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TWO LINEAR PRESERVER PROBLEMS ON GRAPHS∗

YANAN HU† AND ZHENHUA LYU†

Abstract. Let n, t, k be integers such that 3 ≤ t, k ≤ n. Denote by Gn the set of graphs with vertex set {1, 2, . . . , n}.
In this paper, the complete linear transformations on Gn mapping Kt-free graphs to Kt-free graphs are characterized. The

complete linear transformations on Gn mapping Ck-free graphs to Ck-free graphs are also characterized when n ≥ 6.
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1. Introduction and main results. Graphs in this paper are simple. We denote by Gn the set of

graphs with vertex set 〈n〉 ≡ {1, 2, . . . , n}. For a graph G, we denote by V (G) its vertex set and E(G) its

edge set. For graphs G1, G2 ∈ Gn, G1 ∪ G2 is the graph with vertex set 〈n〉 and edge set E(G1) ∪ E(G2).

A k-cycle, written Ck, is a cycle of length k, which is also called a triangle when k = 3. A complete graph

with t vertices, written Kt, is a graph whose vertices are pairwise adjacent. Note that K3 coincides with C3.

Given a graph H, a graph G is called H-free if G does not contain H as a subgraph.

A map φ : Gn → Gn is said to be linear if

φ(G1 ∪G2) = φ(G1) ∪ φ(G2) for all G1, G2 ∈ Gn.

Moreover, if φ(Kn) = Kn, we call φ a complete linear map. A (complete) linear map is also called a

(complete) linear transformation.

Linear preserver problems concern the characterization of linear maps on matrices or operators preserving

special properties, which were initiated by Frobenius [5]. There are many directions and active research on

preserver problems motivated by theory and applications; see [1, 2, 3, 4, 8, 9, 10, 11, 13] and their references.

Hershkowitz [6] introduced linear maps on graphs and characterized the complete linear maps that map the

set of all graphs containing no cycle of length greater than or equal to k into or onto itself. In [7], the authors

determined the complete linear maps on Gn which preserve a given independence number. In this paper, we

study the following problems.

Problem 1.1. Given positive integers n and t, determine the complete linear maps φ : Gn → Gn mapping

all Kt-free graphs to Kt-free graphs.

Problem 1.2. Given positive integers n and t, determine the complete linear maps φ : Gn → Gn mapping

all Ct-free graphs to Ct-free graphs.

If t ∈ {1, 2} or t > n, both problems above are trivial. So we only discuss the cases n ≥ t ≥ 3. Note

that Problem 1.1 is equivalent to Problem 1.2 when t = 3.
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Given distinct i, j ∈ 〈n〉, denote by Gij the graph in Gn with edge set {(i, j)}. A map φ : Gn → Gn is

said to be a vertex permutation if there is a permutation σ on 〈n〉 such that

φ(Gij) = Gσ(i)σ(j) for all i, j ∈ 〈n〉 with i 6= j.

A complete linear map φ : Gn → Gn is said to be an edge permutation if each φ(Gij) contains exactly one edge

for all distinct i, j ∈ 〈n〉. It is easily seen that if φ is a vertex permutation, then φ is an edge permutation,

but not vice versa.

We state our main results as follows.

Theorem 1.3. Let n, t be integers such that 3 ≤ t ≤ n. Then a complete linear transformation φ :

Gn → Gn maps Kt-free graphs to Kt-free graphs if and only if one of the following holds.

(i) n > t with (n, t) 6= (4, 3) and φ is a vertex permutation.

(ii) n = t and φ is an edge permutation.

Theorem 1.4. Let n, k be integers such that n ≥ 6 and 3 ≤ k ≤ n. Then a complete linear transforma-

tion φ : Gn → Gn maps Ck-free graphs to Ck-free graphs if and only if φ is a vertex permutation.

We denote by (i1, i2, . . . , ik) the k-cycle i1i2 · · · iki1 and denote by G0 the graph in Gn whose edge set is

empty. The following examples show that Theorem 1.3 and Theorem 1.4 do not hold for (n, t) = (4, 3) and

(n, k) = (5, 4), respectively.

Example 1.5. Let f : G4 → G4 be the linear map such that

f(G12) = G12 ∪G34, f(G13) = G13 ∪G24, f(G23) = G23 ∪G14,

f(G14) = f(G24) = f(G34) = G0.

Obviously, f is not a vertex permutation and it maps triangle-free graphs to triangle-free graphs.

Example 1.6. Let f : G5 → G5 be the linear map such that

f(G12) = G12, f(G13) = G15, f(G14) = G34, f(G15) = G25, f(G23) = G14,

f(G24) = G35, f(G25) = G24, f(G34) = G23, f(G35) = G45, f(G45) = G13.

Since it maps G12 ∪G14 to G12 ∪G34, f is not a vertex permutation.

