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Abstract. Through a matrix approach of the 2-fold vector cross product in R3 and in R7, some vector cross product

differential and difference equations are studied. Either the classical theory or convenient Drazin inverses, of elements belonging

to the class of index 1 matrices, are applied.
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1. Introduction. The generalized Hurwitz Theorem asserts that, over a field of characteristic different

from 2, if A is a finite dimensional composition algebra with identity, then its dimension is equal to 1, 2, 4

or 8. Moreover, A is isomorphic either to the base field, a separable quadratic extension of the base field, a

generalized quaternion algebra or a generalized octonion algebra [5].

A well known consequence of the cited theorem is that the values of n for which the Euclidean spaces Rn

can be equipped with a 2-fold vector cross product, satisfying the same requirements as the usual one in R3,

are restricted to 1 (trivial case), 3 and 7. See [3] for a complete discussion on r-fold vector cross products

on d-dimensional vector spaces.

The 2-fold vector cross product can be found in mathematical models of physical processes, control

theory problems in particular, which involve differential equations [6, 8]. In [6] and [7], through certain 3×3

skewsymmetric matrices, it is used in the description of spacecraft attitude control. In [6], the analogue

problem in the 7-dimensional case is also considered.

The present work is devoted to vector cross product differential and difference equations in R3 and in

R7.

To begin with, definitions and results related to the subject are collected in Section 2. Namely, the

approach of the 2-fold vector cross product in R3 and in R7 from a matrix point of view, through the

hypercomplex matrices Su considered in [1], is recalled.
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In the second place, the study of the properties of Su and related matrices started in [1] is continued

in Section 3. In this section, further properties which will be needed in Sections 4 and 5, especially those

concerning the index, are established.

Thirdly, some differential equations involving the 2-fold vector cross product in R3 and in R7 are studied

in Section 4. Each of these ones is rewritten in matrix form and, when tractable, either a convenient Drazin

inverse or the classical theory in [2] is applied.

Last but not least, discrete analogues of those vector cross product differential equations in R3 and in

R7 are considered in Section 5. As expected, the solution of the difference equation proceeds similarly to

that of the differential equation when the classical theory does not apply.

2. Preliminaries. In what follows, let F be a field of characteristic different from 2.

Let V be a d-dimensional vector space over F , equipped with a nondegenerate symmetric bilinear form

〈·, ·〉. A bilinear map × : V 2 → V is a 2-fold vector cross product if, for any u, v ∈ V ,

(i) 〈u× v, u〉 = 〈u× v, v〉 = 0,

(ii) 〈u× v, u× v〉 =

∣∣∣∣ 〈u, u〉 〈u, v〉〈v, u〉 〈v, v〉

∣∣∣∣ (see [3]).

Throughout this work, Rm×n denotes the set of all m × n real matrices. For n = 1, we identify Rm×1

with Rm. For m = n = 1, we identify R1×1 with R.

Consider the usual real vector space R8, with canonical basis {e0, . . . , e7}, equipped with the multipli-

cation ∗ given by ei ∗ ei = −e0 for i ∈ {1, . . . , 7}, being e0 the identity, and the below Fano plane, where the

cyclic ordering of each three elements lying on the same line is shown by the arrows.

e6

e3

e1

e4

e5

e7

e2

Figure 1. Fano plane for O.

Then, O = (R8, ∗) is the real (non-split) octonion algebra. Every element x ∈ O may be represented1 by

x = x0 + x, where x0 ∈ R and x =

7∑
i=1

xiei ∈ R7

are, respectively, the real part and the pure part of the octonion x.

The multiplication ∗ can be written in terms of the Euclidean inner product and the 2-fold vector cross

product in R7, hereinafter denoted by 〈·, ·〉 and ×, respectively. Concretely, as in [6], for any x, y ∈ O, we

1The identity e0 is usually omitted in x = x0e0 + x.
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have

x ∗ y = x0y0 − 〈x, y〉+ x0y + y0x+ x× y.

A similar relation may be written for the multiplication of the real (non-split) quaternion algebra H =

(R4, ∗|R4), the Euclidean inner product 〈·, ·〉|R3 and the 2-fold vector cross product ×|R3 . For this reason,

throughout the work and whenever clear from the context, the same notations 〈·, ·〉 and × are used either

in R7 or in R3.

