## SPECTRAL VERSUS CLASSICAL NEVANLINNA-PICK INTERPOLATION IN DIMENSION TWO\*

## HARI BERCOVICI†

**Abstract.** A genericity condition is removed from a result of Agler and Young which reduces the spectral Nevanlinna-Pick problem in two dimensions to a family of classical Nevanlinna-Pick problems. Unlike the original approach, the argument presented here does not involve state-space methods.

Key words. Interpolation, Spectral radius, Analytic function, Similarity.

AMS subject classifications. 47A57, 15A18, 30E05, 47A48.

1. Introduction and Preliminaries. Consider points  $\lambda_1, \lambda_2, \ldots, \lambda_n$  in the unit disk  $\mathbb D$  of the complex plane, and matrices  $W_1, W_2, \ldots, W_n \in M_N(\mathbb C)$ , where  $M_N(\mathbb C)$  denotes the  $C^*$  algebra of  $N \times N$  complex matrices. The matricial Nevanlinna-Pick problem asks for equivalent conditions to the existence of an analytic function  $F: \mathbb D \to M_N(\mathbb C)$  which interpolates the data, i.e.  $F(\lambda_j) = W_j$  for  $j = 1, 2, \ldots, n$ , with  $\|F(\lambda)\| \leq 1$  for  $\lambda \in \mathbb D$ . An elegant answer to this problem was given by G. Pick (for the case N=1; the extension to N>1 was noted later — we refer to [4] for an account of classical interpolation theory from a modern viewpoint). Pick's condition is simply that the block matrix  $[(I-W_i^*W_j)/(1-\overline{\lambda_i}\lambda_j)]_{i,j=1}^n$  be nonnegative semidefinite:

$$\left[\frac{I - W_i^* W_j}{1 - \overline{\lambda_i} \lambda_j}\right]_{i,j=1}^n \ge 0.$$

The spectral version of the Nevanlinna-Pick problem asks for equivalent conditions to the existence of a bounded analytic function  $F:\mathbb{D}\to M_N(\mathbb{C})$  which interpolates the data, with spectral radius of  $F(\lambda)$  bounded by one, i.e.  $|F(\lambda)|_{\rm sp}\leq 1$  for  $\lambda\in\mathbb{D}$ . A result analogous to Pick's theorem was proved in [3], and it involves the positivity of a matrix constructed from data  $W_j'$  similar to  $W_j$ , i.e.  $W_j'=X_jW_jX_j^{-1}$  for invertible operators  $X_j\in M_N(\mathbb{C})$ . In other words, this solution requires a search involving  $N^2n$  parameters. The case N=2 of the spectral Nevanlinna-Pick problem has been studied quite thoroughly by J. Agler and N. J. Young; see for instance [1], [2], and the references quoted therein. They related this problem with questions of complex analysis in two variables, dilation theory, and with state-space methods in control theory. In particular, [2] contains a result which reduces the search required for a solution from 4n to 2n parameters. Their result requires a genericity condition: none of the  $W_j$  can be a scalar multiple of the identity matrix.

The purpose of this note is to remove the genericity condition in the main result of [2], and to provide a simplified proof. An important part of the proof we present

<sup>\*</sup>Received by the editors on 20 March 2002. Accepted for publication on 9 January 2003. Handling Editor: Peter Lancaster.

<sup>&</sup>lt;sup>†</sup>Department of Mathematics, Indiana University, Bloomington, Indiana 47405, USA (bercovic@indiana.edu). Supported in part by a grant from the National Science Foundation.

61

is already contained in [2], and it is based on an idea due to Petrović. This idea was also introduced in relation with the spectral Nevanlinna-Pick problem (cf. [6]). The result is as follows. We will denote by tr and det the usual trace and determinant functions defined on  $M_N(\mathbb{C})$ .

THEOREM 1.1. Given a natural number n, points  $\lambda_1, \lambda_2, \ldots, \lambda_n \in \mathbb{D}$ , and matrices  $W_1, W_2, \ldots, W_n \in M_2(\mathbb{C})$ , the following conditions are equivalent.

