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DETERMINANTAL PROPERTIES OF GENERALIZED

CIRCULANT HADAMARD MATRICES∗
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Abstract. The derivation of analytical formulas for the determinant and the minors of a given matrix is in general

a difficult and challenging problem. The present work is focused on calculating minors of generalized circulant Hadamard

matrices. The determinantal properties are studied explicitly, and generic theorems specifying the values of all the minors for

this class of matrices are derived. An application of the derived formulae to an interesting problem of numerical analysis, the

growth problem, is also presented.
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1. Introduction and motivation of the problem. Determinants and principal minors arise in nu-

merous fields due to their immediate connections to solving linear systems, matrix inversions, handling

eigenvalue problems and so forth. Various applications of determinant theory include self-validating algo-

rithms, the detection of P-matrices [6], the interval matrix analysis, the determinantal assignment problem

[12] and the specification of pivot patterns of matrices [10].

The importance of determinants motivates their extensive research, which concerns in particular the

challenging issue of their efficient evaluation. Direct methods based on various LU-factorizations of a given

square matrix A of order n require a heavy computational cost of O(2n ·n3) [6]. Therefore, whenever possible,

it is useful to develop analytical formulae for determinants and minors, taking advantage of the structural

properties of matrices.

The analytical approach was successful in case of Hadamard matrices (Definition 1.1 below; see [8] for

further details and applications), for which analytical expressions for their determinant and principal minors

up to certain orders were found.

Definition 1.1. A Hadamard matrix H of order n has entries ±1 and satisfies HHT = HTH = nIn
for In denoting the identity matrix of order n.

Definition 1.1 immediately implies the important property that every two distinct rows or columns of

a Hadamard matrix are mutually orthogonal. Using the orthogonality of any three rows, one can easily

demonstrate that the order of a Hadamard matrix can only be n = 1, 2, or n ≡ 0 mod 4. As mentioned

above, the special structure of Hadamard matrices allowed to characterize their minors of certain orders.

Achieved results are summarized in the following theorem.

Theorem 1.2. [9, 13] Let us consider a Hadamard matrix of order n. Its n− j minors for j = 1, 2, 3, 4

are specified as follows: The n− 1 minors are ±nn
2−1. The n− 2 minors are 0 or 2n

n
2−2. The n− 3 minors

are 0 or 4n
n
2−3. The n− 4 minors are 0, 8n

n
2−4 or 16n

n
2−4.
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The existence of analytical expressions for minors of Hadamard matrices, as shown in Theorem 1.2,

encourages the study of variations of Hadamard matrices, as it may lead to analytical formulae for all or

some of their minors as well. Besides, there is another important motivation, which stems from a theory of

the so-called growth factor. The growth factor of a matrix A, denoted by g(A), measures the stability of

Gaussian elimination applied to the system A · x = b. (We will provide exact definition of g(A) and more

details in Section 3.) The growth factor is usually substantially smaller than the order of the given matrix,

making the Gaussian elimination stable. However, this empiric rule is broken by Hadamard matrices, which

have, according to numerical results and Cryer’s Conjecture [1], the growth factor equal to their order.

Furthermore, Hadamard matrices are the only known examples of matrices with such property.

These surprising facts about the growth factor, together with the explicit results of Theorem 1.2, strongly

motivate the study of determinantal properties of other variations of Hadamard matrices. The research may

lead to analytical formulae for all or some of their minors, as well as contribute to proving Cryer’s Conjecture,

which has further consequences on the theory of numerical stability of solving linear systems.

In this paper, we will focus on a variation of Hadamard matrices that is introduced in Definition 1.3.

Definition 1.3. We call a circulant matrix C a generalized circulant Hadamard matrix (GCH matrix)

with diagonal d if the off-diagonal entries of C take values from {−1, 1}, the diagonal entries are equal to

d ∈ R and the rows of C are mutually orthogonal.

Definition 1.3 extends the notion of circulant Hadamard matrices, which correspond to d ∈ {1,−1}.
The structure of GCH matrices was studied in [14]. It was proved that if 2d ∈ N0, then there exists a GCH

matrix with diagonal d of order n = 2d + 2, and its first row is equal to one of the following vectors:

(d,−1,−1,−1, . . . ,−1),(1.1a)

(d, 1,−1, 1,−1, 1, . . . ,−1, 1),(1.1b)

(d,−1, 1, 1,−1,−1, 1, 1,−1, . . . ,−1,−1, 1, 1),(1.1c)

(d, 1, 1,−1,−1, 1, 1,−1,−1, . . . ,−1, 1, 1,−1).(1.1d)

Furthermore, it was conjectured ibidem that vectors (1.1) cover all existing GCH matrices with nonnegative

diagonal d ≥ 0; i.e., the first row of any GCH matrix with d ≥ 0 is equal to one of the vectors (1.1a)–(1.1d).

