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DISCONTINUITY PROPAGATION IN DELAY
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Abstract. The propagation of primary discontinuities in initial value problems for linear delay differential-algebraic

equations (DDAEs) is discussed. Based on the (quasi-) Weierstraß form for regular matrix pencils, a complete characterization

of the different propagation types is given and algebraic criteria in terms of the matrices are developed. The analysis, which

is based on the method of steps, takes into account all possible inhomogeneities and history functions and thus serves as a

worst-case scenario. Moreover, it reveals possible hidden delays in the DDAE and allows to study exponential stability of the

DDAE based on the spectral abscissa. The new classification for DDAEs is compared to existing approaches in the literature

and the impact of splicing conditions on the classification is studied.
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1. Introduction. In this paper, we study delay differential-algebraic equations (DDAEs) of the form

(1.1a) Eẋ(t) = Ax(t) +Dx(t− τ) + f(t)

in the time interval I := [0, tf ], where E,A,D ∈ Fn,n are matrices, f : I→ Fn is the inhomogeneity, ẋ denotes

the time derivative d+

dt x of x from the right [7,18], and the field F is either the complex or the real numbers,

i.e., F ∈ {R,C}. Often, (1.1a) is formulated as an initial value problem (IVP), i.e., we equip (1.1a) with the

initial condition

(1.1b) x(t) = φ(t) for t ∈ [−τ, 0]

with history function φ : [−τ, 0] → Fn. DDAEs of the form (1.1a) arise as linearization of the nonlinear

implicit equation

F (t, x(t), ẋ(t), x(t− τ)) = 0

around a nominal stationary solution. Typical applications are nonlinear optics, chemical reactor systems

and delayed feedback control (see [11] and the references therein). Moreover, the DDAE (1.1a) may result

from a realization of a transport-dominated phenomenon [21,22].

It is well-known, that the history function φ may not be linked smoothly to the solution x at t = 0. More

precisely, we have

(1.2) lim
t↗0

φ̇(t) 6= lim
t↘0

ẋ(t) = ẋ(0)

in general (recall that ẋ = d+/dt denotes the derivative from the right). Due to the delay, this so-called

primary discontinuity [2] is propagated to integer multiples of the delay τ . Thus, a rigorous analysis of the
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regularity of the solution is important for any kind of numerical integrator that is based on a Taylor series

expansion of the solution. If E = In is the n× n identity matrix, the DDAE (1.1a) is called retarded delay

differential equation (rDDE) and it is well-known that in this case, the primary discontinuities are smoothed

out, i.e., if

lim
t↗kτ

x(j−1)(t) = x(j−1)(kτ) and lim
t↗kτ

x(j)(t) 6= x(j)(kτ)

holds for some j, k ∈ N, then we have

lim
t↗(k+1)τ

x(j)(t) = x(j)((k + 1)τ)

provided that f is smooth enough. This situation is specific to the case that the matrix E is nonsingular.

If, in contrast, the matrix E is singular, the situation is completely different (see also [6]), as the following

two examples suggest.

Example 1.1. Let F = R, n = 1, E = 0, A = 1, D = 1, f ≡ 1, τ = 1, and φ(t) = t. Then

x(t) =

{
k − 1− t, if k − 1 ≤ t ≤ k and k ∈ N odd,

t+ k, if k − 1 ≤ t ≤ k and k ∈ N even

solves the initial values problem (1.1). In particular, the solution x is continuous but ẋ is discontinuous at

every t = k, and thus, no smoothing occurs.

Example 1.2. Let F = R, n = 2, f ≡ 0, τ = 1, and

E =

[
1 0

0 0

]
, A =

[
0 1

1 0

]
, D =

[
0 0

0 −1

]
, φ(t) =

[
1
3 (t− 1)3 + (t− 1)2 − 1,

1
3 t

3 + t2 − 1

]
.

Denoting the second component of x with x2, the DDAE (1.1a) implies

x2(t) =


t2 − 1, t ∈ [0, 1],

2t− 2, t ∈ [1, 2],

2, t ∈ [2, 3),

0, t ≥ 3.

In particular, the solution becomes less smooth at multiples of the time delay and even discontinuous at

t = 3.

The study of primary discontinuities of the scalar delay differential equation (DDE)

(1.3) a0ẋ(t) + a1ẋ(t− τ) + b0x(t) + b1x(t− τ) = f(t)

is based on the the classification proposed in [3]: The DDE (1.3) is said to be of retarded type if a0 6= 0 and

a1 = 0, of neutral type if a0 6= 0 and a1 6= 0, and of advanced type if a0 = 0 and a1 6= 0. Following this

classification, we observe that the DDAE in Example 1.1 is of neutral type (if we differentiate the equation),

while the second component in Example 1.2 satisfies a DDE of advanced type. The reason for this behavior is

the so-called index of the differential-algebraic equation (DAE) that is encoded in the matrix pencil (E,A).