- 1. There exists an analytic function  $F: \mathbb{D} \to M_2(\mathbb{C})$  such that  $F(\lambda_j) = W_j$ , j = 1, 2, ..., n, and  $|F(\lambda)|_{sp} \leq 1$  for  $\lambda \in \mathbb{D}$ .
- 2. There exists a bounded analytic function satisfying the conditions in (1).
- 3. There exist numbers  $b_1, b_2, \ldots, b_n, c_1, c_2, \ldots, c_n \in \mathbb{C}$  such that  $b_j = c_j = 0$  when  $W_j$  is a scalar multiple of the identity and, upon setting  $a_j = \operatorname{tr}(W_j)/2$  and  $W'_j = \begin{bmatrix} a_j & b_j \\ c_j & a_j \end{bmatrix}$ , we have  $\det(W'_j) = \det(W_j)$ , and

$$\left[\frac{I - W_i^{\prime *} W_j^{\prime}}{1 - \overline{\lambda_i} \lambda_j}\right]_{i, j=1}^n \ge 0.$$

The reader will notice that, as stated, this theorem does not extend the main result of [2]. Namely, that result reformulates the problem in terms of matrices with zero trace. The relationship becomes clear if we note that the matrix inequality in (3) is equivalent to

$$\left[\frac{I - W_i^{"*}W_j^{"}}{1 - \overline{\lambda_i}\lambda_j}\right]_{i, j=1}^n \ge 0,$$

 $\text{where } W_j'' = \begin{bmatrix} a_j & b_j \\ -c_j & -a_j \end{bmatrix} \text{; in fact } W_j'' = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} W_j' \text{ so that } W_i''^*W_j'' = W_i'^*W_j'.$ 

Let us note at this point that the matrices  $W'_j$  in part (3) of the above statement are not necessarily similar to  $W_j$ . Indeed, let  $W, W' \in M_2(\mathbb{C})$  be such that  $\operatorname{tr}(W) = \operatorname{tr}(W')$ ,  $\operatorname{det}(W) = \operatorname{det}(W')$ , and W' is of the form  $W' = \begin{bmatrix} a & b \\ c & a \end{bmatrix}$ . Denote by  $\mu_1, \mu_2$  the eigenvalues of W, which are also the eigenvalues of W'. If  $\mu_1 \neq \mu_2$  then clearly W and W' are similar. However, if  $\mu_1 = \mu_2$  then

$$0 = (\mu_1 - \mu_2)^2 = (\mu_1 + \mu_2)^2 - 4\mu_1\mu_2 = (\operatorname{tr}(W))^2 - 4\det(W) = 4bc.$$

Thus either b or c must be zero. If both are zero then W' is a constant multiple of the identity matrix, while if only one of them is zero, W' is a single Jordan cell.

**2.** Classical Vs. Spectral Interpolation. We start with a simple case of spectral interpolation which can be treated in arbitrary dimension N.

PROPOSITION 2.1. Fix a natural number n, points  $\lambda_1, \lambda_2, \ldots, \lambda_n \in \mathbb{D}$ , and matrices  $W_1, W_2, \ldots, W_n \in M_N(\mathbb{C})$  such that each  $W_j$  has a unique eigenvalue  $\omega_j$ . The following are equivalent.

1. There exists an analytic function  $F: \mathbb{D} \to M_N(\mathbb{C})$  such that  $F(\lambda_j) = W_j$ , j = 1, 2, ..., n, and  $|F(\lambda)|_{sp} \leq 1$  for  $\lambda \in \mathbb{D}$ .

62 H. Bercovici

2. There exists a bounded analytic function satisfying the conditions in (1).

3. 
$$\left[\frac{1-\overline{\omega_i}\omega_j}{1-\overline{\lambda_i}\lambda_j}\right]_{i,j=1}^n \ge 0.$$

*Proof.* As seen in [3] (see (8) in that paper), in the spectral Nevanlinna-Pick problem we can always replace the matrices  $W_i$  by similar matrices. We may, and shall, assume that each  $W_j$  is upper triangular, with diagonal entries  $\omega_j$ . Assume that (3) is satisfied. By the classical Pick theorem, there exists an analytic function  $u: \mathbb{D} \to \mathbb{C}$  such that  $u(\lambda_j) = \omega_j, \ j = 1, 2, \dots, n, \text{ and } |u(\lambda)| \leq 1 \text{ for } \lambda \in \mathbb{D}$ . For  $1 \leq k < \ell \leq N$  consider a polynomial  $p_{k\ell}$  such that  $p_{k\ell}(\lambda_j)$  is the  $(k,\ell)$  entry of  $W_j$ ; these polynomials can be constructed by Lagrange interpolation. Define now an upper triangular matrix  $F(\lambda)$  with diagonal entries  $u(\lambda)$ , and entries  $p_{k\ell}(\lambda)$  above the diagonal. Clearly F satisfies the conditions in (2) since  $f(\lambda)$  is the unique eigenvalue of  $F(\lambda)$ . This proves the implication (3) $\Rightarrow$ (2). The implication (2) $\Rightarrow$ (1) is obvious, so it remains to prove that  $(1)\Rightarrow(3)$ . Indeed, let F satisfy condition (1), and set  $f(\lambda) = \operatorname{tr}(F(\lambda))/N$ . We have then  $|f(\lambda)| \leq 1$   $(f(\lambda))$  is the average of the eigenvalues of  $F(\lambda)$ , and  $f(\lambda_i) = \omega_i$ . Thus (3) follows from Pick's theorem.