This conjecture was proved except for d being odd integer and C 6= CT .

We will calculate the minors of generalized circulant Hadamard matrices, providing analytical formulae

and stating explicit theorems concerning the convergence of the quotients of subsequent minors. This result

is immediately applied to the growth problem, which characterizes the stability of Gaussian elimination in

numerical analysis.

The paper is organized as follows. In Sections 2.1–2.4, we study explicitly the minors of generalized

circulant Hadamard matrices, whose first rows are given by vectors (1.1). For each type of those matrices,

we derive formulae for their principal minors. Section 3 is devoted to the growth problem. We describe the

notion of growth factor and provide its analytic evaluation for the class of GCH matrices. In particular,

although Hadamard matrices attain a large growth factor, which is conjectured to be equal to their dimension

[1], we prove that the growth factor of generalized circulant Hadamard matrices can approach the smallest

value that the growth factor can take, i.e., the value of 1. Numerical examples are reported in Section 4,

and Section 5 contains concluding remarks.

Throughout the paper, the symbol Ik represents the identity matrix of order k, the superscript T denotes
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the transpose, the symbol ' means “approximately equal to” and the symbol� means “much smaller than”.

A principal minor of order j of a given matrix will be denoted as A(j).

2. Minors of generalized circulant Hadamard matrices.

2.1. Case I: Matrices with first row (d,−1,−1,−1, . . . ,−1). Let Cn be a circulant n × n matrix

having the first row in the form (d,−1,−1,−1, . . . ,−1) with d = n
2 − 1. For every j ≤ n, denote as C

(j)
n the

upper left j × j submatrix of Cn. Possible j × j minors of Cn, up to permutations of rows and columns, are

(2.2) A(j) := det(C(j)
n ) (leading principal minor),

(2.3) B(j) :=

∣∣∣∣∣∣∣∣∣
−1

C
(j−1)
n

...

−1

−1 · · · −1 −1

∣∣∣∣∣∣∣∣∣ ,
and also ∣∣∣∣∣∣∣∣∣∣∣∣

−1 −1

C
(j−2)
n

...
...

−1 −1

−1 · · · −1 −1 −1

−1 · · · −1 −1 −1

∣∣∣∣∣∣∣∣∣∣∣∣
, . . . ,

∣∣∣∣∣∣∣∣∣∣
C

(1)
n −1 . . . −1

−1 −1 · · · −1
...

...
...

−1 −1 · · · −1

∣∣∣∣∣∣∣∣∣∣
,

which are equal to 0.

Now we derive analytical formulae for the minors A(j) and B(j) of a GCH matrix Cn.

Proposition 2.1. The leading principal minor of Cn of order j equals

A(j) = (d + 1)j−1(d + 1− j).

Proof. We have

C(j)
n − (d + 1)Ij =


−1 −1 · · · −1

−1 −1 · · · −1
...

...
...

−1 −1 · · · −1

 .

Recall that A(j) = det(C
(j)
n ) (equation (2.2)). The matrix C

(j)
n −(d+1)Ij has an eigenvalue 0 with multiplicity

j − 1 and an eigenvalue −j with multiplicity 1. Therefore, C
(j)
n has eigenvalues d + 1 and d + 1 − j with

multiplicities j − 1 and 1, respectively. Hence,

det(C(j)
n ) = (d + 1)j−1(d + 1− j).

Proposition 2.2. The minor B(j), defined in equation (2.3), equals

B(j) = −(d + 1)j−1.
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Proof. We notice that each minor B(j) is equal to∣∣∣∣∣∣∣∣∣∣∣∣

d −1 · · · −1 −1

−1 d · · · −1 −1
...

...
. . .

...
...

−1 −1 · · · d −1

−1 −1 · · · −1 −1

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣

d + 1 0 · · · 0 0

0 d + 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · d + 1 0

−1 −1 · · · −1 −1

∣∣∣∣∣∣∣∣∣∣∣∣
= −(d + 1)j−1.

2.2. Case II: Matrices with first row (d, 1,−1, 1, . . . ,−1, 1). In this section, let Cn be a circulant

n× n matrix having the first row in the form (d, 1,−1, 1, . . . , 1) with d = n
2 − 1. Consider a diagonal n× n

matrix D = diag(1,−1, 1,−1, 1,−1, . . . , 1,−1). We notice that DCnD is an n× n circulant matrix with the

first row (d,−1,−1, . . . ,−1), which we have already examined in Section 2.1. Minors of Cn are thus either

equal to the minors evaluated in Propositions 2.1 and 2.2, or equal to them up to the sign.

