SPECTRAL VERSUS CLASSICAL NEVANLINNA-PICK INTERPOLATION IN DIMENSION TWO*

HARI BERCOVICI ${ }^{\dagger}$

Abstract

A genericity condition is removed from a result of Agler and Young which reduces the spectral Nevanlinna-Pick problem in two dimensions to a family of classical Nevanlinna-Pick problems. Unlike the original approach, the argument presented here does not involve state-space methods.

Key words. Interpolation, Spectral radius, Analytic function, Similarity.

AMS subject classifications. 47A57, 15A18, 30E05, 47A48.

1. Introduction and Preliminaries. Consider points $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ in the unit disk \mathbb{D} of the complex plane, and matrices $W_{1}, W_{2}, \ldots, W_{n} \in M_{N}(\mathbb{C})$, where $M_{N}(\mathbb{C})$ denotes the C^{*} algebra of $N \times N$ complex matrices. The matricial Nevanlinna-Pick problem asks for equivalent conditions to the existence of an analytic function F : $\mathbb{D} \rightarrow M_{N}(\mathbb{C})$ which interpolates the data, i.e. $F\left(\lambda_{j}\right)=W_{j}$ for $j=1,2, \ldots, n$, with $\|F(\lambda)\| \leq 1$ for $\lambda \in \mathbb{D}$. An elegant answer to this problem was given by G. Pick (for the case $N=1$; the extension to $N>1$ was noted later - we refer to [4] for an account of classical interpolation theory from a modern viewpoint). Pick's condition is simply that the block matrix $\left[\left(I-W_{i}^{*} W_{j}\right) /\left(1-\overline{\lambda_{i}} \lambda_{j}\right)\right]_{i, j=1}^{n}$ be nonnegative semidefinite:

$$
\left[\frac{I-W_{i}^{*} W_{j}}{1-\overline{\lambda_{i}} \lambda_{j}}\right]_{i, j=1}^{n} \geq 0
$$

The spectral version of the Nevanlinna-Pick problem asks for equivalent conditions to the existence of a bounded analytic function $F: \mathbb{D} \rightarrow M_{N}(\mathbb{C})$ which interpolates the data, with spectral radius of $F(\lambda)$ bounded by one, i.e. $|F(\lambda)|_{\text {sp }} \leq 1$ for $\lambda \in \mathbb{D}$. A result analogous to Pick's theorem was proved in [3], and it involves the positivity of a matrix constructed from data W_{j}^{\prime} similar to W_{j}, i.e. $W_{j}^{\prime}=X_{j} W_{j} X_{j}^{-1}$ for invertible operators $X_{j} \in M_{N}(\mathbb{C})$. In other words, this solution requires a search involving $N^{2} n$ parameters. The case $N=2$ of the spectral Nevanlinna-Pick problem has been studied quite thoroughly by J. Agler and N. J. Young; see for instance [1], [2], and the references quoted therein. They related this problem with questions of complex analysis in two variables, dilation theory, and with state-space methods in control theory. In particular, [2] contains a result which reduces the search required for a solution from $4 n$ to $2 n$ parameters. Their result requires a genericity condition: none of the W_{j} can be a scalar multiple of the identity matrix.

The purpose of this note is to remove the genericity condition in the main result of [2], and to provide a simplified proof. An important part of the proof we present

[^0]is already contained in [2], and it is based on an idea due to Petrović. This idea was also introduced in relation with the spectral Nevanlinna-Pick problem (cf. [6]). The result is as follows. We will denote by tr and det the usual trace and determinant functions defined on $M_{N}(\mathbb{C})$.

Theorem 1.1. Given a natural number n, points $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \in \mathbb{D}$, and matrices $W_{1}, W_{2}, \ldots, W_{n} \in M_{2}(\mathbb{C})$, the following conditions are equivalent.