Observe that Theorem 1.1 follows from Proposition 2.1 in case the  $W_i$  have a single eigenvalue. Indeed, in this case one can choose  $b_j = c_j = 0$  for all j in condition (3) of Theorem 1.1. When at least one of the  $W_i$  has distinct eigenvalues, we have a more precise result.

THEOREM 2.2. Fix a natural number n, points  $\lambda_1, \lambda_2, \ldots, \lambda_n \in \mathbb{D}$ , and matrices  $W_1, W_2, \ldots, W_n \in M_2(\mathbb{C})$  such that at least one of the  $W_j$  has distinct eigenvalues. The following are equivalent.

- 1. There exists an analytic function  $F: \mathbb{D} \to M_N(\mathbb{C})$  such that  $F(\lambda_j) = W_j$ , j = 1, 2, ..., n, and  $|F(\lambda)|_{sp} \leq 1$  for  $\lambda \in \mathbb{D}$ .
- 2. There exists a bounded analytic function satisfying the conditions in (1).
- 3. There exists an analytic function  $G: \mathbb{D} \to M_2(\mathbb{C})$  such that  $G(\lambda_i)$  is similar to  $W_j$ , j = 1, 2, ..., n, and  $||G(\lambda)|| \le 1$  for  $\lambda \in \mathbb{D}$ .
- 4. There exists an analytic function G satisfying the conditions in (3) such that  $G(\lambda) = \begin{bmatrix} a(\lambda) & b(\lambda) \\ c(\lambda) & a(\lambda) \end{bmatrix} \text{ for } \lambda \in \mathbb{D}.$ 5. There exist matrices  $W'_j$  similar to  $W_j$ , j = 1, 2, ..., n, such that

$$\left[\frac{I - W_i'^* W_j'}{1 - \overline{\lambda_i} \lambda_j}\right]_{i,j=1}^n \ge 0.$$

- 6. There exist complex numbers  $b_1, b_2, \ldots, b_n, c_1, c_2, \ldots, c_n \in \mathbb{C}$  with the following properties:
  - (a)  $b_j c_j = \frac{1}{4} \text{tr}(W_j)^2 \det(W_j);$
  - (b) if  $W_i$  is a scalar multiple of the identity, then  $b_i = c_i = 0$ ;
  - (c) if  $\frac{1}{4} \operatorname{tr}(W_j)^2 \det(W_j) = 0$  but  $W_j$  is not a scalar multiple of the identity, then  $b_j = 0 \neq c_j$ ; and
  - (d) we have

$$\left[\frac{I - W_i^{\prime *} W_j^{\prime}}{1 - \overline{\lambda_i} \lambda_j}\right]_{i,j=1}^n \ge 0,$$

Spectral Nevanlinna-Pick Interpolation

where 
$$W'_j = \begin{bmatrix} a_j & b_j \\ c_j & a_j \end{bmatrix}$$
, with  $a_j = \frac{1}{2} \operatorname{tr}(W_j)$ .

Proof. As noted earlier, a matrix  $W_j'$  satisfying the conditions in (6) is similar to  $W_j$ . Thus (4)  $\Rightarrow$  (6) by Pick's theorem. Clearly (6)  $\Rightarrow$  (5), and (5)  $\Rightarrow$  (3) by Pick's theorem. The implications (3)  $\Rightarrow$  (2)  $\Rightarrow$  (1) are immediate, so it remains to prove that (1)  $\Rightarrow$  (4). Let us assume therefore that F satisfies condition (1). The functions  $a(\lambda) = \frac{1}{2} \text{tr}(F(\lambda))$  and  $d(\lambda) = \det(F(\lambda))$  are bounded by one in  $\mathbb{D}$ . We will find now analytic functions  $b(\lambda)$  and  $c(\lambda)$  so that  $G(\lambda) = \begin{bmatrix} a(\lambda) & b(\lambda) \\ c(\lambda) & a(\lambda) \end{bmatrix}$  is similar to  $F(\lambda)$  and  $\|G(\lambda)\| \leq 1$  for every  $\lambda \in \mathbb{D}$ . The similarity of  $G(\lambda)$  to  $F(\lambda)$  amounts to the following three conditions:

- (i)  $b(\lambda)c(\lambda) = a(\lambda)^2 d(\lambda)$ ;
- (ii) if  $F(\lambda)$  is a scalar multiple of the identity then  $b(\lambda) = c(\lambda) = 0$ ; and
- (iii) if  $a(\lambda)^2 d(\lambda) = 0$  but  $F(\lambda)$  is not a scalar multiple of the identity, then  $b(\lambda) = 0 \neq c(\lambda)$ .