The index is, roughly speaking, a measure for the smoothness requirements for the inhomogeneity f for a

solution to exist. For a detailed analysis of the different index concepts, we refer to [19,20].
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The different classification approaches for DDAEs present in the literature, are either restricted to DDAEs

in Hessenberg from with index less or equal three [1] or are based on the so-called underlying DDE [16].

In particular, neither of the approaches reflects the propagation of primary discontinuities and the effect of

so-called splicing conditions [2] on the regularity of the solution. The main contributions of this work are

the following:

1. We introduce a new classification for DDAE based on the propagation of primary discontinuities

(Definition 3.3) and give a complete characterization of the propagation of discontinuities in terms

of the matrices E,A, and D in (1.1a), cf. Theorem 3.9.

2. In Corollary 3.5, we show that multiple delays might be hidden in (1.1a) and provide a reformu-

lation that is suitable for the stability analysis. Moreover, we show that the new classification

provides a sufficient condition to analyze the stability of the DDAE in terms of the spectral abscissa

(Corollary 3.13).

3. Example 4.2 illustrates that splicing conditions can have an impact on the solvability of DDAEs.

Moreover, we characterize sufficient conditions for DDAEs up to index 3 to have a unique solution

(cf. Theorem 4.3).

4. We show (Corollary 5.3) that in some sense the classification introduced [16] is an upper bound for

the classification introduced in this paper.

Nomenclature.

N the set of natural numbers

N0 := {0} ∪ N
In identity matrix of size n× n
F either the field of real numbers R or the field of complex numbers C
Fn,m matrices of size n×m over the field F
GLn(F) := {A ∈ Fn,n | A nonsingular}
στ shift (backward) operator: (στx)(t) := x(t− τ)

ẋ := d+

dt x, the derivative of x from the right

x(j) :=
(

d+

dt

)j
x

xi(t) := x(t+ (i− 1)τ) for t ∈ [0, τ ]

C(I,Fn) the vector space of all continuous functions from the real interval I into

Fn

Ck(I,Fn) the vector space of all k-times continuously differentiable functions from

the real interval I into Fn

x(j)(t−) := lims↗t x
(j)(s)

2. Preliminaries and DAE theory. In this section, we review basic facts about DAE theory for

linear time-invariant systems. For convenience, we omit the time argument whenever possible and use the

shift (backward) operator στ defined via

(στx)(t) = x(t− τ)
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instead, such that such that (1.1a) is given by

(2.4) Eẋ = Ax+Dστx+ f.

Note that the formulation of the DDAE (2.4) is not restricted to one single delay, since multiple commensurate

delays [13] may be rewritten as a single delay by introducing new variables [14]. A standard approach to

solve the initial value problem (1.1) is via successive integration of (2.4) on the time intervals [(i− 1)τ, iτ),

which is sometimes referred to as method of steps [16], see also [2, 5]. More precisely, assume that M is the

smallest integer such that tf < Mτ and introduce for i ∈ I := {1, . . . ,M} the functions

(2.5)

xi : [0, τ ]→ Fn, t 7→ (σ(1−i)τx)(t) = x(t+ (i− 1)τ),

fi : [0, τ ]→ Fn, t 7→ (σ(1−i)τf)(t) = f(t+ (i− 1)τ),

x0 : [0, τ ]→ Fn, t 7→ φ(t− τ).

Then, we have to solve for each i ∈ {1, . . . ,M} the DAE

Eẋi = Axi + f̃i, t ∈ [0, τ),(2.6a)

xi(0) = xi−1(τ−),(2.6b)

with f̃i := Dxi−1 + fi and right continuation

(2.7) xi−1(τ−) := lim
t↗τ

xi−1(t).

For the analysis of (2.6) we employ the following solution concept from [19]. A function xi ∈ C1([0, τ ],Fn) is

called a solution of (2.6a), if it satisfies (2.6a) pointwise. The function xi ∈ C1([0, τ ],Fn) is called a solution

of the initial value problem (2.6) if it is a solution of (2.6a) and satisfies (2.6b). An initial value xi−1(τ−) is

called consistent, if the initial value problem (2.6) hast at least one solution.

The solvability of (2.6a) is closely connected to the matrix pencil (E,A) and the smoothness of the inhomo-

geneity f̃i. If the inhomogeneity or some of its derivatives are discontinuous at certain points, we call this

a secondary discontinuity [2]. For a numerical integrator, the secondary discontinuities need to be included

in the time grid. However, to simplify our discussion, we assume that f̃i is arbitrarily smooth on (0, τ). A

sufficient assumption to guarantee this is to assume the following.

Assumption 2.1. The history function φ : [−τ, 0] → Fn and the inhomogeneity f : I → Fn are infinitely

many times continuously differentiable.