2.3. Case III: Matrices with first row (d,−1, 1, 1,−1,−1, 1, 1,−1, . . . ,−1,−1, 1, 1).

Proposition 2.3. Let Cn be a circulant matrix of order n with the first row given as

(d,−1, 1, 1,−1,−1, 1, 1,−1, . . . ,−1,−1, 1, 1).

The leading principal minor of Cn of order j satisfies

(2.4) A(j) =

 (d + 1)j−1
(
d + 1− j + j2

2(d+1)

)
if j is even;

(d + 1)j−1
(
d + 1− j + j2−1

2(d+1)

)
if j is odd.

Proof. Let C
(j)
n be the upper left j × j submatrix of Cn. Then,

C(j)
n − (d + 1)Ij =


−1 −1 1 1 −1 −1 1 1 · · ·
1 −1 −1 1 1 −1 −1 1 · · ·
1 1 −1 −1 1 1 −1 −1 · · ·
−1 1 1 −1 −1 1 1 −1 · · ·
...

...
...

...
...

...
...

...

 .

Since rank(C
(j)
n − (d + 1)Ij) = 2, the matrix C

(j)
n − (d + 1)Ij has an eigenvalue 0 of multiplicity j − 2.

Furthermore, it is easy to check that the vectors

(1, i,−1,−i, 1, i,−1,−i, . . .)T and (1,−i,−1, i, 1,−i,−1, i, . . .)T

are eigenvectors of C
(j)
n − (d + 1)Ij . They correspond to eigenvalues

• − j
2 (1 + i) and − j

2 (1− i), respectively, for even j;

• − j
2 − i

√(
j
2

)2 − 1
2 and − j

2 + i

√(
j
2

)2 − 1
2 , respectively, for odd j.

Therefore, C
(j)
n has an eigenvalue d + 1 with multiplicity j − 2 and two simple eigenvalues, given as

• d + 1− j
2 (1 + i) and d + 1− j

2 (1− i), respectively, for even j;

• d + 1− j
2 − i

√(
j
2

)2 − 1
2 and d + 1− j

2 + i

√(
j
2

)2 − 1
2 , respectively, for odd j.
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Consequently, if j is even, the determinant of C
(j)
n is

(d + 1)j−2
(
d + 1− j

2
(1 + i)

)(
d + 1− j

2
(1− i)

)
= (d + 1)j−1

(
d + 1− j +

j2

2(d + 1)

)
.

If j is odd, the determinant of C
(j)
n equals

(d+1)j−2

d + 1− j

2
− i

√(
j

2

)2

− 1

2

d + 1− j

2
+ i

√(
j

2

)2

− 1

2

 = (d+1)j−1
(
d + 1− j +

j2 − 1

2(d + 1)

)
.

Finally, A(j) = det(C
(j)
n ) gives formula (2.4).

The next result presents a majorization inequality between the principal minors and the minors of the

matrix Cn.

Proposition 2.4. Let Cn be a circulant matrix of order n with the first row

(d,−1, 1, 1,−1,−1, 1, 1,−1, . . . ,−1,−1, 1, 1).

The absolute value of every minor of Cn of order j formed by the elements of Cn from rows 1, 2, . . . , j and

columns 1, 2, . . . , j − 1, ` for a certain ` > j is less or equal to the absolute value of A(j), given by formula

(2.4). Thus, the principal minors majorize the minors of Cn.

Proof. Any j × j minor of Cn satisfying the assumptions takes the form

B(j) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

d −1 1 1 −1 −1 · · ·
1 d −1 1 1 −1 · · ·
1 1 d −1 1 1 · · ·
−1 1 1 d −1 1 · · ·
−1 −1 1 1 d −1 · · ·
1 −1 −1 1 1 d · · ·
...

...
...

...
...

...
. . .

d

±1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

d −1 1 1 −1 −1 · · ·
1 d −1 1 1 −1 · · ·

1 + d 0 d + 1 0 0 0 · · · 0 0

0 1 + d 0 d + 1 0 0 · · · 0 0

−(1 + d) 0 0 0 d + 1 −1 · · · 0 0

0 −(1 + d) 0 0 0 d + 1 · · · 0 0
...

...
...

...
...

