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RESOLUTION OF CONJECTURES RELATED TO LIGHTS OUT!

AND CARTESIAN PRODUCTS∗

BRYAN CURTIS† , JONATHAN EARL† , DAVID LIVINGSTON† , AND BRYAN SHADER†

Abstract. Lights Out! is a game played on a 5× 5 grid of lights, or more generally on a graph. Pressing lights on the grid

allows the player to turn off neighboring lights. The goal of the game is to start with a given initial configuration of lit lights

and reach a state where all lights are out. Two conjectures posed in a recently published paper about Lights Out! on Cartesian

products of graphs are resolved.
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1. Introduction. In this short note, we resolve two conjectures from [5] concerning Lights Out! on

Cartesian products of graphs.

We begin by providing the setting for the Lights Out! problem for a simple graph G with vertices

1, 2, . . . , n. Associated with each vertex of G is a light and a button. If the button at a vertex i is pressed,

the lights of the neighbors of i toggle on or off. If a vertex is considered to be a neighbor of itself, this is

called closed neighborhood switching. If not, this is called open neighborhood switching. Initially, some subset

of vertices have their lights on and the complementary set has their lights off. This initial configuration can

be represented by the n× 1 vector b = [bi], where bi = 1 if the light at vertex i is initially on, and bi = 0 if

the light at vertex i is initially off. The goal of the Lights Out! problem is to press a sequence of buttons so

that at the end of the sequence all lights are off.

First consider the open neighborhood switching, and let AG be the adjacency matrix of G, that is,

AG = [aij ] is the n× n matrix with aij = 1 if i is adjacent to j in G, and aij = 0 otherwise. Let e1, . . . , en
denote the standard basis vectors. If we start with the configuration corresponding to b and press the

button at vertex i, then the resulting configuration of lights corresponds to the vector b + AGei mod 2.

More generally, if we press the button at vertex j exactly xj times (j = 1, 2, . . . , n), then the resulting

configuration of lights corresponds to the vector b + AGx mod 2 where x = [xi]. Note that the ordering in

which the buttons are pressed does not matter and pressing a button an even number of times is equivalent

to not pressing the button at all. Thus, the Lights Out! problem for initial vector b, graph G and open

neighborhoods has a solution if and only if the system AGx = b has a solution over Z2.

Let r(AG) and ν(AG) denote the rank and nullity, respectively, of AG viewed as a matrix over Z2.

Basic facts about linear systems over Z2 translate into simple facts about the Lights Outs! problem on G.

Namely, the number of initial conditions that can be made to have their lights off is 2r(AG), and for each

such initial configuration there are exactly 2ν(AG) sets of vertices that can be pressed to toggle all lights to

the off configuration (see [7, 8]).
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Similar statements apply to the Lights Out! problem on G for closed neighborhoods; we simply replace

AG by AG + I throughout.

Let G be a graph with vertices 1, 2, . . . ,m and H be a graph with vertices 1, 2, . . . , n. The Cartesian

product of G and H is the graph G�H with vertex set {(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ n} such that (i, j) and

(k, `) are adjacent if and only if i = k and j is adjacent to ` in H, or i is adjacent to k in G and j = `. The

recent paper [5] posed conjectures about ν(AG�H) and ν(AG�H + I). We will prove these in Section 3.

2. Sylvester’s equation. Let F be a field, and let A and B be square matrices over F of orders m and

n respectively, and C be an m × n matrix over F. The Sylvester equation corresponding to A, B and C is

AX −XB = C (e.g. see [2]).

Sylvester’s equation arises naturally in the Lights Out! setting for Cartesian products of graphs. To

see this, let G be a graph on m vertices with adjacency matrix A and let H be a graph on n vertices with

adjacency matrix B. We can view the vertices of G�H as the positions in an m× n array; the entry in the

(i, j) position corresponds to the vertex i of G and j of H. As before, the entry (i, j) is 1 if the light is on and 0

otherwise. Let Eij be the m×n matrix with a 1 in position (i, j) and 0s elsewhere. Note that the (k, `)-entry

of AEij is 1 if and only if ` = j and k is adjacent to i in G. Similarly the (k, `)-entry of EijB equals 1 if and

only if k = i and ` is adjacent to j in H. Thus, the matrix AEij +EijB, which is AEij−EijB in Z2, records

the vertices of G�H that are changed due to pressing cell (i, j) using open neighborhood switching. More

generally, the configuration C of lights can be turned off using open neighborhood switching if and only if the

system AX −XB = C has a solution over Z2. Equivalently, we may consider the matrix In⊗A−BT ⊗ Im.

