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SPECTRAL VERSUS CLASSICAL NEVANLINNA-PICK
INTERPOLATION IN DIMENSION TWO*

HARI BERCOVICIf

Abstract. A genericity condition is removed from a result of Agler and Young which reduces
the spectral Nevanlinna-Pick problem in two dimensions to a family of classical Nevanlinna-Pick
problems. Unlike the original approach, the argument presented here does not involve state-space
methods.
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1. Introduction and Preliminaries. Consider points A1, Ao, ..., A, in the unit
disk D of the complex plane, and matrices Wy, Wa, ..., W, € My(C), where My(C)
denotes the C* algebra of N x N complex matrices. The matricial Nevanlinna-Pick
problem asks for equivalent conditions to the existence of an analytic function F :
D — My(C) which interpolates the data, i.e. F(\;) = W; for j =1,2,...,n, with
|F(N)] < 1for A € D. An elegant answer to this problem was given by G. Pick (for the
case N = 1; the extension to N > 1 was noted later — we refer to [4] for an account
of classical interpolation theory from a modern viewpoint). Pick’s condition is simply

that the block matrix [(I — W;W;)/(1 — )\_iAj)]ijl be nonnegative semidefinite:

> 0.

[1— W;Wj]”
1 _)\_1)\.7 i,j=1

The spectral version of the Nevanlinna-Pick problem asks for equivalent conditions to
the existence of a bounded analytic function F' : D — My (C) which interpolates the
data, with spectral radius of F'(\) bounded by one, i.e. |[F(A)|sp <1 for A € D. A
result analogous to Pick’s theorem was proved in [3], and it involves the positivity of
a matrix constructed from data W/ similar to Wj, i.e. WJ’ = X;W; X j_l for invertible
operators X; € My(C). In other words, this solution requires a search involving
N?n parameters. The case N = 2 of the spectral Nevanlinna-Pick problem has been
studied quite thoroughly by J. Agler and N. J. Young; see for instance [1], [2], and
the references quoted therein. They related this problem with questions of complex
analysis in two variables, dilation theory, and with state-space methods in control
theory. In particular, [2] contains a result which reduces the search required for a
solution from 4n to 2n parameters. Their result requires a genericity condition: none
of the W; can be a scalar multiple of the identity matrix.

The purpose of this note is to remove the genericity condition in the main result
of [2], and to provide a simplified proof. An important part of the proof we present
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is already contained in [2], and it is based on an idea due to Petrovié. This idea was
also introduced in relation with the spectral Nevanlinna-Pick problem (cf. [6]). The
result is as follows. We will denote by tr and det the usual trace and determinant
functions defined on My (C).
THEOREM 1.1. Given a natural number n, points A1, Az, ..., A\p € D, and matri-
ces Wi, Wa, ..., W,, € Ms(C), the following conditions are equivalent.
1. There exists an analytic function F : D — My(C) such that F(\;) = W;
i=12,....,n, and |[F(\)|sp <1 for A € D.
2. There exists a bounded analytic function satisfying the conditions in (1).
3. There exist numbers bi,ba, ..., by, c1,¢2,...,¢n € C such that bj = ¢; =0
when W; is a scalar multiple of the identity and, upon setting a; = tr(W;)/2

and W] = [CCLJ 2@ , we have det(W) = det(W;), and
i

LA
1_)\_")\J Zj_]._ .

The reader will notice that, as stated, this theorem does not extend the main
result of [2]. Namely, that result reformulates the problem in terms of matrices with
zero trace. The relationship becomes clear if we note that the matrix inequality in
(3) is equivalent to

>0

- 9

[I—WEWJ’}
WY

i,j=1

MMMEVj%}mMWFJ O 1 W1 so that W W = Wi,

—cj  —aj 0 -1

Let us note at this point that the matrices W]’ in part (3) of the above state-
ment are not necessarily similar to Wj. Indeed, let W, W’ € M(C) be such that
tr(W) =tr (W), det(W) = det(W'), and W' is of the form W' = {CCL 2 . Denote by
11, 2 the eigenvalues of W, which are aslo the eigenvalues of W’. If p; # po then

clearly W and W' are similar. However, if p3 = po then
0= (1 — p2)® = (1 + p2)® = dpapz = (tr(W))* — 4det(W) = 4be.

Thus either b or ¢ must be zero. If both are zero then W' is a constant multiple of
the identity matrix, while if only one of them is zero, W' is a single Jordan cell.

2. Classical Vs. Spectral Interpolation. We start with a simple case of
spectral interpolation which can be treated in arbitrary dimension N.

PROPOSITION 2.1. Fiz a natural number n, points A1, Aa, ..., A\p € D, and ma-
trices Wi, Wa, ..., Wy, € Mn(C) such that each W; has a unique eigenvalue w;. The
following are equivalent.

1. There exists an analytic function F' : D — My(C) such that F(\;) = W;
i=12,....n, and |[F(\)|sp <1 for A € D.
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2. There exists a bounded analytic function satisfying the conditions in (1).
5 [E22)" >0
ij=1 "

WY

Proof. As seen in [3] (see (8) in that paper), in the spectral Nevanlinna-Pick
problem we can always replace the matrices W; by similar matrices. We may, and
shall, assume that each W; is upper triangular, with diagonal entries w;. Assume
that (3) is satisfied. By the classical Pick theorem, there exists an analytic function
u : D — C such that u();) = wj, j = 1,2,...,n, and |u(A)] < 1 for A € D. For
1 < k < £ < N consider a polynomial pye such that pre(A;) is the (k,£) entry of
W;; these polynomials can be constructed by Lagrange interpolation. Define now an
upper triangular matrix F'(A) with diagonal entries u(\), and entries pgs(A) above the
diagonal. Clearly F' satisfies the conditions in (2) since f(\) is the unique eigenvalue
of F(X\). This proves the implication (3)=-(2). The implication (2)=-(1) is obvious,
so it remains to prove that (1)=-(3). Indeed, let F satisfy condition (1), and set
F(A) =tr(F(N\))/N. We have then |f(A)] <1 (f()) is the average of the eigenvalues
of F(X)), and f(\;) = w;. Thus (3) follows from Pick’s theorem. O

Observe that Theorem 1.1 follows from Proposition 2.1 in case the W; have a
single eigenvalue. Indeed, in this case one can choose b; = ¢; = 0 for all j in condition
(3) of Theorem 1.1. When at least one of the W} has distinct eigenvalues, we have a
more precise result.