Note that there are 15 distinct 4-cycles on vertices from 〈5〉, which are

H1 = (1, 2, 3, 4), H2 = (1, 2, 4, 3), H3 = (1, 3, 2, 4),

H4 = (1, 2, 3, 5), H5 = (1, 2, 5, 3), H6 = (1, 3, 2, 5),

H7 = (1, 2, 4, 5), H8 = (1, 2, 5, 4), H9 = (1, 4, 2, 5),

H10 = (1, 3, 4, 5), H11 = (1, 3, 5, 4), H12 = (1, 4, 3, 5),

H13 = (2, 3, 4, 5), H14 = (2, 3, 5, 4), H15 = (2, 5, 3, 4).

Let H̃i ∈ G5 with E(H̃i) = E(Hi) for i ∈ {1, . . . , 15}. By the definition of f , we have

f(H̃1) = H̃1, f(H̃2) = H̃4, f(H̃3) = H̃12, f(H̃4) = H̃8, f(H̃5) = H̃7,

f(H̃6) = H̃9, f(H̃7) = H̃5, f(H̃8) = H̃2, f(H̃9) = H̃15, f(H̃10) = H̃6,

f(H̃11) = H̃10, f(H̃12) = H̃13, f(H̃13) = H̃3, f(H̃14) = H̃11, f(H̃15) = H̃14.
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One can see that f maps graphs containing 4-cycles to graphs containing 4-cycles. Since f is bijective, it

maps C4-free graphs to C4-free graphs.

Remark 1.7. The condition “complete” is natural here. Note that the linear transformations on Gn
which map Ck-free graphs to Ck-free graphs do not have a uniform structure. For example, let H ∈ Gn be

an arbitrary Ck-free graph and let φ : Gn → Gn be the map such that

φ(G) = H for all G ∈ Gn.

Then φ is linear and it maps all Ck-free graphs to Ck-free graphs.

2. Proof of Theorem 1.3 . In this section, we present the proof of Theorem 1.3. In what follows, we

always assume n and t are positive integers such that 3 ≤ t ≤ n and (n, t) 6= (4, 3). Two distinct edges are

said to be adjacent if they share a common vertex. Otherwise, they are said to be nonadjacent. We need

the following lemmas.

Lemma 2.1. Let φ : Gn → Gn be a complete linear transformation mapping Kt-free graphs to Kt-free

graphs. Then φ is bijective and

(2.1) | E(φ(Gij)) |= 1 for all i, j ∈ 〈n〉 with i 6= j.

Proof. We distinguish two cases.

Case 1. k > 3. Firstly, we claim that φ(Gij) does not contain two adjacent edges for any distinct

i, j ∈ 〈n〉. Otherwise, suppose there exist i, j ∈ 〈n〉 such that φ(Gij) contains two adjacent edges (s, w) and

(s, u). Given u1, u2, . . . , uk−3 ∈ 〈n〉\{s, w, u}, let K be the complete graph on {s, w, u, u1, . . . , uk−3} and let

E(K) \ {(s, w), (s, u)} = {e1, . . . , et(t−1)/2−2}.

Since φ is complete, there exist i1, . . . , it(t−1)/2−2, j1, . . . , jt(t−1)/2−2 ∈ 〈n〉 such that

er ∈ E(φ(Girjr )) for all r ∈ 〈t(t− 1)/2− 2〉.

Let

G = Gij ∪

t(t−1)/2−2⋃
m=1

Gimjm

 .

Then G has at most t(t− 1)/2− 1 edges and it is Kt-free, but φ(G) contains a complete graph of order t, a

contradiction. Therefore, φ(Gij) does not contain adjacent edges for all i, j ∈ 〈n〉 with i 6= j.

Applying similar arguments as above we can show φ(Gij) does not contain nonadjacent edges for all

i, j ∈ 〈n〉 with i 6= j.

Therefore, we have

(2.2) | E(φ(Gij)) |≤ 1 for all i, j ∈ 〈n〉 with i 6= j.

Since φ is complete, we get (2.1) and φ is bijective.

Case 2. k = 3. Suppose n = 3. From the arguments in Case 1, we see that φ(Gij) does not contain

two adjacent edges for any distinct i, j ∈ 〈3〉. Since any two edges are adjacent, (2.2) holds. Note that φ is

complete. We get (2.1) and φ is bijective.
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Now assume n ≥ 5. We prove the following claim.

Claim 1. φ(Gij) ∪ φ(Gsw) does not contain adjacent edges for any distinct i, j, s, w ∈ 〈n〉.

Otherwise, suppose there exist distinct i, j, s, w ∈ 〈n〉 such that φ(Gij) ∪ φ(Gsw) contains two adjacent

edges (i1, j1) and (i1, j2). Since φ is complete, there exist u, v ∈ 〈n〉 such that (j1, j2) ∈ E(φ(Guv)). Now let

G = Gij ∪Gsw ∪Guv. Then G is triangle-free and φ(G) contains a triangle, a contradiction. Therefore, we

get Claim 1.