In [1], [6] and [9], hypercomplex matrices related to the Lie algebra (R3,×) and to the Maltsev algebra

(R7,×) were considered. If u ∈ R7 (respectively, R3), then let Su be the matrix in R7×7 (respectively, R3×3)

defined by

(2.1) Sux = u× x

for any x ∈ R7 (respectively, R3). Therefore, for u =
[
u1 u2 u3 u4 u5 u6 u7

]T
(respectively,[

u1 u2 u3
]T

), Su is the skew-symmetric matrix

[
E F

G H

]
=



0 −u3 u2 −u5 u4 −u7 u6
u3 0 −u1 −u6 u7 u4 −u5
−u2 u1 0 u7 u6 −u5 −u4
u5 u6 −u7 0 −u1 −u2 u3
−u4 −u7 −u6 u1 0 u3 u2
u7 −u4 u5 u2 −u3 0 −u1
−u6 u5 u4 −u3 −u2 u1 0


(respectively, E).

Proposition 2.1. [1, 9] Let n ∈ {3, 7}, u, v ∈ Rn, γ ∈ R\{0} and τ, η ∈ R. Then:

(i) Sτu+ηv = τSu + ηSv;

(ii) Suv = −Svu;

(iii) Su is singular;

(iv) S2
u = uuT − uTuIn;

(v) S3
u = −uTuSu;

(vi) (Su − γIn)−1 = − 1

γ2 + uTu

(
Su + γIn +

1

γ
uuT

)
.

Let A ∈ Rn×n.

If A is skew-symmetric then R = eA is the rotation matrix, called exponential of A, defined by the

absolutely convergent power series

eA =

∞∑
k=0

Ak

k!
.

Conversely, given a rotation matrix R ∈ SO(n), there exists a skew-symmetric matrix A such that R = eA

(see [4]).

Theorem 2.2. [6] Let u = u0 + u ∈ O with ‖u‖ = β 6= 0 and t ∈ R. Then

etSu = cos(βt)I +
sin(βt)

β
Su +

1− cos(βt)

β2
uuT .
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The index Ind(A) of A is the smallest l ∈ N0 such that R(Al) = R(Al+1) or, equivalently, N(Al) =

N(Al+1), where R and N stand for the column space (or range) and the nullspace [2]. Alternatively, but

equivalently, the index can be defined as the smallest l ∈ N0 such that Rn = R(Al)⊕N(Al).

Let Ind(A) = l. The Drazin inverse of A is the unique matrix AD ∈ Rn×n which satisfies

AAD = ADA, ADAAD = AD, Al+1AD = Al.

When Ind(A) ∈ {0, 1}, AD is sometimes called the group-inverse of A and the last equality assumes the

form AADA = A. There are several methods for computing AD, as described in [2] and references therein,

some of which require all eigenvalues to be well determined.

Let A,B ∈ Rn×n and t0 ∈ R. Let f = f(t) be a Rn-valued function of the real variable t. Throughout

the work, x = x(t) stands for an unknown Rn-valued function of the real variable t and ẋ =
dx

dt
denotes the

corresponding derivative vector of x.

A vector x0 ∈ Rn is a consistent initial vector for the differential equation

(2.2) Aẋ+Bx = f

if the initial value problem

(2.3) Aẋ+Bx = f, x(t0) = x0,

possesses at least one solution. In this case, x(t0) = x0 is said to be a consistent initial condition. Further-

more, (2.2) is called tractable if (2.3) has a unique solution for each consistent initial vector x0 [2].

Theorem 2.3. [2] Let A,B ∈ Rn×n. The homogeneous differential equation Aẋ+Bx = 0 is tractable if

and only if (λA+B)−1 exists for some λ ∈ R.

Let A,B ∈ Rn×n. Let f (k) ∈ Rn be the k-th term of a sequence of vectors, k = 0, 1, 2, . . . Throughout

the present work, x(k) ∈ Rn stands for the k-th term of an unknown sequence of vectors, k = 0, 1, 2, . . . We

assume that x(0) = x0 is given.

A vector x0 ∈ Rn is a consistent initial vector for the difference equation

(2.4) Ax(k+1) = Bx(k) + f (k)

if the initial value problem

(2.5) Ax(k+1) = Bx(k) + f (k), k = 1, 2, . . . , x(0) = x0,

has a solution for x(k). In this case, x(0) = x0 is said to be a consistent initial condition. Furthermore, (2.4)

is called tractable if (2.5) has a unique solution for each consistent initial vector x0 [2].