Another critical assumption that we make throughout the text is the following.

Assumption 2.2. The matrix pencil (E,A) is regular, i.e., there exists λ ∈ F such that det (λE −A) 6= 0.

Invoking Assumptions 2.1 and 2.2, the IVP (2.6) has a classical solution (cf. [19] and the discussion below) if

the initial condition (2.6b) satisfies some algebraic equation. Hereby, xi is called a (classical) solution, if xi
is continuously differentiable and satisfies (2.6a) pointwise. If (2.6) has a unique solution xi for every i ∈ I,

we can construct a solution x of the IVP (1.1) by setting x(t) = xi(t− (i− 1)τ) for t ∈ [(i− 1)τ, iτ).

Remark 2.3. If (E,A) is not regular, it is still possible that the IVP (1.1) has a unique solution (in the sense

of [16]). In this case, the DDAE is called noncausal and under some technical assumptions [16] provides

algorithms to transform (2.4) such that the transformed pencil (Ẽ, Ã) is regular. However, such a process

adds additional restrictions on the history function [6, 15].
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If (E,A) is regular, then we can characterize the smoothness requirements for the inhomogeneity f̃i in (2.6a)

for a classical solution to exist. This characterization is based on the Weierstraß canonical form (cf. [12]).

A more general form that is also valid for F = R is the quasi-Weierstraß from, introduced in [4].

Theorem 2.4 (Quasi-Weierstraß form). The matrix pencil (E,A) is regular if and only if there exist

matrices S, T ∈ GLn(F) such that

(2.8) SET =

[
Ind

0

0 N

]
and SAT =

[
J 0

0 Ina

]
,

where N ∈ Fna,na is a nilpotent matrix with index of nilpotency ν and J ∈ Fnd,nd . If na > 0, we call ν the

index of the pencil (E,A) and write ind(E,A) := ν. Otherwise we set ind(E,A) := 0.

Applying the matrices S and T to the DAE (2.6a) implies a one-to-one correspondence between solutions of

(2.6a) and solutions of

v̇i = Jvi + g̃i,(2.9a)

Nẇi = wi + h̃i,(2.9b)

with [
vi
wi

]
:= T−1xi and

[
g̃i
h̃i

]
:= Sf̃i.

While (2.9a) is a standard ordinary differential equation (ODE) in vi that can be solved with the Duhamel

integral, the so called fast subsystem (2.9b) has the solution

(2.10) wi = −
ν−1∑
k=0

Nkh̃
(k)
i ,

and hence, the function h̃i must be ν times continuously differentiable for a classical solution to exist (cf. [19]),

i.e., the right continuation (2.7) exists. In addition, a consistent initial value wi(0) must satisfy equation

(2.10). Note that if g̃i and h̃i and the respective derivates exists at t = τ , then the solution vi and wi, and

thus, xi can be extended to t = τ , i.e., the right continuation (2.7) exists. Similar to [24], we define the

matrices

(2.11)

Adiff := T

[
J 0

0 0

]
T−1, Acon := T

[
Ind

0

0 0

]
T−1,

C0 := T

[
Ind

0

0 0

]
S, Ck := −T

[
0 0

0 Nk−1

]
S

for k = 1, . . . , ind(E,A). Note that the matrices in (2.11) do not depend on the specific choices of S and

T [25].

Proposition 2.5. Assume that the DAE (2.6a) satisfies Assumptions 2.1 and 2.2. Then any classical

solution xi of (2.6a) fullfills the so called underlying ODE

(2.12) ẋi = Adiffxi +

ind(E,A)∑
k=0

Ckf̃
(k)
i .
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Conversely, let xi be a classical solution of (2.12). Then xi is a solution of (2.6a) if and only if there exists

s ∈ [0, τ ] such that xi(s) satisfies

(2.13) xi(s) = Aconxi(s) +

ind(E,A)∑
k=1

Ckf̃
(k−1)
i (s).

Proof. Let xi be a classical solution of (2.6a) and S, T ∈ GLn(F) be matrices that satisfy (2.8) of the

quasi-Weierstraß form and set ν := ind(E,A). Differentiation of (2.10) yields

ẋi = T

[
v̇i
ẇi

]
= T

[
Jvi + g̃i

−
∑ν−1
k=0 N

kh̃
(k+1)
i

]

= T

[
J 0

0 0

] [
vi
wi

]
+ T

[
Ind

0

0 0

] [
g̃i
h̃i

]
−

ν∑
k=1

T

[
0 0

0 Nk−1

][
g̃

(k)
i

h̃
(k)
i

]

= Adiffxi +

ν∑
k=0

Ckf̃
(k)
i .

Conversely, let xi be a classical solution of (2.12). Then there exists xi(0) ∈ Fn such that

(2.14) xi(t) = eA
diff txi(0) +

∫ t

0

eA
diff (t−s)

ν∑
k=0

Ckf̃
(k)
i (s)ds.