1. There exists an analytic function $F: \mathbb{D} \rightarrow M_{2}(\mathbb{C})$ such that $F\left(\lambda_{j}\right)=W_{j}$, $j=1,2, \ldots, n$, and $|F(\lambda)|_{s p} \leq 1$ for $\lambda \in \mathbb{D}$.
2. There exists a bounded analytic function satisfying the conditions in (1).
3. There exist numbers $b_{1}, b_{2}, \ldots, b_{n}, c_{1}, c_{2}, \ldots, c_{n} \in \mathbb{C}$ such that $b_{j}=c_{j}=0$ when W_{j} is a scalar multiple of the identity and, upon setting $a_{j}=\operatorname{tr}\left(W_{j}\right) / 2$ and $W_{j}^{\prime}=\left[\begin{array}{ll}a_{j} & b_{j} \\ c_{j} & a_{j}\end{array}\right]$, we have $\operatorname{det}\left(W_{j}^{\prime}\right)=\operatorname{det}\left(W_{j}\right)$, and

$$
\left[\frac{I-W_{i}^{\prime *} W_{j}^{\prime}}{1-\overline{\lambda_{i}} \lambda_{j}}\right]_{i, j=1}^{n} \geq 0
$$

The reader will notice that, as stated, this theorem does not extend the main result of [2]. Namely, that result reformulates the problem in terms of matrices with zero trace. The relationship becomes clear if we note that the matrix inequality in (3) is equivalent to

$$
\left[\frac{I-W_{i}^{\prime \prime *} W_{j}^{\prime \prime}}{1-\overline{\lambda_{i}} \lambda_{j}}\right]_{i, j=1}^{n} \geq 0
$$

where $W_{j}^{\prime \prime}=\left[\begin{array}{cc}a_{j} & b_{j} \\ -c_{j} & -a_{j}\end{array}\right]$; in fact $W_{j}^{\prime \prime}=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right] W_{j}^{\prime}$ so that $W_{i}^{\prime \prime *} W_{j}^{\prime \prime}=W_{i}^{\prime *} W_{j}^{\prime}$.
Let us note at this point that the matrices W_{j}^{\prime} in part (3) of the above statement are not necessarily similar to W_{j}. Indeed, let $W, W^{\prime} \in M_{2}(\mathbb{C})$ be such that $\operatorname{tr}(W)=\operatorname{tr}\left(W^{\prime}\right), \operatorname{det}(W)=\operatorname{det}\left(W^{\prime}\right)$, and W^{\prime} is of the form $W^{\prime}=\left[\begin{array}{ll}a & b \\ c & a\end{array}\right]$. Denote by μ_{1}, μ_{2} the eigenvalues of W, which are aslo the eigenvalues of W^{\prime}. If $\mu_{1} \neq \mu_{2}$ then clearly W and W^{\prime} are similar. However, if $\mu_{1}=\mu_{2}$ then

$$
0=\left(\mu_{1}-\mu_{2}\right)^{2}=\left(\mu_{1}+\mu_{2}\right)^{2}-4 \mu_{1} \mu_{2}=(\operatorname{tr}(W))^{2}-4 \operatorname{det}(W)=4 b c
$$

Thus either b or c must be zero. If both are zero then W^{\prime} is a constant multiple of the identity matrix, while if only one of them is zero, W^{\prime} is a single Jordan cell.
2. Classical Vs. Spectral Interpolation. We start with a simple case of spectral interpolation which can be treated in arbitrary dimension N.

Proposition 2.1. Fix a natural number n, points $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \in \mathbb{D}$, and matrices $W_{1}, W_{2}, \ldots, W_{n} \in M_{N}(\mathbb{C})$ such that each W_{j} has a unique eigenvalue ω_{j}. The following are equivalent.

1. There exists an analytic function $F: \mathbb{D} \rightarrow M_{N}(\mathbb{C})$ such that $F\left(\lambda_{j}\right)=W_{j}$, $j=1,2, \ldots, n$, and $|F(\lambda)|_{s p} \leq 1$ for $\lambda \in \mathbb{D}$.
2. There exists a bounded analytic function satisfying the conditions in (1).
3. $\left[\frac{1-\overline{\omega_{i}} \omega_{j}}{1-\overline{\lambda_{i}} \lambda_{j}}\right]_{i, j=1}^{n} \geq 0$.