THEOREM 2.2. Fix a natural number n, points A1, A2, ..., A\p € D, and matrices
Wi, Wa,..., Wy € My(C) such that at least one of the W; has distinct eigenvalues.
The following are equivalent.

1. There exists an analytic function F : D — My(C) such that F()\;) = W;
j=12,...,n, and |[F(\)|sp <1 for A € D.

2. There exists a bounded analytic function satisfying the conditions in (1).

3. There exists an analytic function G : D — My(C) such that G(X;) is similar
toWj, j=1,2,...,n, and |G(\)|| <1 for X € D.

4. There exists an analytic function G satisfying the conditions in (3) such that

_ [a(d) b(A)
G\ = L()\) a(\) for A € D.
5. There exist matrices W]’ similar to W;, 7 =1,2,...,n, such that
[I — W;*W]’} "
D —— Z 0.
1- Ai)‘j i,j=1
6. There exist complex numbers by, ba, ..., by, c1,co,...,cn € C with the follow-

wng properties:
(a) bjc; = jtr(W;)? — det(W;);
(b) if W; is a scalar multiple of the identity, then bj = ¢; =0;
(c) if tx(W;)? —det(W;) = 0 but W; is not a scalar multiple of the identity,
then bj = 0 # c;; and
(d) we have

>0

- )

[I— W;*W;r

1 _)‘_i)‘j i,j=1



Electronic Journal of Linear Algebra ISSN 1081-3810

A publication of the International Linear Algebra Society
Volume 10, pp. 60-64, Mar ch 2003

Spectral Nevanlinna-Pick Interpolation 63

, with a; = $tr(Wj).
i 4y
Proof. As noted earlier, a matrix W} satisfying the conditions in (6) is similar to
W;. Thus (4) = (6) by Pick’s theorem. Clearly (6) = (5), and (5) = (3) by Pick’s
theorem. The implications (3) = (2) = (1) are immediate, so it remains to prove
that (1) = (4). Let us assume therefore that F' satisfies condition (1). The functions
a(X) = 3tr(F(A)) and d(X) = det(F())) are bounded by one in . We will find now
analytic functions b(A) and ¢(\) so that G(\) = [38\; 28\\;
IG(N)|| <1 for every A € D. The similarity of G(\) to F/(A) amounts to the following
three conditions:
(i) b(A)e(A) = a(A)? — d(N);
(ii) if F(\) is a scalar multiple of the identity then b(\) = ¢(\) = 0; and
(iii) if a(\)? —d(\) = 0 but F()) is not a scalar multiple of the identity, then
b(A) =0 # c(N).

For condition (ii) to be realizable, we must show that

where WJ’ = [aj b;
i a;

is similar to F'(\) and

a(N)? —d(X) = %[tr(F(A))]2 — det(F(}))

has a double zero at Ag if F()\g) is a scalar multiple of the identity. Indeed, if
F(\) = wl + (A= Xo)Fi()), we have

TI(EO)? — det(F(N) = (A~ X0)” | [ir(FL ) — det(FL (V)

as desired. Observe also that a(\)? — d()) is not identically zero because at least
one of the W; has distinct eigenvalues. By classical factorization results (cf. Chapter
5 of [5]), there exist a Blaschke product B, and an analytic function G such that
a® —d = Be®. Functions b and ¢ can now be defined by b = B1e%/2, ¢ = ByeG/?,
where By, By are Blaschke products and By By = B. Conditions (i), (ii), and (iii) are
realized by judicious choice of By and By, and in addition we have

DO = [e(OF = la(¢)* — d(¢)]

for almost every ¢ with |(| = 1. It remains to prove that |G(\)|| < 1 for A € D, and
for that it suffices to show that ||G({)]] <1 for almost every (, |¢| = 1. We know that
|G(M\)]sp < 1 for A € D, and continuity of the spectral radius on M3(C) shows that
|G({)|sp < 1 almost everywhere. The proof is concluded by the observation that G(¢)
is a normal operator for almost every (, hence its norm equals the spectral radius. In

. b| . L .
fact, every matrix of the form {Ccl a] is normal when |b| = |¢| since it can be written

as al + bU, where U = [c?b (1)} is a unitary operator (set ¢/b=1if b=c=0). O

The above proof may fail if each W; has a single eigenvalue, and in fact the

result is not true in that case. An example is obtained for n = 2, Ay = 0, X\ = %7
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1/2 1/2 . A A .. "
Wi =0, and Wy = [ é 1?2} The function F(A) = 0 A satisifies condition

(1) in the theorem. We claim that no function G satisfies (3). Assume indeed that
G(0) = 0, G(1/2) is similar to Wy, and ||G(A)|] < 1 for A € D. We can then write
G(A) = AG1(A), and a comparison of boundary values will show that G; also has
norm bounded by one. Now, det(G1(1/2)) = 1, and we deduce easily that G1(1/2)
is in fact a unitary operator. In particular, G(1/2) must be a normal operator, and
hence not similar to W5, a contradiction.
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