Scaling (2.14) from the left by T−1, we obtain

vi(t) = eJtvi(0) +

∫ t

0

eJ(t−s)g̃i(s)ds and

wi(t) = wi(0)−
ν∑
k=1

Nk−1

∫ t

0

h̃
(k)
i (s)ds = wi(0)−

ν−1∑
k=0

Nkh̃
(k)
i (t) +

ν−1∑
k=0

Nkh̃
(k)
i (0).

The condition (2.13) implies the existence of s ∈ [0, τ ] such that[
vi(s)

wi(s)

]
=

[
vi(s)

−
∑ν−1
k=0 N

kh̃
(k)
i (s).

]

Together with (2.10) this implies that xi is a solution of (2.6a).

Setting s = 0 in the previous proposition yields the following requirement for an initial condition to be

consistent.

Corollary 2.6. Assume that the DAE (2.6a) satisfies Assumptions 2.1 and 2.2. Then xi(0) is consistent

if and only if it satisfies the consistency condition

(2.15) xi(0) = Aconxi(0) +

ind(E,A)∑
k=1

Ckf̃
(k−1)
i (0).

In this case, the IVP (2.6) has a unique solution xi ∈ C∞([0, τ ],Fn).
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In order to reformulate (2.12) in terms of the delayed argument, i.e., by replacing f̃i = Dxi−1 +fi, we have to

specify the solution concept for DDAEs. In contrast to DAEs, a classical solution concept is not reasonable

for the DDAE (2.4), because the identity

lim
t↘0

ẋ(t) = ẋ(0) = φ̇(0−) := lim
t↗0

φ̇(t)

is in general not satisfied and this discontinuity in the first derivative at t = 0 may propagate over time

(cf. [2] and Examples 1.1 and 1.2). Instead, we use the following solution concept.

Definition 2.7 (Solution concept). Assume that the DDAE (1.1a) satisfies Assumptions 2.1 and 2.2. We

call x ∈ C(I,Fn) a solution of (1.1) if for all i ∈ I the restriction xi of x as in (2.5) is a solution of (2.6). We

call the history function φ consistent if the initial value problem (1.1) has at least one solution.

The definition and the previous discussion immediately yields the following relation between the DDAE IVP

(1.1) and the sequence of DAE IVPs (2.6).

Proposition 2.8. Let Assumptions 2.1 and 2.2 hold. If x is a solution of the IVP (1.1), then the restriction

xi(t) = x(t+ (i− 1)τ) is a solution of (2.6). Conversely, if the sequence (xi) is a solution of (2.6), then

x(t) =

{
xi(t− (i− 1)τ), if (i− 1)τ ≤ t < iτ for some i ∈ N,
φ(t), otherwise

is a solution of (1.1).

In order to reformulate (2.12) in terms of the delayed argument, we introduce the matrices Dk := CkD for

k = 0, . . . , ind(E,A). This yields the DDE

(2.16) ẋ = Adiffx+

ind(E,A)∑
k=0

(
Dkστx

(k) + Ckf
(k)
)
,

which we call the the underlying DDE for the DDAE (2.4).

From Corollary 2.6 and the discussion thereafter we immediately observe that a necessary condition for a

history function φ to be consistent is that it satisfies the equation

(2.17) φ(0) = Aconφ(0) +

ind(E,A)∑
k=1

(
Dkφ

(k−1)(−τ) + Ckf
(k−1)(0)

)
.

Unfortunately, as Example 1.2 suggests, this condition is not sufficient for consistency, which gives raise to

the following definition.

Definition 2.9. Assume that the IVP (1.1) with history function φ : [−τ, 0]→ Fn satisfies Assumptions 2.1

and 2.2. Then φ is called admissible for the IVP (1.1) if x1(0) = φ(0) is consistent for the DAE

Eẋ1(t) = Ax1(t) +Dφ(t− τ) + f1(t),

i.e., φ satisfies (2.17). Similarly, x0 : [0, τ ] → Fn is called admissible for the sequence of DAEs (2.6) if the

DAE

Eẋ1(t) = Ax1(t) +Dx0(t) + f(t),

x1(0) = x0(τ)

has a solution on [0, τ).
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For the analysis in the upcoming section, we introduce

(2.18)

[
Dd

Da

]
:= SD,

[
Dd,1 Dd,2

Da,1 Da,2

]
:= SDT,

[
g

h

]
:= Sf, and

[
ψ

η

]
:= T−1φ,

where S, T ∈ GLn(F) are matrices that satisfy (2.8) from the quasi-Weierstraß form (Theorem 2.4) and we

use the same block dimensions as in (2.8). Applying the matrices S, T to (2.4) yields

v̇ = Jv +Dd,1στv +Dd,2στw + g,(2.19a)

Nẇ = w +Da,1στv +Da,2στw + h.(2.19b)