Proof. As seen in [3] (see (8) in that paper), in the spectral Nevanlinna-Pick problem we can always replace the matrices W_{j} by similar matrices. We may, and shall, assume that each W_{j} is upper triangular, with diagonal entries ω_{j}. Assume that (3) is satisfied. By the classical Pick theorem, there exists an analytic function $u: \mathbb{D} \rightarrow \mathbb{C}$ such that $u\left(\lambda_{j}\right)=\omega_{j}, j=1,2, \ldots, n$, and $|u(\lambda)| \leq 1$ for $\lambda \in \mathbb{D}$. For $1 \leq k<\ell \leq N$ consider a polynomial $p_{k \ell}$ such that $p_{k \ell}\left(\lambda_{j}\right)$ is the (k, ℓ) entry of W_{j}; these polynomials can be constructed by Lagrange interpolation. Define now an upper triangular matrix $F(\lambda)$ with diagonal entries $u(\lambda)$, and entries $p_{k \ell}(\lambda)$ above the diagonal. Clearly F satisfies the conditions in (2) since $f(\lambda)$ is the unique eigenvalue of $F(\lambda)$. This proves the implication $(3) \Rightarrow(2)$. The implication $(2) \Rightarrow(1)$ is obvious, so it remains to prove that $(1) \Rightarrow(3)$. Indeed, let F satisfy condition (1), and set $f(\lambda)=\operatorname{tr}(F(\lambda)) / N$. We have then $|f(\lambda)| \leq 1(f(\lambda)$ is the average of the eigenvalues of $F(\lambda)$), and $f\left(\lambda_{j}\right)=\omega_{j}$. Thus (3) follows from Pick's theorem. \square

Observe that Theorem 1.1 follows from Proposition 2.1 in case the W_{j} have a single eigenvalue. Indeed, in this case one can choose $b_{j}=c_{j}=0$ for all j in condition (3) of Theorem 1.1. When at least one of the W_{j} has distinct eigenvalues, we have a more precise result.

Theorem 2.2. Fix a natural number n, points $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \in \mathbb{D}$, and matrices $W_{1}, W_{2}, \ldots, W_{n} \in M_{2}(\mathbb{C})$ such that at least one of the W_{j} has distinct eigenvalues. The following are equivalent.

1. There exists an analytic function $F: \mathbb{D} \rightarrow M_{N}(\mathbb{C})$ such that $F\left(\lambda_{j}\right)=W_{j}$, $j=1,2, \ldots, n$, and $|F(\lambda)|_{s p} \leq 1$ for $\lambda \in \mathbb{D}$.
2. There exists a bounded analytic function satisfying the conditions in (1).
3. There exists an analytic function $G: \mathbb{D} \rightarrow M_{2}(\mathbb{C})$ such that $G\left(\lambda_{j}\right)$ is similar to $W_{j}, j=1,2, \ldots, n$, and $\|G(\lambda)\| \leq 1$ for $\lambda \in \mathbb{D}$.
4. There exists an analytic function G satisfying the conditions in (3) such that $G(\lambda)=\left[\begin{array}{ll}a(\lambda) & b(\lambda) \\ c(\lambda) & a(\lambda)\end{array}\right]$ for $\lambda \in \mathbb{D}$.
5. There exist matrices W_{j}^{\prime} similar to $W_{j}, j=1,2, \ldots, n$, such that

$$
\left[\frac{I-W_{i}^{\prime *} W_{j}^{\prime}}{1-\overline{\lambda_{i}} \lambda_{j}}\right]_{i, j=1}^{n} \geq 0
$$