Over any field of characteristic 2, since B is symmetric, In⊗A−BT ⊗Im = In⊗A+B⊗Im is the adjacency

matrix of G�H.

Sylvester’s equation is well-studied, and in this section, we recall some of the known results that will

be useful in the Lights Out! context. It is known that In ⊗ A − BT ⊗ Im is a matrix representation of the

operator on the vector space V of m × n matrices over F that sends X ∈ V to AX −XB (see [1, Section

57.4]). Hence the nullity of In ⊗A−BT ⊗ Im is the dimension of the subspace

W = {X ∈ V : AX = XB}.

Let F̂ be the algebraic closure of F, V̂ be the vector space of m× n matrices over the algebraic closure F̂ of

F, and

Ŵ = {X ∈ V̂ : AX = XB}.

While W and Ŵ are not necessarily equal, their dimensions are equal as these sets represent the solution

space to a homogeneous system of equations with the same coefficient matrix but over the field F and its

extension F̂. Both [3, Chapter VIII, Section 3] and [9, Corollary to Theorem 2] prove the following formula for

the nullity of In⊗A−BT ⊗Im over the complexes. Their proofs immediately carry over to any algebraically

closed field.

Theorem 2.1. Let A and B be square matrices over the field F with Jordan Canonical forms over F̂

⊕ki=1J(λi,mi) and ⊕`j=1 J(µj , nj),

respectively, where J(γ, p) denotes the p× p Jordan matrix corresponding to the eigenvalue γ. Then

ν(In ⊗A−BT ⊗ Im) =

k∑
i=1

∑̀
j=1

δλi,µj min(mi, nj),
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where δ·,· is the Kronecker delta.

Theorem 2.1 implies that

(2.1) dim W =

k∑
i=1

∑̀
j=1

δλi,µj min(mi, nj).

This formula requires determining the Jordan Canonical Form of both A and B over the algebraic closure of

F. In particular, this requires factoring polynomials. As we see in the next section, the formula is sufficiently

strong to resolve the two conjectures in [5]. We end this section by deriving a similar formula that allows one

to do all computations over F and avoid factorization. We believe this formulation will be more convenient

for future research.

First we need to introduce some terminology and recall some classic results which can be found in

Chapter 6 of [6]. The characteristic matrix of A is xI − A. It is known that there exist matrices U and V

(whose entries are polynomials in x over F such that both detU and detV are nonzero elements of F) such

that UAV has the form

S = diag(s1(x), s2(x), . . . , sm(x)),

where each si(x) is a monic polynomial and s`(x) divides s`+1(x) for k = 1, . . . ,m − 1. The matrix

S is the Smith Normal Form of xI − A, is unique, and can be determined from xI − A using only

the Euclidiean Algorithm for finding gcd’s of polynomials. The si(x) are called the invariant factors

of xI − A. Let p1(x), . . . , pu(x) be the distinct irreducible factors of the characteristic polynomial of A,

cA(x) = s1(x)s2(x) · · · sm(x). Then there exist nonnegative integers ei(j) such that

si(x) = p1(x)e1(i)p2(x)e2(i) · · · pu(x)eu(i) for i = 1, . . . ,m.

Now we do the same for the n× n matrix B. Take the Smith Normal Form of B to be

T = diag(t1(x), t2(x), . . . , tn(x)),

where each of the ti(x) is a monic polynomial and t`(x) divides t`+1(x) for ` = 1, . . . , n−1. Let q1(x), . . . , qv(x)

be the distinct irreducible factors of cB(x) = t1(x)t2(x) · · · tn(x). Then there exist nonnegative integers fi(j)

such that

ti(x) = q1(x)f1(i)q2(x)f2(i) · · · qt(x)fv(i) for i = 1, . . . , n.

If F is separable, which is the case when F is finite or of characteristic 0, and λ is an eigenvalue of A

over F̂ , then the sizes of the Jordan blocks in the Jordan Canonical Form of A corresponding to λ are the

nonzero ej(i) (i = 1, . . . ,m), where j is the unique index such that λ is a root of pj(x). Similarly, if µ is an

eigenvalue of B, then the sizes of the Jordan blocks in the Jordan Canonical Form of B corresponding to µ

are the nonzero fj(i) (i = 1, . . . , n) for which µ is a root of qj(x).