3. Discontinuity propagation. In this section, we derive a classification for the DDAE (1.1a) in terms

of the propagation of primary discontinuities of solutions of the IVP (1.1). Recall that for an admissible

history function φ : [−τ, 0]→ Fn, Assumptions 2.1 and 2.2 guarantee that there exists a number M ∈ N and

a unique sequence (xi)i∈{0,...,M} that satisfies (2.6) (cf. Corollary 2.6). Hence, for any i ∈ {1, . . . ,M}, we

can define the level `i of the primary discontinuity as

(3.20) `i := min
f∈C∞(I,Fn)

min
x0∈C∞([0,τ ],Fn)
x0 admissible

max

{
` ∈ N0

∣∣∣∣∣ xj solves (2.6) for j = 1, . . . , i and

x
(`)
i (0) = x

(`)
i−1(τ−)

}
.

If for some j ∈ N the initial condition xj(0) = xj−1(τ) is not consistent, and thus, no solution of (2.6) exists,

we formally set `i := −∞ for all i ≥ j. Note that this definition is independent of the specific choice of the

inhomogeneity f and the history φ and thus serves as the worst-case scenario. To simplify the computation

of the numbers `i we observe the following, which is a generalization of [18, Theorem 7.1]

Proposition 3.1. Assume that the IVP (1.1) with admissible history function φ : [−τ, 0] → Fn satisfies

Assumptions 2.1 and 2.2. Then the solution x of (1.1) is continuously differentiable on [−τ, τ) if and only

if φ satisfies

(3.21) φ̇(0−) = Adiffφ(0) +

ind(E,A)∑
k=0

(
Dkφ

(k)(−τ) + Ckf
(k)(0)

)
.

The solution x of (1.1) is κ times continuously differentiable on [−τ, τ) if and only if φ satisfies

(3.22) φ(p+1)(0−) = Adiffφ(p)(0−) +

ind(E,A)∑
k=0

(
Dkφ

(k+p)(−τ) + Ckf
(k+p)(0)

)
for p = 0, 1, . . . , κ− 1.

Proof. Since φ is admissible, the initial condition x1(0) = φ(0) is consistent and following Corollary 2.6 the

solution x exists on [−τ, τ). Thus, it is sufficient to check the point t = 0. Using Proposition 2.5 we can

consider (2.12) and thus obtain

ẋ1(0) = Adiffx1(0) +

ind(E,A)∑
k=0

(
Dkx

(k)
0 (0) + Ckf

(k)
1 (0)

)

= Adiffφ(0) +

ind(E,A)∑
k=0

(
Dkφ

(k)(−τ) + Ckf
(k)
1 (0)

)
,
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and hence, x is continuously differentiable on [−τ, τ) if and only if φ satisfies (3.21). For arbitrary κ ∈ N
we invoke Proposition 2.5, which guarantees that the solution x exists on the interval [0, τ) and allows us

to consider the underlying DDE (2.16) instead of the DDAE. Since the assumptions guarantee that x is

sufficiently smooth on [0, τ) we can differentiate (2.16) p ∈ N times to obtain

x
(p+1)
1 (0) = Adiffx

(p)
1 (0) +

ind(E,A)∑
k=0

(
Dkx

(k+p)
0 (0) + Ckf

(k+p)
1 (0)

)

= Adiffφ(p)(0−) +

ind(E,A)∑
k=0

(
Dkφ

(k+p)(−τ) + Ckf
(k+p)
1 (0)

)
,

which implies the result.

Since we require φ ∈ C∞([−τ, 0],Fn) to be admissible we immediately obtain `1 ≥ 0. On the other hand

assume that we have given the values φ(0) and φ(k)(−τ) for k = 0, . . . , ν such that φ is admissible. Then

we can always construct (via Hermite interpolation) φ in such a way that (3.21) is not satisfied, and hence,

`1 ≤ 0, which yields `1 = 0. Thus, the questions about propagation of discontinuities can be rephrased as

whether there exists k ∈ N with `k > 0 (i.e., the solution becomes smoother), or there exists k ∈ N with

`k = −∞ (i.e., the solution becomes less smooth), or if `i = `1 for all i ∈ N. Note that the smoothing may

not start immediately (i.e., we cannot ask for `1 = 1), as the following example suggests.

Example 3.2. Consider the DDAE given by F = R, n = 2, f ≡ 0, τ = 1, and

E =

[
1 0

0 0

]
, A =

[
0 0

0 1

]
, D =

[
0 1

−1 0

]
, φ(t) =

[
t,

−1

]
.

Since (E,A) is already in Weierstraß form, it is easy to see that the DDAE corresponds to the DDE

(3.23) v̇(t) = v(t− 2τ)

with coupled equation w(t) = v(t − τ). Straight forward calculations show that `1 ≤ 0 (using the specified

history function φ) and `1 ≥ 0 implying `1 = 0. On the other, (3.23) is a scalar delay equation and it is

well-known, that the solution is continuously differentiable at t = 2τ , thus we have `2 ≥ 1.