6. There exist complex numbers $b_{1}, b_{2}, \ldots, b_{n}, c_{1}, c_{2}, \ldots, c_{n} \in \mathbb{C}$ with the following properties:
(a) $b_{j} c_{j}=\frac{1}{4} \operatorname{tr}\left(W_{j}\right)^{2}-\operatorname{det}\left(W_{j}\right)$;
(b) if W_{j} is a scalar multiple of the identity, then $b_{j}=c_{j}=0$;
(c) if $\frac{1}{4} \operatorname{tr}\left(W_{j}\right)^{2}-\operatorname{det}\left(W_{j}\right)=0$ but W_{j} is not a scalar multiple of the identity, then $b_{j}=0 \neq c_{j}$; and
(d) we have

$$
\left[\frac{I-W_{i}^{\prime *} W_{j}^{\prime}}{1-\overline{\lambda_{i}} \lambda_{j}}\right]_{i, j=1}^{n} \geq 0
$$

$$
\text { where } W_{j}^{\prime}=\left[\begin{array}{cc}
a_{j} & b_{j} \\
c_{j} & a_{j}
\end{array}\right] \text {, with } a_{j}=\frac{1}{2} \operatorname{tr}\left(W_{j}\right)
$$

Proof. As noted earlier, a matrix W_{j}^{\prime} satisfying the conditions in (6) is similar to W_{j}. Thus $(4) \Rightarrow(6)$ by Pick's theorem. Clearly $(6) \Rightarrow(5)$, and $(5) \Rightarrow(3)$ by Pick's theorem. The implications $(3) \Rightarrow(2) \Rightarrow(1)$ are immediate, so it remains to prove that $(1) \Rightarrow(4)$. Let us assume therefore that F satisfies condition (1). The functions $a(\lambda)=\frac{1}{2} \operatorname{tr}(F(\lambda))$ and $d(\lambda)=\operatorname{det}(F(\lambda))$ are bounded by one in \mathbb{D}. We will find now analytic functions $b(\lambda)$ and $c(\lambda)$ so that $G(\lambda)=\left[\begin{array}{ll}a(\lambda) & b(\lambda) \\ c(\lambda) & a(\lambda)\end{array}\right]$ is similar to $F(\lambda)$ and $\|G(\lambda)\| \leq 1$ for every $\lambda \in \mathbb{D}$. The similarity of $G(\lambda)$ to $F(\lambda)$ amounts to the following three conditions:
(i) $b(\lambda) c(\lambda)=a(\lambda)^{2}-d(\lambda)$;
(ii) if $F(\lambda)$ is a scalar multiple of the identity then $b(\lambda)=c(\lambda)=0$; and
(iii) if $a(\lambda)^{2}-d(\lambda)=0$ but $F(\lambda)$ is not a scalar multiple of the identity, then $b(\lambda)=0 \neq c(\lambda)$.
For condition (ii) to be realizable, we must show that

$$
a(\lambda)^{2}-d(\lambda)=\frac{1}{4}[\operatorname{tr}(F(\lambda))]^{2}-\operatorname{det}(F(\lambda))
$$

has a double zero at λ_{0} if $F\left(\lambda_{0}\right)$ is a scalar multiple of the identity. Indeed, if $F(\lambda)=\omega I+\left(\lambda-\lambda_{0}\right) F_{1}(\lambda)$, we have

$$
\frac{1}{4}[\operatorname{tr}(F(\lambda))]^{2}-\operatorname{det}(F(\lambda))=\left(\lambda-\lambda_{0}\right)^{2}\left[\frac{1}{4}\left[\operatorname{tr}\left(F_{1}(\lambda)\right)\right]^{2}-\operatorname{det}\left(F_{1}(\lambda)\right)\right],
$$