Theorem 2.4. [2] Let A,B ∈ Rn×n. The homogeneous difference equation Ax(k+1) = Bx(k) is tractable

if and only if (λA+B)−1 exists for some λ ∈ R.
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3. Matrix properties related to Su. In this section, several properties connected to the matrices Su
are presented. The first result allows to ease the computation of their powers.

Proposition 3.1. Let n ∈ {3, 7}, u ∈ Rn, β = ‖u‖ and m ∈ N. Then

(i) S2m+1
u = (−1)mβ2mSu;

(ii) S2m
u = (−1)m+1β2m−2uuT + (−1)mβ2mIn.

Proof. By induction, owed to properties (ii), (iv) and (v) of Su in Proposition 2.1.

Next, the invertibility of some matrices related to Su is studied.

Proposition 3.2. Let n ∈ {3, 7}, u, v ∈ Rn and γ ∈ R. The matrix γSu + Sv is singular.

Proof. As Su and Sv are skew-symmetric matrices, then, for any γ ∈ R, γSu+Sv is also skew-symmetric

of odd order. Hence, det(γSu + Sv) = 0.

Proposition 3.3. Let n ∈ {3, 7}, v ∈ Rn and α ∈ R. The matrix Sv + αIn is non-singular if and only

if α 6= 0.

Proof. An easy calculation of det(Sv +αIn) leads to α(α2 +‖v‖2) if v ∈ R3 and α(α2 +‖v‖2)3 if v ∈ R7.

In the stated conditions, det(Sv + αIn) = 0 if and only if α = 0.

The remaining results of this section are devoted to the indexes of Su and certain related matrices.

Theorem 3.4. Let n ∈ {3, 7} and u ∈ Rn\{0}. Then Ind(Su) = 1.

Proof. Let u ∈ R3\{0}. The matrix Su has index 1 if R3 = R(Su)⊕N(Su).

First of all, from (iv) in Proposition 2.1, every x ∈ R3 can be written as x = 1
‖u‖2 (uuTx−S2

ux). Clearly,

S2
ux ∈ R(Su). By (ii) in Proposition 2.1, uuTx ∈ N(Su) since Su(uuTx) = (Suu)(uTx) = 0.

Secondly, let x ∈ R(Su) ∩ N(Su). As x ∈ R(Su), there exists y ∈ R3 such that x = Suy. In addition,

x ∈ N(Su) which, together with (v) in Proposition 2.1, allows to write 0 = S2
ux = S3

uy = −‖u‖2Suy.

Consequently, y ∈ N(Su), which implies x = 0.

A perfectly analogous reasoning provides a proof for u ∈ R7\{0}.

Lemma 3.5. Let n ∈ {3, 7} and u ∈ Rn\{0}. Then N(Su) = 〈u〉.

Proof. Let n ∈ {3, 7} and u ∈ Rn\{0}. The inclusion 〈u〉 ⊆ N(Su) follows from (i) and (ii) in Proposition

2.1, since, for all γ ∈ R, Su(γu) = 0. As proved in [1] for n = 7 and in [9] for n = 3, the eigenvalues of Su
are 0 and ±‖u‖i. Furthermore, the characteristic polynomial of Su can be written as

det(Su − xIn) = −x(x2 + utu)s,

where s = 3 if n = 7 and s = 1 if n = 3. In both cases, the eigenvalue 0 has algebraic multiplicity 1.

As 0 6= u ∈ N(Su), the geometric multiplicity of 0 is 1. Hence, dim N(Su) = dim 〈u〉 = 1. Therefore,

N(Su) = 〈u〉.

Theorem 3.6. Let n ∈ {3, 7}, u, v ∈ Rn\{0} and α ∈ R\{0}. Then Ind((Sv + αIn)−1Su) = 1.

Proof. Let n ∈ {3, 7}, u, v ∈ Rn\{0} and α ∈ R\{0}. By Proposition 3.3, Sv + αIn is non-singular.

Suppose that

N((Sv + αIn)−1Su) ( N(((Sv + αIn)−1Su)2).
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Hence, there exists x ∈ Rn\{0} such that ((Sv + αIn)−1Su)2x = 0 and (Sv + αIn)−1Sux 6= 0. It is clear

that N((Sv + αIn)−1Su) = N(Su). From Lemma 3.5, N(Su) = 〈u〉. Thus, (Sv + αIn)−1Sux = δu for some

δ ∈ R\{0}, that is, Sux = δ(Svu+αu). This implies that δαu = u×x−δv×u and so, 〈u, δαu〉 = 〈u, u×x−δv×
u〉 = 0, that is, δα‖u‖2 = 0, which is a contradiction. Finally, N(((Sv +αIn)−1Su)0) 6= N((Sv +αIn)−1Su).