Definition 3.3 (Classification). Consider the DDAE (1.1a) on the time interval I = [0,Mτ ], set

I := {1, . . . ,M}, and suppose that (1.1) satisfies Assumptions 2.1 and 2.2. We say that (1.1a) is of

• smoothing type if there exists j ∈ I, j > 1 such that `j = 1 and `i = 0 for i < j,

• discontinuity invariant type if `i = 0 for all i ∈ I, and

• de-smoothing type if there exists j ∈ I, j > 1 such that `j = −∞ and `i = 0 for i < j.

In the following, we analyze in detail the DDAE (1.1a) and derive conditions for the matrices E,A, and D,

from which the type can be determined. Before we analyze the general DDAE case we focus on the case of

ind(E,A) ≤ 1, i.e., the system is a pure DDE or N = 0 in (2.9b). Note that this case includes DDEs of the

form

(3.24) ˙̂x(t) = Âx̂(t) + D̂x̂(t− τ) + B̂ ˙̂x(t− τ) + f̂(t),

with arbitrary matrices Â, D̂, B̂ ∈ Fn,n.
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If ind(E,A) = 0, then the matrix E is nonsingular and the DDAE is of the form

(3.25) ẋ(t) = E−1Ax(t) + E−1Dx(t− τ) + E−1f(t)

and the ODE solution formula together with Proposition 3.1 directly implies `1 = 1, i.e., (3.25) is of

smoothing type.

Theorem 3.4. Consider the DDAE (1.1a) on the interval I = [0,Mτ ] and suppose that Assumptions 2.1

and 2.2 hold. If ind(E,A) = 1, then (1.1a) is of smoothing type if and only if Da,2 in (2.18) is nilpotent

with index of nilpotency νD and furthermore we have νD ≤M − 1.

Proof. Let S, T ∈ GLn(F) be matrices that transform (1.1a) into quasi-Weierstraß form (2.19). Applying

the method of steps yields

v̇i+1 = Jvi+1 +Dd,1vi +Dd,2vi + gi+1 and wi+1 = −Da,1vi −Da,2wi − hi+1.

Since `1 = 0 we have

w1(τ) = −Da,1v0(τ)−Da,2w0(τ)− h1(τ)

= −Da,1v1(0)−Da,2w1(0)− h2(0) = w2(0),

and thus, `2 ≥ 0. By induction, we conclude `i ≥ 0 for i ∈ I. Moreover, we have

ẇi+1 = −Da,1v̇i −Da,2ẇi − ḣi+1

= −Da,1 (Jvi +Dd,1vi−1 +Dd,2wi−1 + gi)−Da,2ẇi − ḣi+1

which implies ẇi+1(0+)− ẇi(τ−) = Da,2 (ẇi−1(τ−)− ẇi(0+)) holds. By induction, we have

ẇi+1(0+)− ẇi(τ−) = (−1)iDi
a,2

(
ẇ1(0+)− η̇(0−)

)
for i = 1, . . . ,M − 1.

Thus, `i+1 ≥ 1 holds if and only if Di
a,2 = 0.

Applying Theorem 3.4 to the DDAE in Example 3.2 shows that this DDAE is of smoothing type, since it

is already in quasi-Weierstraß form with Da,2 = 0. Conversely, if the DDAE (1.1a) with ind(E,A) = 1 is of

smoothing type, then the index of nilpotency indicates the number of delays present in the system. More

precisely, we have the following result.

Corollary 3.5. Suppose that the DDAE (1.1a) satisfies Assumptions 2.1 and 2.2 and is of smoothing type

with ind(E,A) ≤ 1. Furthermore let νD denote the index of nilpotency of Da,2 if na > 0 and νD = 0

otherwise. Then there exists matrices Bk ∈ Fnd,nd (k = 0, . . . , νD) and an inhomogeneity ϑ such that the

solution v of (2.19a) is a solution of the inital value problem

ż(t) = Jz +

νD∑
k=0

Bkz(t− (k + 1)τ) + ϑ(t) for t ∈ [νDτ, tf),(3.26a)

z(t) = v(t) for t ∈ [−τ, νDτ ].(3.26b)

Proof. The result is trivial for ind(E,A) = 0, i.e., assume ind(E,A) = 1, which implies that N = 0 in (2.19).

Let ∆[t0,t1) denote the characteristic function for the interval [t0, t1), i.e.,

∆(t0,t1](t) =

{
1, if t ∈ [t0, t1),

0, otherwise.
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Combination of the fast subsystem (2.19b) and the initial condition yields

(3.27) (Ina
+Da,2∆[τ,tf )στ )w = −Da∆[0,τ)στφ−Da,1∆[τ,tf )στv − h.