as desired. Observe also that $a(\lambda)^{2}-d(\lambda)$ is not identically zero because at least one of the W_{j} has distinct eigenvalues. By classical factorization results (cf. Chapter 5 of [5]), there exist a Blaschke product B, and an analytic function G such that $a^{2}-d=B e^{G}$. Functions b and c can now be defined by $b=B_{1} e^{G / 2}, c=B_{2} e^{G / 2}$, where B_{1}, B_{2} are Blaschke products and $B_{1} B_{2}=B$. Conditions (i), (ii), and (iii) are realized by judicious choice of B_{1} and B_{2}, and in addition we have

$$
|b(\zeta)|^{2}=|c(\zeta)|^{2}=\left|a(\zeta)^{2}-d(\zeta)\right|
$$

for almost every ζ with $|\zeta|=1$. It remains to prove that $\|G(\lambda)\| \leq 1$ for $\lambda \in \mathbb{D}$, and for that it suffices to show that $\|G(\zeta)\| \leq 1$ for almost every $\zeta,|\zeta|=1$. We know that $|G(\lambda)|_{\mathrm{sp}} \leq 1$ for $\lambda \in \mathbb{D}$, and continuity of the spectral radius on $M_{2}(\mathbb{C})$ shows that $|G(\zeta)|_{\text {sp }} \leq 1$ almost everywhere. The proof is concluded by the observation that $G(\zeta)$ is a normal operator for almost every ζ, hence its norm equals the spectral radius. In fact, every matrix of the form $\left[\begin{array}{ll}a & b \\ c & a\end{array}\right]$ is normal when $|b|=|c|$ since it can be written as $a I+b U$, where $U=\left[\begin{array}{cc}0 & 1 \\ c / b & 0\end{array}\right]$ is a unitary operator (set $c / b=1$ if $b=c=0$).

The above proof may fail if each W_{j} has a single eigenvalue, and in fact the result is not true in that case. An example is obtained for $n=2, \lambda_{1}=0, \lambda_{2}=\frac{1}{2}$,
$W_{1}=0$, and $W_{2}=\left[\begin{array}{cc}1 / 2 & 1 / 2 \\ 0 & 1 / 2\end{array}\right]$. The function $F(\lambda)=\left[\begin{array}{cc}\lambda & \lambda \\ 0 & \lambda\end{array}\right]$ satisifies condition (1) in the theorem. We claim that no function G satisfies (3). Assume indeed that $G(0)=0, G(1 / 2)$ is similar to W_{2}, and $\|G(\lambda)\| \leq 1$ for $\lambda \in \mathbb{D}$. We can then write $G(\lambda)=\lambda G_{1}(\lambda)$, and a comparison of boundary values will show that G_{1} also has norm bounded by one. Now, $\operatorname{det}\left(G_{1}(1 / 2)\right)=1$, and we deduce easily that $G_{1}(1 / 2)$ is in fact a unitary operator. In particular, $G(1 / 2)$ must be a normal operator, and hence not similar to W_{2}, a contradiction.

REFERENCES

[1] J. Agler and N.J. Young. The two-point spectral Nevanlinna-Pick problem. Integral Equations Operator Theory, 37:375-385, 2000.
[2] J. Agler and N.J. Young. The two-by-two spectral Nevanlinna-Pick problem. Preprint, 2001.
[3] H. Bercovici, C. Foias, and A. Tannenbaum. A spectral commutant lifting theorem. Transactions of the Amer. Math. Soc., 325:7141-763, 1991.
4] C. Foias and A. Frazho. The commutant lifting approach to interpolation problems. Birkhäuser, Basel, 1990.
[5] K. Hoffman. Banach spaces of analytic functions. Prentice Hall, Englewood Cliffs, New Jersey, 1962.
[6] S. Petrović. An extremal problem in interpolation theory. Houston J. Math., 26:165-181, 2000.

[^0]: *Received by the editors on 20 March 2002. Accepted for publication on 9 January 2003. Handling Editor: Peter Lancaster.
 ${ }^{\dagger}$ Department of Mathematics, Indiana University, Bloomington, Indiana 47405, USA (bercovic@indiana.edu). Supported in part by a grant from the National Science Foundation.