The result is proved.

4. Vector cross product differential equations. In the present section, some vector cross product

differential equations in R3 and in R7 are considered.

Theorem 4.1. Let n ∈ {3, 7}, b ∈ Rn\{0} and x = x(t) an unknown Rn-valued function of the real

variable t. The unique solution of the vector cross product differential equation

(4.6) ẋ+ b× x = 0,

with initial condition x(t0) = x0, is

(4.7) x(t) = cos(β(t− t0))x0 −
sin(β(t− t0))

β
Sbx0 +

1− cos(β(t− t0))

β2
bbTx0,

where β = ‖b‖. Moreover, for any t, ‖x(t)‖ is constant and equal to ‖x0‖.

Proof. From (2.1), equation (4.6) assumes the form ẋ + Sbx = 0, which is a tractable equation by

Theorem 2.3. In fact, from Proposition 3.3, (λIn + Sb)
−1 exists for every λ ∈ R\{0}. As the coefficient of

the term in ẋ is a non-singular matrix, the classical theory recalled in [2, p. 171] applies to the homogeneous

initial value problem ẋ+ Sbx = 0, x(t0) = x0. Its unique solution is given by

x(t) = e−(t−t0)Sbx0.

Invoking Theorem 2.2, we obtain (4.7). Since the transformation e−(t−t0)Sb is orthogonal, then, for any t,

‖x0‖ = ‖e−(t−t0)Sbx0‖ = ‖x(t)‖.

Theorem 4.2. Let n ∈ {3, 7}, b ∈ Rn\{0}, f = f(t) a Rn-valued function of the real variable t,

continuous in some interval containing t0, and x = x(t) an unknown Rn-valued function of the real variable

t. The unique solution of the vector cross product differential equation

(4.8) ẋ+ b× x = f,

with initial condition x(t0) = x0, is

x(t) = cos(β(t− t0))x0 −
sin(β(t− t0))

β
Sbx0 +

1− cos(β(t− t0))

β2
bbTx0

+

∫ t

t0

(
cos(β(t− s))− sin(β(t− s))

β
Sb +

1− cos(β(t− s))
β2

bbT
)
f(s)ds,

(4.9)

where β = ‖b‖.

Proof. Again by (2.1), we can rewrite equation (4.8) as ẋ + Sbx = f , where the coefficient of the term

in ẋ is a non-singular matrix. Thus, the classical theory applies to the inhomogeneous initial value problem

ẋ+ Sbx = f, x(t0) = x0. Its unique solution is given by

x(t) = e−(t−t0)Sbx0 +

∫ t

t0

e−(t−s)Sbf(s)ds.

From Theorem 2.2, we obtain (4.9).
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Theorem 4.3. Let n ∈ {3, 7}, a, b ∈ Rn\{0} and x = x(t) an unknown Rn-valued function of the real

variable t. The vector cross product differential equation

(4.10) a× ẋ+ b× x = 0

is not tractable.

Proof. From (2.1), the rewriting of equation (4.10) leads to Saẋ+ Sbx = 0. By Proposition 3.2, for any

λ ∈ R, λSa + Sb is a singular matrix and the result follows from Theorem 2.3.

Taking into account the previous result, the remaining part of the section is devoted to the study of

differential equations which can be considered as perturbations of (4.10).

Theorem 4.4. Let n ∈ {3, 7}, a, b ∈ Rn\{0}, α ∈ R\{0} and x = x(t) an unknown Rn-valued function

of the real variable t. A vector x0 ∈ Rn is a consistent initial vector for the vector cross product differential

equation

(4.11) a× ẋ+ b× x+ αx = 0

if and only if x0 is of the form

(4.12) x0 = ŜaŜ
D
a q,

for some q ∈ Rn, where

(4.13) Ŝa = − 1

α2 + btb

(
Sb − αIn −

1

α
bbT
)
Sa.

Moreover, if x0 ∈ Rn is a consistent initial vector for (4.11), then the unique solution of (4.11), with initial

condition x(t0) = x0, is

(4.14) x(t) = e−Ŝ
D
a (t−t0)ŜaŜ

D
a x0.