Suppose there exist distinct i, j ∈ 〈n〉 such that φ(Gij) contains two edges (s, w), (u, v). Claim 1

implies that (s, w) and (u, v) are nonadjacent. Given any p ∈ 〈n〉\{s, w, u, v}, let G1 ∈ Gn with edge set

E(G1) = {(s, w), (w, p), (s, p)}. Since φ is complete, applying Claim 1, there exists q ∈ 〈n〉 such that

(w, p) ∈ E(φ(Gqj)) or (w, p) ∈ E(φ(Gqi)).

Without loss of generality, we assume

(2.3) (w, p) ∈ E(φ(Gqj)).

Let G2 ∈ Gn with E(G2) = {(s, w), (w, u), (s, u)}.

We assert that there is a graph G3 ∈ Gn with E(G3) = {(i, j), (j, x), (i, x)} such that G2 is a subgraph

of φ(G3). From the definition of φ, there exists H ∈ Gn with 3 edges such that φ(H) contains G2. Moreover,

these edges is a triangle T. We assume V (T ) = {a, b, c} and E(T ) = {(a, b), (a, c), (b, c)}. It is clear that

each of {φ(Gab), φ(Gac), φ(Gbc)} contains exactly one distinct edge of G2. Without loss of generality, we let

(s, w) ∈ E(φ(Gab)). If (a, b) 6= (i, j), we have G4 = Gbc ∪ Gac ∪ Gij . Obviously, φ(G4) contains a triangle,

which contradicts the definition of φ. Hence, we get the assertion.

Without loss of generality, we let (s, u) ∈ E(φ(Gix)) and

(2.4) (u,w) ∈ E(φ(Gjx)).

Now consider G5 ∈ Gn with E(G5) = {(w, u)(u, p), (w, p)}. We assert that

(u, p) ∈ E(φ(Gqx)).

Otherwise, since φ is complete, φ(Gab) contains (u, p), where (a, b) 6= (q, x). Let

G6 = Gab ∪Gjx ∪Gqj ,

which contains no triangle. By (2.3) and (2.4), φ(G6) contains a triangle, a contradiction. It follows that

(u, p), (u, v) ∈ E(φ(Gij ∪Gqx)),

which contradicts Claim 1.

Therefore, we have (2.2). Since φ is complete, we get (2.1) and φ is bijective.

Corollary 2.2. Let φ : Gn → Gn be a complete linear transformation mapping Kt-free graphs to Kt-free

graphs. Then φ(G) contains a copy of Kt whenever G contains a copy of Kt.

Proof. Applying Lemma 2.1, φ is bijective. It follows that the numbers of Kt-free graphs in Gn and in

φ(Gn) are equal. Therefore, φ(G) contains a complete graph with k vertices whenever G contains a complete

graph with k vertices.
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Lemma 2.3. Let n > t and φ : Gn → Gn be a complete linear transformation mapping Kt-free graphs to

Kt-free graphs. Then E(φ(Gip) ∪ (φ(Giq)) consists of two adjacent edges for any distinct i, p, q ∈ 〈n〉.

Proof. As in the proof of [6, Proposition 3.14], we count the number of distinct complete graphs with t

vertices. By Lemma 2.1, we have

| E(φ(Gip) ∪ (φ(Giq)) |= 2 for any distinct i, p, q ∈ 〈n〉.

Suppose there exist distinct i, p, q ∈ 〈n〉 such that E(φ(Gip)∪ (φ(Giq)) consists of two nonadjacent edges

(s, w) and (u, v). Then the number of all possible complete graphs with t vertices containing (i, p) and (i, q)

is

f1 ≡
(
n− 3

t− 3

)
=

(n− 3)!

(n− t)!(t− 3)!
.

And the number of all possible complete graphs with t vertices containing (s, w) and (u, v) is

f2 ≡

{
(n−4)!

(n−t)!(t−4)! , t > 3;

0, t = 3.

It is easily seen that f1 > f2. Applying Lemma 2.1 and Corollary 2.2, we have f1 = f2, a contradiction.

Hence, E(φ(Gip) ∪ (φ(Giq)) consists of two adjacent edges for any distinct i, p, q ∈ 〈n〉.

Lemma 2.4. Let n > k and φ : Gn → Gn be a complete linear transformation mapping Kt-free graphs to

Kt-free graphs. Then for every i ∈ 〈n〉, there exists i′ ∈ 〈n〉 such that

(2.5) φ(

n⋃
j=1,j 6=i

Gij) =

n⋃
j=1,j 6=i′

Gi′j .

