 x34

 , X
(22)
h =

[
0 x46 x47 x48

0 0 x46 0

]
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for arbitrary complex x11, x12, x13, x14, x32, x34, x46, x47 and x48. Therefore, we found all solutions of the

equation in the case when it is solvable.

5. On the dimension of the space of solutions. Let A ∈ Cm×m and B ∈ Cn×n be given matrices.

For the linear operator T (X) = AX −XB : Cm×n → Cm×n we consider the following subspaces:

• R(T ) = {C : AX −XB = C for some X},
• N (T ) = {X : AX −XB = 0}.

The subspace R(T ) is actually the set of all C such that the Sylvester equation is consistent, while N (T )

consists precisely of all solutions of the homogeneous Sylvester equation. The general solution can be seen

as the set of all homogeneous solutions translated by the particular solution, so the dimension of the space

of solutions is the same as the dimension of the space of all solutions to homogeneous equation. By the basic

theorem for the vector space homomorphism, we have:

dimR(T ) + dimN (T ) = dim(Cm×n) = mn.

This fact helps us a lot in finding the dimension of R(T ) when necessary, because it is significantly easier to

deal with N (T ), as follows.

If A = Jm(0), B = Jn(0), then by Corollary 2.6, we have:

N (T ) =


[
pn−1(Jn(0))

0(m−n)×n

]
, m ≥ n,[

0m×(n−m) pm−1(Jm(0))
]
, m ≤ n,

and therefore, dim N (T ) = min{m,n} (so dim R(T ) = mn−min{m,n}) and its basis is

BN (T ) =

{[
In
0

]
,

[
Jn(0)

0

]
, . . . ,

[
Jn(0)n−1

0

]}
, m ≥ n,

BN (T ) =
{[

0 Im
]
,
[

0 Jm(0)
]
, . . . ,

[
0 Jm(0)m−1

]}
, m ≤ n.

For the case A = Jm1(0) ⊕ · · · ⊕ Jmp(0) and B = Jn1(0) ⊕ · · · ⊕ Jnq (0), by Theorem 3.5, we have

N (T ) = {X = [Xij ]p×q : Jmi
(0)Xij = XijJnj

(0), i = 1, p, j = 1, q}, so

dim N (T ) =
∑

(i,j)∈M

nj +
∑

(i,j)∈N

mi.

In the most general case, described by Theorem 4.1, we have

dim N (T ) =

s∑
k=1

 ∑
(i,j)∈Mk

qkj +
∑

(i,j)∈Nk

pki

 .

For the non-derogatory case, Corollary 4.3 gives

dim N (T ) =

s∑
i=1

min{pi, qi},
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while in the diagonalizable case, given in Corollary 4.4, we have

dim N (T ) =

s∑
i=1

ki · `i.

If we test this on Example 4.6, then we have dim N (T ) = (2 + 2 + 1) + (1 + 1 + 2) = 9 which coincides

with the number of independent parameters in the general solution.

6. The Schur decomposition approach. Finding the Jordan form of a given matrix having some

multiple eigenvalues can be numerically unstable, so in this section, which is not closely related with previous

considerations, we present some useful recursive methods for solving the Sylvester matrix equation AX −
XB = C in the case when A and B have common eigenvalue(s). We present the consistency conditions and

the algorithm for finding the solutions, based on the Schur matrix decomposition.

For numerically solving the Sylvester equations, the most used methods are Bartels-Stewart [1] and

Golub-Nash-van Loan [8], and their various improvements. Bartels-Stewart method uses QR-algorithm for

the Schur decomposition of matrices A and B, while Golub-Nash-van Loan method uses the Hessenberg

decomposition of matrices A and B. We emphasize that both methods assume disjointness of the spectra of

A and B.

The main idea of the Bartels-Stewart algorithm is to apply the Schur decomposition to transform

Sylvester equation into a triangular linear system which can be solved efficiently by forward or backward

substitutions.

It is known that A ∈ Cn×n can be expressed as A = QUQ−1, where Q is unitary matrix (i.e., Q−1 = Q∗),

and U is upper triangular matrix, which is called a Schur form for A. Since U is similar to A, it has the

same multiset of eigenvalues, and since it is triangular, those eigenvalues are the diagonal entries of U . If A

is real and σ(A) ⊂ R then U can be chosen to be real and orthogonal. For details on this topic, see e.g., [10,

p. 79].

By using the idea of the constructive proof for Schur decomposition, suppose λ ∈ σ(A) ∩ σ(B) and

there exist some unitary matrices S and T such that (a and b are the multiplicities of λ in σ(A) and σ(B),

respectively; Uλ and Vλ are appropriate eigenspaces):

S∗AS =

[
λIa A12

0 A22

]
: Uλ ⊕ U⊥λ → Uλ ⊕ U⊥λ ,

T ∗BT =

[
λIb B12

0 B22

]
: Vλ ⊕ V ⊥λ → Vλ ⊕ V ⊥λ .

Note that λ /∈ σ(A22) ∪ σ(B22). Now the Sylvester equation becomes:

S

[
λIa A12

0 A22

]
S∗X −XT

[
λIb B12

0 B22

]
T ∗ = C

⇔
[
λIa A12

0 A22

]
S∗XT − S∗XT

[
λIb B12

0 B22

]
= S∗CT,

so the equation, with S∗XT = Y = [Yij ] and S∗CT = D = [Dij ], becomes[
λIa A12

0 A22

] [
Y11 Y12

Y21 Y22

]
−
[
Y11 Y12

Y21 Y22

] [
λIb B12

0 B22

]
=

[
D11 D12

D21 D22

]
,
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which is equivalent to the following system:

A12Y21 = D11,(6.19)

Y12(λI −B22)− Y11B12 = D12 −A12Y22,(6.20)

(A22 − λI)Y21 = D21,(6.21)

A22Y22 − Y22B22 = D22 + Y21B12.(6.22)

From (6.19) and (6.21) we conclude the consistency condition:

A12(A22 − λI)−1D21 = D11.

Also from (6.21) we have

Y21 = (A22 − λI)−1D21.

Note that A22 and B22 (and consequently A22 − λI and λI − B22) are upper triangular matrices, so some

known numerical method can be applied in computing their inverses.

Case 1: If σ(A)∩σ(B) = {λ}, i.e., if λ is the only common eigenvalue (and therefore, σ(A22)∩σ(B22) = ∅),
because of (6.22), by Proposition 1.3, we have the unique Y22 (which can be computed by using some already

known numerical method for solving the Sylvester equation), while from (6.20) we have Y12 via Y11:

Y12 = (D12 −A12Y22 + Y11B12)(λI −B22)−1.

Therefore, we found the family of solutions.

Case 2: If there is some other common eigenvalue µ for A and B (which means µ ∈ σ(A22) ∩ σ(B22)),

the described method is applied to the equation (6.22), i.e.,

A22Y22 − Y22B22 = D22 + (A22 − λI)−1D21B12.

It remains to do backward substitution and the equation is fully solved.

Because any complex matrix from Cn×n has at most n different eigenvalues, the algorithm terminates

after at most n passes.
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