Proof. According to (2.1), equation (4.11) assumes the form Saẋ + (Sb + αIn)x = 0 where α ∈ R\{0}.
Let us denote Sb + αIn by B, matrix which, due to Proposition 3.3, is non-singular. Thus, (λSa + B)−1

exists for λ = 0 and, by Theorem 2.3, Saẋ+Bx = 0 is a tractable equation.

Following the notation in [2], let

Ŝa,λ = (λSa +B)−1Sa and B̂λ = (λSa +B)−1B,

where λ ∈ R is such that λSa + B is non-singular. By [2, Theorem 9.2.2, p. 174], the consistency of an

initial vector for (4.11) and its general solution are independent of the used λ. Hence, in what follows, we

drop the subscripts λ and take λ = 0.

From Theorem 3.6, Ind(Ŝa) = 1. Invoking [2, Theorem 9.2.3, p. 175], we obtain the necessary and

sufficient condition x0 ∈ R(Ŝa) = R(ŜDa Ŝa) for a vector x0 ∈ Rn to be a consistent initial vector for (4.11).

Since ŜDa Ŝa = ŜaŜDa , we get (4.12). As Ŝa = B−1Sa, then, by (vi) of Proposition 2.1, we obtain (4.13).

Assume now that x0 ∈ Rn is a consistent initial vector for (4.11). As B̂ = In, once again from [2,

Theorem 9.2.3], the unique solution of the homogeneous initial value problem Saẋ + Bx = 0, x(t0) = x0, is

given by (4.14).
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Theorem 4.5. Let n ∈ {3, 7}, a, b ∈ Rn\{0}, α ∈ R\{0}, f = f(t) a Rn-valued function of the real

variable t, continuously differentiable around t0, and x = x(t) an unknown Rn-valued function of the real

variable t. A vector x0 ∈ Rn is a consistent initial vector for the vector cross product differential equation

(4.15) a× ẋ+ b× x+ αx = f

if and only if x0 is of the form

(4.16) x0 = (I − ŜaŜDa )f̂(t0) + ŜaŜ
D
a q,

for some vector q ∈ Rn, where

(4.17) Ŝa = − 1

α2 + btb

(
Sb − αIn −

1

α
bbT
)
Sa

and

(4.18) f̂ = − 1

α2 + btb

(
Sb − αIn −

1

α
bbT
)
f.

Moreover, if x0 ∈ Rn is a consistent initial vector for (4.15), then the unique solution of (4.15), with initial

condition x(t0) = x0, is

(4.19) x(t) = e−Ŝ
D
a (t−t0)ŜaŜ

D
a x0 + e−Ŝ

D
a t

∫ t

t0

eŜ
D
a sŜDa f̂(s) ds+ (I − ŜaŜDa )f̂(t).

Proof. By (2.1), we can rewrite equation (4.15) as Saẋ+ (Sb + αIn)x = f , where α ∈ R\{0}. As in the

proof of Theorem 4.4, let B = Sb + αIn, Ŝa = B−1Sa, B̂ = In, f̂ = B−1f .

Taking into account Theorem 3.6, Ind(Ŝa) = 1. The necessary and sufficient condition for a vector

x0 ∈ Rn to be a consistent initial vector for (4.15), which is x0 ∈ {(I− ŜaŜDa )f̂(t0) +R(ŜDa Ŝa)}, comes from

[2, Theorem 9.2.3, p. 175]. Hence, we get (4.16). By (vi) of Proposition 2.1, we obtain (4.17) and (4.18).

Suppose now that x0 ∈ Rn is a consistent initial vector for (4.15). Once again from [2, Theorem 9.2.3],

the unique solution of the inhomogeneous initial value problem Saẋ+Bx = f, x(t0) = x0, is given by (4.19).

5. Vector cross product difference equations. In the present section, some vector cross product

difference equations in R3 and in R7 are considered.