Corollary 2.2. Let A and B be m×m and n×n matrices, respectively, over the separable field F with

invariant factors s1(x), . . . , sm(x), and t1(x), . . . , tn(x), respectively. Then the nullity of I ⊗A−BT ⊗ I, is

given by
m∑
i=1

n∑
j=1

deg(gcd(si(x), tj(x)).
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Proof. Let Λk be the set of roots of pk(x) over F̂, Γ` be the set of roots of q`(x) over F̂, Λ = ∪mk=1Λk
and Γ = ∪n`=1Γ`. Then

m∑
i=1

n∑
j=1

deg(gcd(si(x), tj(x))) =

m∑
i=1

n∑
j=1

deg(gcd(

u∏
k=1

pk(x)ei(k),

v∏
`=1

q`(x)fj(`))

=

m∑
i=1

n∑
j=1

u∑
k=1

v∑
`=1

deg(gcd(pk(x)ei(k), q`(x)fj(`))

=

m∑
i=1

n∑
j=1

u∑
k=1

v∑
`=1

δpk(x),q`(x)deg(pk(x)) min(ei(k), fj(`))

=

m∑
i=1

n∑
j=1

u∑
k=1

v∑
`=1

∑
λ∈Λk∩Γ`

min(ei(k), fj(`))

=

u∑
k=1

v∑
`=1

∑
λ∈Λk

∑
µ∈Γ`

δλ,µ

m∑
i=1

n∑
j=1

min(ei(k), fj(`)).

Noting that the ei(k) and fj(`) are the sizes of the Jordan blocks of A, respectively B, corresponding to the

eigenvalues of λ and µ respectively, the result follows from Theorem 2.1.

Corollary 2.3. Let A be an m×m matrix over the separable field F with invariant factors s1(x), . . . ,

sm(x). Then the nullity of I ⊗A−AT ⊗ I is given by

m∑
i=1

(2m− 2i+ 1)deg(si(x))

Proof. Since si(x) divides si+1(x) for i = 1, . . . ,m− 1, gcd(si(x), sj(x)) = si(x) when i ≤ j. The result

now follows from Corollary 2.2.

If A is non-derogatory (that is, its minimal and characteristic polynomial are equal), then it has only

one invariant factor not equal to 1, and hence, the formula in Corollary 2.2 simplifies to

n∑
j=1

deg(gcd(cA(x), tj(x)).

In particular, we have the following result for Cartesian products involving a path Pm.

Corollary 2.4. Let G be a graph and let (s1, . . . , sn) be the invariant factors of xI−AG over Z2. Then

the nullity of the adjacency matrix of Pm�G equals

n∑
i=1

deg(gcd(cPm(x), si(x)).

Proof. The submatrix obtained from APm by deleting its first row and last column has determinant 1.

Hence the geometric multiplicity of each eigenvalue of APm is 1. This implies that the Jordan Canonical

Form of APm has exactly one block for each eigenvalue, and hence, APm is non-derogatory. The result now

follows from Corollary 2.2.

We conclude this section with a few simple examples.
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Example 2.5. Let H be the Petersen graph. The Smith Normal Form of xI −AH over Z2 is

S = diag(1, 1, 1, 1, 1, (x+ 1), (x+ 1)x, (x+ 1)x, (x+ 1)x, (x+ 1)2x).

Hence, by Corollary 2.2, the nullity of AH�H is

10∑
i=1

10∑
j=1

deg(gcd(si, sj)) = 42.

Example 2.6. Consider the star graph Sm (as illustrated below in Figure 1) on n vertices. The Jordan

Canonical Form of the adjacency matrix of Sm has the form(
⊕m−3
i=1 J(0, 1)

)
⊕ J(0, 3) if m is odd, and(

⊕m−2
i=1 J(0, 1)

)
⊕ J(1, 2) if m is even.

Using Corollary 2.2 to find the nullity of I ⊗ASm −ATSn ⊗ I over Z2 for any n,m, we find

ν(ASm�Sn) =

{
(m− 2)(n− 2) + 2 if m and n are both even or both odd, and

(m− 2)(n− 2) otherwise.

Figure 1: The star graphs S3 and S5.

Example 2.7. In this example, we outline how to use our results and known results to determine the

nullity of the adjacency matrix of the Cartesian product of a path and a star over a field of characteristic 2.

The observations about the Jordan canonical forms of ASn in the previous example, imply the following:

1. If m is even, then the invariant factors of ASm are

s1 = 1, s2 = 1, s3 = x, s4 = x, . . . , sm−1 = x, and sm = x(x+ 1)2.

2. If m is odd and m ≥ 3, then the invariant factors of ASm are

s1 = 1, s2 = 1, s3 = x, s4 = x, . . . , sm−1 = x, and sm = x3.

In particular, note that the irreducible factors of each invariant factor of ASm lie in the set {x, x+1}. Hence,

in applying Corollary 2.4 to the Cartesian product Sm�Pn, we need only know the algebraic multiplicities

of the eigenvalues 0 and 1 of APn .