Proof. Given any i ∈ 〈n〉, choose j1, j2 ∈ 〈n〉 \ {i}. By Lemma 2.3, there exist i′, p, q ∈ 〈n〉 such that

E(φ(Gij1)) = Gi′p and E(φ(Gij2)) = Gi′q.

Suppose there exists j ∈ 〈n〉 \ {i, j1, j2} such that the only edge of φ(Gij) is not incident with i′. Then

applying Lemma 2.3 again, we have φ(Gij) = Gpq. For any x ∈ 〈n〉 \ {i, j, j1, j2}, the edge in φ(Gix) is not

adjacent with any one of (i′, p), (i′, q) and (p, q), which contradicts Lemma 2.3. Therefore, for every i ∈ 〈n〉,
there exists i′ ∈ 〈n〉 such that (2.5) holds.

Proof of Theorem 1.3. The sufficiency part of this theorem is obvious. We prove the necessity part by

distinguishing two cases.

Case 1. n > t and (n, t) 6= (4, 3). Applying Lemma 2.4, for any i ∈ 〈n〉 there exists i′ ∈ 〈n〉 such that

(2.5) holds. Denote by σ : 〈n〉 → 〈n〉 the map such that σ(i) = i′. Since φ is bijective, i′ 6= j′ whenever

i 6= j. Hence, σ is a permutation. Now by (2.5) we have

φ(Gij) = Gi′j′ = Gσ(i)σ(j) for all distinct i, j ∈ 〈n〉,

which means φ is a vertex permutation.

Case 2. n = t. Applying Lemma 2.1 we see that φ is an edge permutation. �
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3. Proof of Theorem 1.4 . In this section, we always assume 4 ≤ k ≤ n. The proof of Theorem 1.4

follows the same scheme as the proof of Theorem 1.3. We can obtain the following lemma and corollary by

using similar arguments as in the proofs of Lemma 2.1 and Corollary 2.2, respectively.

Lemma 3.1. Let φ : Gn → Gn be a complete linear transformation mapping Ck-free graphs to Ck-free

graphs. Then φ is bijective and

(3.6) | E(φ(Gij)) |= 1 for all i, j ∈ 〈n〉 with i 6= j.

Corollary 3.2. Let φ : Gn → Gn be a complete linear transformation mapping Ck-free graphs to Ck-free

graphs. Then φ(G) contains a k-cycle whenever G contains a k-cycle.

Lemma 3.3. Let n ≥ 6 and φ : Gn → Gn be a complete linear transformation mapping Ck-free graphs to

Ck-free graphs. Then E(φ(Gip) ∪ (φ(Giq)) consists of two adjacent edges for all distinct i, p, q ∈ 〈n〉.

Proof. As in the proof of Lemma 2.3 or [6, Proposition 3.14], we count the number of distinct k-cycles.

By Lemma 3.1,

| E(φ(Gip) ∪ (φ(Giq)) |= 2 for any distinct i, p, q ∈ 〈n〉.

Suppose there are distinct i, p, q ∈ 〈n〉 such that E(φ(Gip)∪ (φ(Giq)) consists of two nonadjacent edges (s, t)

and (u, v). Then the number of all possible k-cycles through (i, p) and (i, q) is

f3 ≡
(
n− 3

k − 3

)
(k − 3)! =

(n− 3)!

(n− k)!
.

And the number of all possible k-cycles through (s, t) and (u, v) is

f4 ≡ 2

(
n− 4

k − 4

)
(k − 3)! =

2(k − 3)(n− 4)!

(n− k)!
.

Since φ is bijective, by Corollary 3.2, we have f3 = f4. Then k = (n+ 3)/2, which implies that n is odd and

n ≥ 7.

Now let C = (i, p, j1, . . . , jk−3, q) be a k-cycle and let C̃ ∈ Gn with E(C̃) = E(C). Then by Corollary

3.2, φ(C̃) contains a k-cycle with

{(s, t), (u, v)} ⊂ E(φ(C̃)).

Since n ≥ 7, we have

| 〈n〉 \ {i, p, q, j1, . . . , jk−3} |= (n− 3)/2 ≥ 2

and there are distinct i1, i2 ∈ 〈n〉 \ {i, p, q, j1, . . . , jk−3}. Replacing the role of i with i1 and i2 in C̃, we get

two graphs G1 and G2. Note that there are only two k-cycles containing the edges E(φ(C̃)) \ {(s, t), (u, v)}.
Hence, either φ(G1) or φ(G2) contains no Ck, which contradicts Corollary 3.2.

Therefore, E(φ(Gip ∪Giq)) consists of two adjacent edges for any distinct i, p, q ∈ 〈n〉.

Applying the same arguments as in the proof of Lemma 2.4, we can prove that the statement of Lemma

2.4 holds when n ≥ 6. Then using the same arguments as in the proof of Theorem 1.3, we obtain Theorem

1.4.
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