...
. . .

d + 1 0

0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

The last row begins with one of the pairs (1 + d, 0), (0, 1 + d), (−(1 + d), 0), (0,−(1 + d)); the remaining

terms in the row vanish. Taking advantage of the fact that the last row has only one nonzero term, we arrive

at the result |B(j)| = (d + 1)j−1.

In the next step, we compare |B(j)| with |Aj(j)| given by equation (2.4). We distinguish 4 possible

cases. Recall that d = n
2 − 1.
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• If j ≤ n
2 − 1, equation (2.4) gives

|A(j)| ≥ (d + 1)j−1(d + 1− j) ≥ (d + 1)j−1
(n

2
− (

n

2
− 1)

)
= (d + 1)j−1 = |B(j)|.

• If j = n
2 , j is even (because n is a multiple of 4). Then

|A(j)| = (d + 1)j−1
(
d + 1− j +

j2

2(d + 1)

)
= (d + 1)j−1

(
d + 1− n

2
+

n

4

)
= (d + 1)j−1 · n

4
.

Therefore, for all n ≥ 4, we have |A(j)| ≥ (d + 1)j−1 = |B(j)|.
• If j = n

2 + 1, j is odd (because n is a multiple of 4). Then

|A(j)| = (d + 1)j−1
(
d + 1− j +

j2 − 1

2(d + 1)

)
) = (d + 1)j−1

(n
2
− n

2
− 1 +

n

4
+ 1
)

= (d + 1)j−1 · n
4
.

Hence, |A(j)| ≥ (d + 1)j−1 = |B(j)| for every n ≥ 4.

• If j ≥ n
2 + 1, we have

|A(j)| ≥ (d + 1)j−1
(
d + 1− j +

j2 − 1

2(d + 1)

)
= (d + 1)j−1

(
n

2
− j +

j2 − 1

n

)
= (d + 1)j−1

(
n

4
− 1

n
+

1

n

(
j − n

2

)2)
≥ (d + 1)j−1

(
n

4
− 1

n
+

1

n

)
= (d + 1)j−1 · n

4
,

i.e., |A(j)| ≥ (d + 1)j−1 = |B(j)| for all n ≥ 4.

2.4. Case IV: Matrices with first row (d, 1, 1,−1,−1, 1, 1,−1,−1, . . . ,−1, 1, 1,−1). In this section,

let Cn be a circulant n×n matrix having the first row in the form (d, 1, 1,−1,−1, . . . , 1,−1) with d = n
2 −1.

Consider a diagonal n× n matrix D = diag(1,−1, 1,−1, 1,−1, . . . , 1,−1). It is easy to see that DCnD is an

n × n circulant matrix with the first row (d,−1, 1, 1,−1, . . . ,−1, 1, 1), which we have already examined in

Section 2.3. Minors of Cn are thus equal to the minors evaluated in Propositions 2.3 and 2.4, possibly taken

with the opposite sign.

3. Application to the growth problem.

3.1. Description of the problem. Consider a linear system of the form A · x = b, where A = [aij ] ∈
Rn×n is nonsingular. Gaussian elimination (GE) [2, 7] is the simplest way to solve such a system, and thus,

it is used as a standard method for solving it on computers. However, since GE becomes less precise if any

pivot is close to zero, a search for the element with maximum absolute value is performed. If the search

is done in the respective column, then the procedure is called GE with partial pivoting ; if the search is

performed in the whole respective lower right submatrix, we call the procedure GE with complete pivoting.

Let A[k] = (a
[k]
ij ) denote the matrix obtained after the first k pivoting operations, so A[n−1] is the final upper

triangular matrix. Note that the diagonal of A[n−1] is formed from the pivots chosen during the calculation.

Traditionally, backward error analysis for GE is expressed in terms of the growth factor

g(A) =
maxi,j,k |a[k]ij |
maxi,j |aij |

,
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which involves all the elements a
[k]
ij , k = 1, 2, . . . , n that occur during the elimination. The growth factor

g(A) actually measures how large the entries become during the process of elimination, and so it governs

the stability of GE. That is why the study of the growth factor is important.

Matrices with the property that no exchanges are actually needed during GE with complete pivoting are

called completely pivoted (CP) or feasible. Equivalently, a matrix is CP if the rows and columns are ordered

so that GE without pivoting satisfies the requirements for complete pivoting; in other words, if the element

with maximal absolute value in each elimination step appears on the diagonal position. For a CP matrix A

we have

(3.5) g(A) =
max{|p1|, |p2|, . . . , |pn|}

|a11|
,

where p1, p2, . . . , pn are the pivots of A. The study of the values attained by g(A) and the specification of

pivot patterns are referred to as the growth problem.