For condition (ii) to be realizable, we must show that

$$a(\lambda)^2 - d(\lambda) = \frac{1}{4} [\operatorname{tr}(F(\lambda))]^2 - \det(F(\lambda))$$

has a double zero at  $\lambda_0$  if  $F(\lambda_0)$  is a scalar multiple of the identity. Indeed, if  $F(\lambda) = \omega I + (\lambda - \lambda_0) F_1(\lambda)$ , we have

$$\frac{1}{4}[\operatorname{tr}(F(\lambda))]^2 - \det(F(\lambda)) = (\lambda - \lambda_0)^2 \left[ \frac{1}{4}[\operatorname{tr}(F_1(\lambda))]^2 - \det(F_1(\lambda)) \right],$$

as desired. Observe also that  $a(\lambda)^2 - d(\lambda)$  is not identically zero because at least one of the  $W_j$  has distinct eigenvalues. By classical factorization results (cf. Chapter 5 of [5]), there exist a Blaschke product B, and an analytic function G such that  $a^2 - d = Be^G$ . Functions b and c can now be defined by  $b = B_1e^{G/2}$ ,  $c = B_2e^{G/2}$ , where  $B_1, B_2$  are Blaschke products and  $B_1B_2 = B$ . Conditions (i), (ii), and (iii) are realized by judicious choice of  $B_1$  and  $B_2$ , and in addition we have

$$|b(\zeta)|^2 = |c(\zeta)|^2 = |a(\zeta)|^2 - d(\zeta)|$$

for almost every  $\zeta$  with  $|\zeta|=1$ . It remains to prove that  $||G(\lambda)|| \leq 1$  for  $\lambda \in \mathbb{D}$ , and for that it suffices to show that  $||G(\zeta)|| \leq 1$  for almost every  $\zeta$ ,  $|\zeta|=1$ . We know that  $|G(\lambda)|_{\mathrm{sp}} \leq 1$  for  $\lambda \in \mathbb{D}$ , and continuity of the spectral radius on  $M_2(\mathbb{C})$  shows that  $|G(\zeta)|_{\mathrm{sp}} \leq 1$  almost everywhere. The proof is concluded by the observation that  $G(\zeta)$  is a normal operator for almost every  $\zeta$ , hence its norm equals the spectral radius. In fact, every matrix of the form  $\begin{bmatrix} a & b \\ c & a \end{bmatrix}$  is normal when |b| = |c| since it can be written as aI + bU, where  $U = \begin{bmatrix} 0 & 1 \\ c/b & 0 \end{bmatrix}$  is a unitary operator (set c/b = 1 if b = c = 0).  $\square$ 

The above proof may fail if each  $W_j$  has a single eigenvalue, and in fact the result is not true in that case. An example is obtained for n = 2,  $\lambda_1 = 0$ ,  $\lambda_2 = \frac{1}{2}$ ,

63



64 H. Bercovici

 $W_1=0$ , and  $W_2=\begin{bmatrix}1/2&1/2\\0&1/2\end{bmatrix}$ . The function  $F(\lambda)=\begin{bmatrix}\lambda&\lambda\\0&\lambda\end{bmatrix}$  satisfies condition (1) in the theorem. We claim that no function G satisfies (3). Assume indeed that G(0)=0, G(1/2) is similar to  $W_2$ , and  $\|G(\lambda)\|\leq 1$  for  $\lambda\in\mathbb{D}$ . We can then write  $G(\lambda)=\lambda G_1(\lambda)$ , and a comparison of boundary values will show that  $G_1$  also has norm bounded by one. Now,  $\det(G_1(1/2))=1$ , and we deduce easily that  $G_1(1/2)$  is in fact a unitary operator. In particular, G(1/2) must be a normal operator, and hence not similar to  $W_2$ , a contradiction.

## REFERENCES

- [1] J. Agler and N.J. Young. The two-point spectral Nevanlinna-Pick problem. *Integral Equations Operator Theory*, 37:375–385, 2000.
- [2] J. Agler and N.J. Young. The two-by-two spectral Nevanlinna-Pick problem. Preprint, 2001.
- [3] H. Bercovici, C. Foias, and A. Tannenbaum. A spectral commutant lifting theorem. Transactions of the Amer. Math. Soc., 325:7141-763, 1991.
- [4] C. Foias and A. Frazho. The commutant lifting approach to interpolation problems. Birkhäuser, Basel, 1990.
- [5] K. Hoffman. Banach spaces of analytic functions. Prentice Hall, Englewood Cliffs, New Jersey, 1962.
- [6] S. Petrović. An extremal problem in interpolation theory. Houston J. Math., 26:165-181, 2000.