Theorem 5.1. Let n ∈ {3, 7}, b ∈ Rn\{0} and x(k) ∈ Rn the k-th term of an unknown sequence of

vectors, k = 0, 1, 2, . . . The unique solution of the vector cross product difference equation

(5.20) x(k+1) = b× x(k),

with initial condition x(0) = x0, is

(5.21) x(k) =


x0, k = 0

(−1)
k−1
2 βk−1Sbx0, k ∈ N, odd(

(−1)
k
2+1βk−2bbT + (−1)

k
2 βkIn

)
x0, k ∈ N, even

where β = ‖b‖.
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Proof. Due to (2.1), equation (5.20) assumes the form x(k+1) = Sbx
(k), which is a tractable equation by

Theorem 2.4. In fact, from Proposition 3.3, (λIn + Sb)
−1 exists for every λ ∈ R\{0}. Taking into account

the recurrence relation, the unique solution of the homogeneous initial value problem x(k+1) = Sbx
(k),

k = 0, 1, 2, . . . , x(0) = x0, is given by

x(k) = Skb x0, k = 0, 1, 2, . . .

From Proposition 3.1, we arrive at (5.21).

Theorem 5.2. Let n ∈ {3, 7}, b ∈ Rn\{0}, f (k) ∈ Rn the k-th term of a sequence of vectors, k =

0, 1, 2, . . . , and x(k) ∈ Rn the k-th term of an unknown sequence of vectors, k = 0, 1, 2, . . . The unique

solution of the vector cross product difference equation

(5.22) x(k+1) = b× x(k) + f (k),

with initial condition x(0) = x0, is

(5.23) x(k) =



x0, k = 0

(−1)
k−1
2 βk−1Sbx0 +

k−1∑
i=0

Sk−1−ib f (i), k ∈ N, odd

(
(−1)

k
2+1βk−2bbT + (−1)

k
2 βkIn

)
x0 +

k−1∑
i=0

Sk−1−ib f (i), k ∈ N, even

where β = ‖b‖.

Proof. Again by (2.1), equation (5.22) assumes the form x(k+1) = Sbx
(k) + f (k). The recurrence relation

allows to obtain the unique solution of the inhomogeneous initial value problem x(k+1) = Sbx
(k) + f (k),

k = 0, 1, 2, . . . , x(0) = x0, given by

(5.24) x(k) = Skb x0 +

k−1∑
i=0

Sk−1−ib f (i), k = 1, 2, . . .

From Proposition 3.1, we obtain (5.23).

Corollary 5.3. Let n ∈ {3, 7}, b ∈ Rn\{0}, c ∈ Rn and x(k) ∈ Rn the k-th term of an unknown

sequence of vectors, k = 0, 1, 2, . . . The unique solution of the vector cross product difference equation

(5.25) x(k+1) = b× x(k) + c,

with initial condition x(0) = x0, is

(5.26) x(k) =



x0, k = 0

(−1)
k−1
2 βk−1Sbx0 +

k−1∑
i=0

Sibc, k ∈ N, odd

(
(−1)

k
2+1βk−2bbT + (−1)

k
2 βkIn

)
x0 +

k−1∑
i=0

Sibc, k ∈ N, even

where β = ‖b‖.

Proof. A particular case of the previous result, putting c instead of the sequence
(
f (k)

)
k∈N0

.
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Remark 5.4. As, by [1], the eigenvalues of Sb are 0 and ±‖b‖i, the matrix In−Sb is invertible. Assume

that all eigenvalues λl of Sb satisfy ‖λl‖ < 1. Under this hypothesis, we have

k−1∑
i=0

Sib = (In − Sb)−1
(
In − Skb

)
,

which leads to an alternative expression for the sum in (5.26).

Theorem 5.5. Let n ∈ {3, 7}, a, b ∈ Rn\{0} and x(k) ∈ Rn the k-th term of an unknown sequence of

vectors, k = 0, 1, 2, . . . The vector cross product difference equation

(5.27) a× x(k+1) = b× x(k)

is not tractable.

Proof. From (2.1), the rewriting of equation (5.27) leads to Sax
(k+1) = Sbx

(k). From Proposition 3.2,

for any λ ∈ R, λSa + Sb is a singular matrix and the result follows from Theorem 2.4.

Similarly to Section 4, due to the previous result, perturbed versions of the difference equation (5.27)

are now studied.

Theorem 5.6. Let n ∈ {3, 7}, a, b ∈ Rn\{0}, α ∈ R\{0} and x(k) ∈ Rn the k-th term of an unknown

sequence of vectors, k = 0, 1, 2, . . . A vector x0 ∈ Rn is a consistent initial vector for the vector cross product

difference equation

(5.28) a× x(k+1) = b× x(k) + αx(k)

if and only if x0 is of the form

(5.29) x0 = ŜaŜ
D
a q,

for some q ∈ Rn, where

(5.30) Ŝa = − 1

α2 + btb

(
Sb − αIn −

1

α
bbT
)
Sa.