Lemma 3.1. [1, 3, 4] Let A be a CP matrix.

(i) The magnitude of the pivots appearing after application of GE operations on A is given by

pj =
A(j)

A(j − 1)
, j = 1, 2, . . . , n, A(0) = 1,(3.6)

where A(j) denotes the principal minor of A of order j.

(ii) The maximum j × j leading principal minor of A, when the first j − 1 rows and columns are fixed,

is A(j).

We see from Lemma 3.1 that a calculation of minors is useful for the study of pivot structures, and thus

to tackle the growth problem for CP matrices.

Numerical experiments show that the growth factor that appears in practice is typically substantially

smaller than the order of the given matrix. In [15, p. 213] it is stated that no real matrix A had been

discovered for which g(A) > n. This conjecture became one of the most famous problems in numerical

analysis [7] and has been investigated by many mathematicians. The conjecture was finally resolved by

Gould [5] who found an example of a 13× 13 matrix for which the growth was 13.0205. Furthermore, Cryer

[1] conjectured that for real n×n matrices whose entries are in [−1, 1] it holds that g(A) ≤ n , with equality

if and only if A is a Hadamard matrix. The part of Cryer’s conjecture regarding Hadamard matrices remains

open until nowadays. This, in particular, gives rise to an interesting problem of evaluation of the growth

factor of Hadamard matrices [7, page 181].

Currently Hadamard matrices are the only known matrices that experimentally attain growth factor

equal to their order, but even the class of Hadamard matrices has not been fully examined yet from the

point of view of the growth problem. A certain progress was achieved in [9], where analytical formulae for

some pivot values of CP Hadamard matrices were given. More specifically, the first 5 and the last 4 pivots

for any Hadamard matrix were determined. This effort allowed to characterize the growth of Hadamard

matrices up to order 16 [11], but still left the Cryer’s Conjecture unsolved. With regard to these facts, it is

natural to examine the growth factor on matrix classes that are related to Hadamard matrices.

In the present section, we will consider the class of generalized circulant Hadamard matrices and calculate

the corresponding growth factor, employing the results of Section 2.
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First of all, note that in this matrix class, the (1, 1) entry is dominant (having the greatest absolute

value) in all cases except for n = 2, d = 0 and n = 3, d = 1
2 . These two cases are readily solved by performing

GE directly, which leads to the following result:

• If n = 2, then p1 = p2 = 1; thus, g(C) = 1.

• If n = 3, then p1 = 1, p2 = 1.5, p3 = 2.25; thus, g(C) = 2.25.

From now on let n ≥ 4. Since the (1, 1) entry of C is dominant, we have p1 = d. The calculation of the

growth factor of C is then performed as follows.

1. Set S1 = {1}.
2. For all j = 2, . . . , n, find i ∈ {1, . . . , n}\Sj−1 such that the minor det(C{1,...,j},Sj

), corresponding to

rows 1, . . . , j and columns given by the set Sj = Sj−1 ∪ {i}, has maximal possible absolute value.

3. The pivots resulting from GE with complete pivoting are given by the formula

pj =
det(C{1,...,j},Sj

)

det(C{1,...,j−1},Sj−1
)
.

4. The sought growth factor of C is g(C) = max{|p1|,...,|pn|}
d .

3.2. Specification of pivots for Case I. The structure of generalized circulant Hadamard matrices

allowed us to derive analytical formulae for all their minors in Section 2. Using those results, we can find the

quotients of subsequent minors, and therefore proceed to expressing the pivot values in Gaussian elimination.

Proposition 3.2. The GE with complete pivoting applied on Cn having the first row (d,−1,−1, . . . ,−1)

leads to pivots pj, j = 1, . . . , n, the absolute values of which are given as follows.

• For all j ≤ n
2 − 1 and j ≥ n

2 + 2, we have

(3.7) |pj | =
n

2
· n− 2j

n− 2j + 2
.

• If n is even, then

|pn
2
| = |pn

2 +1| =
n

2
.

• If n is odd, then

|pn−1
2
| = n

3
, |pn+1

2
| = n

2
, |pn+3

2
| = 3n

4
.

Proof. For j = 1, we have trivially p1 = d = n
2 − 1, which is consistent with equation (3.7). If

1 < j ≤ n
2 −1, Propositions 2.1 and 2.2 together with n = 2d+2 imply the inequality |A(j)| ≥ |B(j)|; hence,

pj =
A(j)

A(j − 1)
= (d + 1) · d + 1− j

d + 1− (j − 1)
=

n

2
·

n
2 − j

n
2 − j + 1

for all j ≤ n
2 − 1.