By induction, we obtain (∆[τ,tf )(t)στ )k = ∆[kτ,tf )(t)σkτ and from DνD
a,2 = 0 we deduce(

νD−1∑
k=0

(−1)k
(
Da,2∆[τ,tf )στ

)k)(
Ina

+Da,2∆[τ,tf )στ
)

= Ina

such that w in (3.27) is given by

w =

νD−1∑
k=0

(−1)k+1
(
Da,2∆[τ,tf )στ

)k (
Da∆[0,τ)στφ+Da,1∆[τ,tf )στv + h

)
=

νD−1∑
k=0

(−1)k+1Dk
a,2

(
Da∆[kτ,(k+1)τ)σ(k+1)τφ+Da,1∆[kτ,tf )σ(k+1)τv + ∆[kτ,tf )σkτh

)
.

Inserting this identity in (2.19a) and introducing for k = 1, . . . , νD the matrices

B0 := Dd,1, Bk := (−1)kDd,2D
k−1
a,2 Da,1

implies that the solution v of (2.19a) is a solution of the IVP (3.26), where ϑ is given by

ϑ(t) := g(t) +

νD−1∑
k=0

(−1)k+1Dd,2D
k
a,2h(t− (k + 1)τ).

Example 3.6. Consider the DDE (3.24). Introducing the new variable y(t) = x̂(t− τ) yields the DDAE[
−In −B

0 0

] [
˙̂x(t)

ẏ(t)

]
=

[
A 0

0 In

] [
x̂(t)

y(t)

]
+

[
D 0

−In 0

] [
x̂(t− τ)

y(t− τ)

]
+

[
f

0

]
.

The matrices S :=
[
In −AB
0 In

]
and T :=

[
In B
0 In

]
transform the DDAE to quasi-Weierstraß form given by[

In 0

0 0

] [
v̇(t)

ẇ(t)

]
=

[
A 0

0 In

] [
v(t)

w(t)

]
+

[
D +AB (D +AB)B

−In −B

] [
v(t− τ)

w(t− τ)

]
+

[
f(t)

0

]
.

Hence, the DDE (3.24) is of smoothing type if and only if B is nilpotent. In this case, the corresponding

retarded equation (3.26a) is given by

ż(t) = Az(t) + (D +AB)z(t− τ) +

νB−1∑
k=1

(−1)k(D +AB)Bkz(t− (k + 1)τ) + ϑ(t),

where νB is the index of nilpotency of B.

Remark 3.7. The delay equation (3.26) of Corollary 3.5 may be used to determine whether the DDAE (3.24)

is stable (which can be done for example via DDE-biftool [10, 23]). Note that this provides an alternative

way to the theory outlined in [8, 9].

For the analysis of the general DDAE case with arbitrary index, we use the following preliminary result.
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Proposition 3.8. Suppose that the IVP (1.1) satisfies Assumptions 2.1 and 2.2 and let S, T ∈ GLn(F) be

matrices that transform (E,A) to quasi-Weierstraß form (2.8), such that (1.1) is transformed to (2.19) with

x = T
[
vT wT

]T
. Then for any m ∈ N and any ṽ ∈ Fnd , w̃ ∈ Fna there exists an admissible history function

φ = T−1
[
ψT ηT

]T
that is analytic and satisfies

ψ(p)(0−) = v(p)(0) for p = 0, 1, . . . ,m− 1,(3.28a)

η(p)(0−) = w(p)(0) for p = 0, 1, . . . ,m− 1,(3.28b)

ṽ = ψ(m)(0−)− v(m)(0),(3.28c)

w̃ = η(m)(0−)− w(m)(0).(3.28d)

Proof. Let m ∈ N. Proposition 3.1 implies that the solution x of the IVP (1.1) is m times continuously

differentiable on [−τ, τ) if and only if φ satisfies (3.22) for p = 0, 1, . . . ,m− 1. Multiply (3.22) from the left

by T−1 to obtain

ψ(p+1)(0−) = Jψ(p)(0−) +Dd,1ψ
(p)(−τ) +Dd,2η

(p)(−τ) + g(p)(0),(3.29a)

η(p+1)(0−) = −
ind(E,A)−1∑

k=0

Nk
(
Da,1ψ

(k+p+1)(−τ) +Da,2η
(k+p+1)(−τ) + h(k+p+1)(0)

)
(3.29b)

for p = 0, . . . ,m− 1. We then can proceed as follows to construct ψ and η that satisfy the conditions (3.28).