Moreover, if x0 ∈ Rn is a consistent initial vector for (5.28), then the unique solution of (5.28), with initial

condition x(0) = x0, is

(5.31) x(k) =
(
ŜDa

)k
x0, k = 0, 1, 2, . . .

Proof. From (2.1), equation (5.28) assumes the form Sax
(k+1) = Bx(k), where B = Sb + αIn with

α ∈ R\{0}, by Proposition 3.3, is non-singular. Owed to this fact, λSa + B is also a non-singular matrix if

λ = 0 and, by Theorem 2.4, (5.28) is a tractable equation.

Following the notation in [2], let

Ŝa,λ = (λSa +B)−1Sa and B̂λ = (λSa +B)−1B,

where λ ∈ R is such that λSa + B is non-singular. By [2, Theorem 9.2.2, p. 174], the consistency of an

initial vector for (5.28) and its general solution are independent of the used λ. Hence, in what follows, we

drop the subscripts λ and take λ = 0.
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By Theorem 3.6, Ind(Ŝa) = 1. Invoking [2, Theorem 9.3.2, pp. 182–183], we get the necessary and

sufficient condition x0 ∈ R(Ŝa) = R(ŜDa Ŝa) for a vector x0 ∈ Rn to be a consistent initial vector for (5.28).

As ŜDa Ŝa = ŜaŜDa , we obtain (5.29). Since Ŝa = B−1Sa, then, by (vi) of Proposition 2.1, we arrive at (5.30).

Suppose now that x0 ∈ Rn is a consistent initial vector for (5.28). Since B̂ = In, once again from [2,

Theorem 9.3.2], the unique solution of the homogeneous initial value problem Sax
(k+1) = Bx(k), k = 0, 1, . . . ,

x(0) = x0, is given by (5.31).

Theorem 5.7. Let n ∈ {3, 7}, a, b ∈ Rn\{0}, α ∈ R\{0}, f (k) ∈ Rn the k-th term of a sequence of

vectors, k = 0, 1, 2, . . . , and x(k) ∈ Rn the k-th term of an unknown sequence of vectors, k = 0, 1, 2, . . . A

vector x0 ∈ Rn is a consistent initial vector for the vector cross product difference equation

(5.32) a× x(k+1) = b× x(k) + αx(k) + f (k), k = 0, 1, 2, . . . ,

if and only if x0 is of the form

(5.33) x0 = −
(
In − ŜaŜDa

)
f̂ (0) + ŜaŜ

D
a q,

for some q ∈ Rn, where

(5.34) Ŝa = − 1

α2 + btb

(
Sb − αIn −

1

α
bbT
)
Sa

and

(5.35) f̂ (k) = − 1

α2 + btb

(
Sb − αIn −

1

α
bbT
)
f (k).

Moreover, if x0 ∈ Rn is a consistent initial vector for (5.32), then the unique solution of (5.32), with initial

condition x(0) = x0, is

(5.36) x(k) =


x0, k = 0(
ŜDa

)k
ŜaŜ

D
a x0 + ŜDa

k−1∑
i=0

(
ŜDa

)k−i−1
f̂ (i) −

(
In − ŜaŜDa

)
f̂ (k), k = 1, 2, . . .

Proof. The rewriting of equation (5.32) leads to Sax
(k+1) = Bx(k) + f (k), where B = Sb + αIn with

α ∈ R\{0}, since we have (2.1). As in the proof of Theorem 5.6, let Ŝa = B−1Sa, B̂ = In, f̂ (k) = B−1f (k).

From Theorem 3.6, Ind(Ŝa) = 1. The necessary and sufficient condition for a vector x0 ∈ Rn to be a

consistent initial vector for (5.32), which is x0 ∈ {−(In − ŜaŜDa )f̂ (0) + R(ŜDa Ŝa)}, comes from [2, Theorem

9.3.2, pp. 182–183]. Thus, we obtain (5.33). By (vi) of Proposition 2.1, we get (5.34) and (5.35).

Assume now that x0 ∈ Rn is a consistent initial vector for (5.32). Once again from [2, Theorem 9.3.2],

the unique solution of the inhomogeneous initial value problem Sax
(k+1) = Bx(k) + f (k), k = 0, 1, 2, . . . ,

x(0) = x0, is given by (5.36).
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