Let us proceed to n
2 − 1 < j < n

2 + 2. We need to distinguish even and odd n.

• Let n be even. Then A(n
2 ) = 0 and B(n

2 ) = −(d+ 1)
n
2−1, i.e., |B(n

2 )| > |A(n
2 )|. Hence, we get |pn

2
|:

|pn
2
| =

∣∣∣∣ B(n
2 )

A(n
2 − 1)

∣∣∣∣ =

∣∣∣∣−(d + 1) · 1

d + 1− (n
2 − 1)

∣∣∣∣ =

∣∣∣∣−n

2
· 1

n
2 −

n
2 + 1

∣∣∣∣ =
n

2
.
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In order to find |pn
2 +1|, we express A(n

2 + 1) = (d+ 1)
n
2 (d+ 1− n

2 − 1) = −(d+ 1)
n
2 and B(n

2 + 1) =

−(d + 1)
n
2 . Since |A(n

2 + 1)| = |B(n
2 + 1)|, we conclude that

|pn
2 +1| =

∣∣∣∣A(n
2 + 1)

B(n
2 )

∣∣∣∣ = d + 1 =
n

2
.

• Let n be odd. It is easy to check that |A(n−1
2 )| < |B(n−1

2 )|; hence, we get the pivot

|pn−1
2
| =

∣∣∣∣B(n−1
2 )

A(n−3
2 )

∣∣∣∣ =

∣∣∣∣−(d + 1) · 1

d + 1− n−3
2

∣∣∣∣ =

∣∣∣∣−n

2
· 1

n
2 −

n−3
2

∣∣∣∣ =
n

3
.

Similarly, one can easily verify the relation |A(n+1
2 )| < |B(n+1

2 )|, which implies

|pn
2 +1| =

∣∣∣∣B(n+1
2 )

B(n−1
2 )

∣∣∣∣ = d + 1 =
n

2
.

Finally, we have |A(n+3
2 )| > |B(n+3

2 )|, and hence,

|pn+3
2
| =

∣∣∣∣A(n+3
2 )

B(n+1
2 )

∣∣∣∣ =

∣∣∣∣(d + 1) ·
d + 1− n+3

2

−1

∣∣∣∣ =

∣∣∣∣n2 · n
2 −

n+3
2

−1

∣∣∣∣ =
3n

4
.

It remains to examine the case j ≥ n
2 +2. One can again easily check the validity of the relation |A(j)| > |B(j)|

for all j ≥ n
2 + 2. Consequently,

|pj | =
∣∣∣∣ A(j)

A(j − 1)

∣∣∣∣ =

∣∣∣∣(d + 1) · d + 1− j

d + 1− (j − 1)

∣∣∣∣ =
n

2
·

n
2 − j

n
2 + 1− j

for all j ≥ n
2 + 2.

Theorem 3.3. The growth factor of the circulant n× n matrix Cn with the first row equal to(n
2
− 1,−1,−1,−1, . . . ,−1

)
is

(3.8) g(Cn) =

{
2n
n−2 if n is even;

5n
3(n−2) if n is odd.

Thus, g(Cn) ' 2 for large even n and g(Cn) ' 5/3 for large odd n.

Proof. Let us use Proposition 3.2. If n is even, we have |pj | ≤ |pn
2 +2| = n for all j = 1, . . . , n. If n is

odd, we have |pj | ≤ |pn+5
2
| = 5n

6 for all j = 1, . . . , n. Applying formula (3.5), we obtain g(Cn) = n
d = 2n

n−2
and g(Cn) = 5n

6d = 5n
3(n−2) , respectively.

3.3. Specification of pivots for Case II.

Proposition 3.4. Let Cn be a circulant n×n matrix with the first row (n
2 −1, 1,−1, 1,−1, 1, . . . ,−1, 1).

The growth factor of Cn is

g(Cn) =

{
2n
n−2 if n is even;

5n
3(n−2) if n is odd.

Proof. Consider a diagonal n × n matrix D = diag(1,−1, 1,−1, 1,−1, . . . , 1,−1). It is easy to see that

DCnD is an n× n circulant matrix with the first row (d,−1,−1, . . . ,−1), which we have already examined

in Section 2.1. Absolute values of minors of Cn are thus equal to the absolute values of minors evaluated in

Proposition 2.1 and 2.2. Consequently, GE with complete pivoting applied on Cn leads to the pivots whose

absolute values coincide with the pivots obtained in Proposition 3.2. In particular, the growth factor of Cn

obeys formula (3.8) from Theorem 3.3.
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3.4. Specification of pivots for Case III.