The Fibonacci polynomials fn(x) are defined by f1(x) = 1, f2(x) = x and fn+1(x) = xfn(x) +

fn−1(x) mod 2 for n ≥ 2. It is can be verified that fn+1(x) is the characteristic polynomial of Pn. Using

Lemma 2 and Theorem 7 of [4] on the factorization of Fibonacci polynomials, we can obtain the following.

Here n+ 1 = o2k, where o is an odd integer and k is a nonnegative integer.
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• If n is even, then 0 is not an eigenvalue of APn .

• If n ≡ 1 (mod 4), then k = 1 and the algebraic multiplicity of 0 as an eigenvalue APn is 2k − 1 = 1.

• If n ≡ 3 (mod 4), then the algebraic multiplicity of 0 as an eigenvalue of APn is 2k − 1 ≥ 3.

• if n ≡ 2 (mod 3), then the algebraic multiplicity of 1 as an eigenvalue of APn is 2k+1 ≥ 2.

• if n 6≡ 2 (mod 3), then 1 is not an eigenvalue of APn .

The following chart gives the contribution to the nullity of ASm�Pn for the eigenvalue 0, assuming m,n ≥ 2.

n mod 4

0 1 2 3

m mod 2
0

1

0 m− 2 0 m− 2

0 m− 2 0 m

The following chart gives the contribution to the nullity of ASm�Pn for the eigenvalue 1, assuming m,n ≥ 2.

n mod 3

0 1 2

m mod 2
0

1

0 0 2

0 0 0

For m,n ≥ 2, we obtain the following formulas:

1. If m is even, then

ν(ASm�Pn) =


0 if n ≡ 0, 4 mod 6

2 if n ≡ 2 mod 6

m− 2 if n ≡ 1, 3 mod 6

m if n ≡ 5 mod 6.

2. If m is odd, then

ν(ASm�Pn) =


0 if n ≡ 0 mod 2

m− 2 if n ≡ 1 mod 4

m if n ≡ 3 mod 4.

3. Proof of conjectures. Our proof depends on the following simple result about partitions, and

Theorem 2.1. A partition of the nonnegative integer r is a tuple π = (π1, . . . , πk) of positive integers with

r = π1 + · · ·+ πk.

Lemma 3.1. Let π = (π1, . . . , πk) and τ = (τ1, . . . , τ`) be partitions of r and s respectively. Then

(3.2)

k∑
i=1

∑̀
j=1

min(πi, τj) ≥ min(r, s).

Proof. Without loss of generality we may assume that π1 ≥ τj for j = 1, . . . , k. Then

k∑
i=1

∑̀
j=1

min(πi, τj) ≥
∑̀
j=1

min(π1, τj) =
∑̀
j=1

τj = s.

We note, but don’t make use of, the fact that equality holds in (3.2) if and only if k = 1 and s ≤ r, or

` = 1 and r ≤ s.
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Let λ be an eigenvalue of A, and let Sλ = {(j, k) : λj = λ = µk}. Let αA(λ) and αB(λ) be the algebraic

multiplicity of λ as an eigenvalue of A and B respectively. Note that the contribution to dim W in (2.1)

corresponding to λ is given by ∑
(j,k)∈Sλ

min(mj , nk).

By Lemma 3.1, this contribution is at least min(αA(λ), βB(λ)). This last quantity is the multiplicity of λ as

a root of gcd(cA(x), cB(x)). Hence we have proven the following result.

Corollary 3.2. Let A and B be square matrices over the field F of order m and n respectively. Then

the nullity of In ⊗A−BT ⊗ Im is at least the degree of the greatest common divisor of cA(x) and cB(x).

The following corollaries prove Conjectures 4.1 and 4.2 of [5].

Corollary 3.3. Let G and H be graphs with adjacency matrices A and B respectively, and F be a field

of characteristic 2. Then the nullity of AG�H is at least the degree of the greatest common divisor of cA(x)

and cB(x) over F.

Proof. Recall that the adjacency matrix of G�H is A⊗ I + I ⊗B, which is I ⊗B −AT ⊗ I since F has

characteristic 2 and A is symmetric. The result now follows from Corollary 3.2.

Corollary 3.4. Let G and H be graphs with adjacency matrices A and B respectively, and F be a field

of characteristic 2. Then the nullity of AG�H + I is at least the degree of the greatest common divisor of

cA(x+ 1) and cB(x) over F.

Proof. Note that AG�H+I is (A+I)⊗I+I⊗B, which is I⊗B−(A+I)T ⊗I since F has characteristic 2

and A+I is symmetric. The result follows from Theorem 3.2 and the observation that cA+I(x) = cA(x+1).
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