Proposition 3.5. GE with complete pivoting applied on Cn with the first row(n
2
− 1,−1, 1, 1,−1,−1, 1, 1,−1, . . . ,−1,−1, 1, 1

)
leads to pivots

(3.9) pj =


n
2 ·

n
2−j+

j2

n
n
2 +1−j+ j(j−2)

n

if j is even;

n
2 ·

n
2−j+

j2−1
n

n
2 +1−j+ (j−1)2

n

if j is odd.

Proof. Proposition 2.4 implies that the GE with complete pivoting coincides with GE with partial

pivoting. The partial pivoting leads to pj = A(j)/A(j − 1). Then Proposition 2.3 gives formula (3.9).

Theorem 3.6. The growth of an n× n circulant matrix Cn with the first row equal to(n
2
− 1,−1, 1, 1,−1,−1, 1, 1,−1, . . . ,−1,−1, 1, 1

)
is

g(Cn) =
n2

(n− 2)2
.

In particular, limn→∞ g(Cn) = 1.

Proof. It is easy to check that the pivots pj , given by formula (3.9), satisfy the inequalities

pj+2 > pj for all j = 1, . . . , n− 2;

pj+1 < pj for all even j = 2, . . . , n− 2.

Hence, pj ≤ pn for all j = 1, . . . , n, where pn = n2

2(n−2) . Then g(Cn) = pn

d = n2

2(n−2)(n
2−1)

= n2

(n−2)2 .

3.5. Specification of pivots for Case IV.

Proposition 3.7. Let Cn be a circulant n× n matrix with the first row equal to(n
2
− 1, 1, 1,−1,−1, 1, 1,−1,−1, . . . ,−1, 1, 1,−1

)
.

The growth factor of Cn is

(3.10) g(Cn) =
n2

(n− 2)2
.

In particular, limn→∞ g(Cn) = 1.

Proof. Consider a diagonal matrix D = diag(1,−1, 1,−1, . . . , 1,−1). Then DCnD is the circulant matrix

dicussed in Theorem 3.6. Using the same reasoning as in the proof of Proposition 3.4, we conclude that the

growth factor of Cn coincides with the growth factor found in Theorem 3.6.

4. Numerical results. In this section, we briefly present some numerical results validating the theo-

retical results of the previous sections. We performed the Gaussian elimination with complete pivoting of

matrices having the first row listed in (1.1) on a computer using MATLAB application, and compared the

pivots with the values pj following from our formulae.
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4.1. Case I. Since the formulae obtained in Proposition 3.2 depend on the parity of n, we will consider

both cases. At first let us take an even n, e.g., n = 8. In this case we have d = 3 and the first row of C8

takes the form (3,−1,−1,−1,−1,−1,−1,−1). A computer-aided calculation of the Gaussian elimination

with complete pivoting gives

(4.11) diag(U) = (3.0000, 2.6667, 2.0000,−4.0000,−4.0000, 8.0000, 6.0000, 5.3333),

while Proposition 3.2 provides the absolute values

|p1| = 3, |p2| =
8

3
, |p3| = 2, |p4| = 4, |p5| = 4, |p6| = 8, |p7| = 6, |p8| =

16

3
.

We observe that the absolute values of the numerically computed diagonal terms of U are consistent with

their prediction by Proposition 3.2. The growth factor equals g(Cn) = 8/3 ' 2.6667.

Let us also consider the case of large n. If n = 100, we obtain values |pj | that obey the formulae from

Proposition 3.2, the largest absolute value being equal to 100. Consequently, the growth is g(C100) = 100
n
2−1

=
100
49 ' 2.0408, as predicted by Theorem 3.3.

Now we proceed to an odd n, taking the example of n = 9. In this case we have d = 7
2 , and the matrix

C9 has the first row ( 7
2 ,−1,−1,−1,−1,−1,−1,−1,−1). The Gaussian elimination gives

diag(U) = (3.5000, 3.2143, 2.7000,−3.0000,−4.5000,−6.7500, 7.5000, 6.3000, 5.7857),

while Proposition 3.2 provides

|p1| =
7

2
, |p2| =

45

14
, |p3| =

27

10
, |p4| = 3, |p5| =

9

2
, |p6| =

27

4
, |p7| =

15

2
, |p8| =

63

10
, |p9| =

81

14
.

We see again that the the absolute values of the numerically computed diagonal terms of U coincide with

the result of Proposition 3.2. The growth factor takes the value 15/7 ' 2.1429.

Let us also consider a large odd n, e.g., n = 101. Numerical computation gives values |pj | being in accord

with Proposition 3.2. The largest one is approximately 84.167, and thus, the growth of C101 is approximately

equal to 84.167
n
2−1

' 1, 7003, which is consistent with the value 5n
3(n−2) = 505

297 ' 1.7003 from Theorem 3.3.

4.2. Case II. A matrix Cn having the first row (d, 1,−1, 1,−1, 1, . . . ,−1, 1) obviously exists only for

even orders n. Taking n = 8 as above and performing the Gaussian elimination of C8 on a computer leads

to a matrix U with the diagonal terms

diag(U) = (3.0000, 2.6667, 2.0000,−4.0000,−4.0000, 8.0000, 6.0000, 5.3333).

They coincide with the pivots we found for matrix with the first row (3,−1,−1,−1,−1,−1,−1,−1), cf.

(4.11), and the growth factor is 8/3. This result illustrates our observation made in the proof of Proposition

3.4.

4.3. Case III. A matrix Cn having the first row (d,−1, 1, 1,−1,−1, 1, 1,−1, . . . ,−1,−1, 1, 1) exists

only for the order n being a multiple of 4. Let us consider again n = 8, which corresponds to the circulant

matrix having the first row (3,−1, 1, 1,−1,−1, 1, 1). A computer-aided Gaussian elimination with complete

pivoting gives a matrix U with the diagonal terms

diag(U) = (3.0000, 3.3333, 3.2000, 4.0000, 4.0000, 5.0000, 4.8000, 5.3333),
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Figure 1. The growth factor of circulant matrices Cn with the first row (n
2
− 1,−1,−1, . . . ,−1) (left) and (n

2
−

1, 1,−1, 1,−1, 1 . . . ,−1, 1) (right) for n in the interval [4, 50]. Notice that the latter type of Cn exists only for even n. As

n→∞, the value g(Cn) approaches 2 for even n and 5/3 for odd n.

while Proposition 3.5 provides

p1 = 3, p2 =
10

3
, p3 =

16

5
, p4 = 4, p5 = 4, p6 = 5, p7 =

24

5
, p8 =

16

3
.

The results are apparently consistent. The growth factor equals 16/9 ' 1.7778.

4.4. Case IV. A matrix Cn having the first row (d, 1, 1,−1,−1, 1, 1,−1,−1, . . . ,−1, 1, 1,−1) exists only

for n being a multiple of 4. Taking n = 8, i.e., a circulant matrix with the first row (3, 1, 1,−1,−1, 1, 1,−1),

one obtains the same numerical results as for the matrix with the first row (3,−1, 1, 1,−1,−1, 1, 1), namely,

diag(U) = (3.0000, 3.3333, 3.2000, 4.0000, 4.0000, 5.0000, 4.8000, 5.3333).

This reflects the fact that the pivots of those matrices always coincide; see also the proof of Proposition 3.7.

The growth factor is again 16/9 ' 1.7778.

Figures 1 and 2 illustrate the behaviour of the growth factor for each of the four types of matrices Cn

whose first row is listed in (1.1).

5. Concluding remarks. In the present paper, we developed formulae for the minors of generalized

circulant Hadamard matrices which were generated from four types of vectors. Some majorization results

concerning the principal minors of these matrices were stated as well. Furthermore, the quotients of subse-

quent minors were expressed analytically. Based on the derived results, it was possible to specify the growth

factor for all the matrices of this class. The results imply that these matrices have a stable behaviour when

Gaussian elimination with complete pivoting is applied to them. Presented numerical examples support the

produced theoretical pivot values and also validate the effectiveness of the obtained formulae.

Our results contribute to understanding the relation between the structural properties of Hadamard

matrices and their large growth factor. Examining generalized circulant Hadamard matrices, we arrived

at an explicit evidence that the unitarity and equal absolute values of the off-diagonal elements are by far

not sufficient to achieve large g(A). This finding forms a step on the path to localize the key property of

Hadamard matrices, or a combination of properties, which is responsible for their large growth factor. The

question is interesting and important to solve, because it would allow to describe other classes of matrices

with unstable Gaussian elimination, which would have obvious practical consequences to numerical analysis.
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Figure 2. The growth factor of circulant matrices with the first row (d,−1, 1, 1,−1,−1, 1, 1,−1, . . . ,−1,−1, 1, 1) or

(d, 1, 1,−1,−1, 1, 1,−1,−1, . . . ,−1, 1, 1,−1). Notice that these matrices exist only for n being a multiple of 4. As n→∞, the

value g(Cn) approaches 1.
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