Choose any value for ψ(p)(−τ) and η(p)(−τ) for p = 0, . . . , ind(E,A) + m, and compute η(p+1)(0−) for

p = 0, . . . ,m − 2 according to (3.29b). For an arbitrary ψ(0), set ψ(p+1)(0−) according to (3.29a) for

p = 0, . . . ,m− 2. Finally, set

ψ(m)(0−) = ṽ +
(
Jψ(m−1)(0−) +Dd,1η

(m−1)(−τ) +Dd,2η
(m−1)(−τ) + g(m)(0)

)
and

η(m)(0−) = w̃ −
ind(E,A)−1∑

k=0

Nk
(
Da,1ψ

(k+p+1)(−τ) +Da,2η
(k+p+1)(−τ) + h(k+p+1)(0)

)
The desired history functions are then given via Hermite interpolation.

Applying the method of steps and the solution formula (2.10) for the fast subsystem yields

(3.30) wi+1 = −
ind(E,A)−1∑

k=0

Nk

(
d

dt

)k
(Da,1vi +Da,2wi + hi+1) .

Since Assumption 2.1 implies that all functions are sufficiently smooth we obtain

w2(0)− w1(τ−) =

ind(E,A)−1∑
k=0

Nk
(
Da,1

(
ψ(k)(0−)− v(k)

1 (0)
)

+Da,2

(
η(k)(0−)− w(k)

1 (0)
))

=

ind(E,A)−1∑
k=0

NkDaT

[
ψ(k)(0−)− v(k)

1 (0)

η(k)(0−)− w(k)
1 (0)

]

=

ind(E,A)−1∑
k=1

NkDaT

[
ψ(k)(0−)− v(k)

1 (0)

η(k)(0−)− w(k)
1 (0)

]
,
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where the last identity follows from the fact the φ is assumed to be admissible. Proposition 3.8 implies

that (1.1a) is of de-smoothing type if there exists k ∈ {1, . . . , ind(E,A)− 1} such that NkDa 6= 0. Assume

conversely that NDa = 0. In this case, (3.30) is given by

wi+1 = −Da,1vi −Da,2wi −
ind(E,A)−1∑

k=0

Nkh
(k)
i+1,

which implies `i ≥ 0. Together with Theorem 3.4, this proofs the following theorem.

Theorem 3.9. Consider the DDAE (1.1a) on the interval I = [0,Mτ ] and suppose that Assumptions 2.1

and 2.2 hold. Let N , Da and Da,2 be the matrices that are associated with the quasi-Weierstraß form (2.19).

Then (1.1a) is of

• smoothing type if NDa = 0 and Da,2 is nilpotent with nilpotency index νD < M ,

• de-smoothing type if there exists k ∈ N such that NkDa 6= 0, and

• discontinuity invariant type otherwise.

Example 3.10. Introducing the new variable y(t) = x(t − τ) shows (similarly as in Example 3.6) that the

DDAE associated with

(3.31) x(t) = Dx(t− τ) +Bẋ(t− τ) + f(t)

is of de-smoothing type if and only if B 6= 0.

Remark 3.11. Checking the proof of Corollary 3.5, we immediately infer from Theorem 3.9 that Corol-

lary 3.5 is also true for arbitrary index ind(E,A). As a consequence, if the DDAE (1.1a) is of smoothing

type, then there exists a sequence jk ∈ N such that `jk = k, and hence, the solution becomes arbitrary

smooth over time, which justifies the name smoothing type.

Note that NkDa 6= 0 for some k ∈ N implies

Dk+1 = Ck+1D = −T
[
0 0

0 Nk

]
SD = −T

[
0

NkDd

]
6= 0,

i.e., the DDAE (1.1a) is of de-smoothing type if Dk 6= 0 for some k ≥ 2. Using

(3.32)

Dk(In −Acon) = −T
[

0 0

Nk−1Da,1 Nk−1Da,2

]
T−1T

([
Ind

0

0 Ina

]
−
[
Ind

0

0 0

])
T−1

= −T
[
0 0

0 Nk−1Da,2

]
T−1

we immediately see that Da,2 is nilpotent if, and only if D1(In − Acon) is nilpotent, which shows that the

results of Theorem 3.9 can be formulated in terms of the underlying DDE (2.16).

Corollary 3.12. Consider the DDAE (1.1a) with associated underlying DDE (2.16) on the interval I =

[0,Mτ ] and suppose that Assumptions 2.1 and 2.2 hold. Then (1.1a) is of

• smoothing type if D2 = 0 and D1(In −Acon) is nilpotent with nilpotency index νD1 ≤M ,

• de-smoothing type if Dk 6= 0 for some k ≥ 2, and

• discontinuity invariant type otherwise.
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A common approach to analyze the (exponential) stability of the DDAE (1.1a) is to compute the spectral

abscissa, which is defined as

α(E,A,B) ··= sup{Re(λ) | det(λE −A− exp(−λτ)B) = 0}.

Surprisingly, the condition α(E,A,B) < 0 is not sufficient for a DDAE to be exponentially stable [9].

However, based on the new classification we have the following result.

Corollary 3.13. Suppose that the DDAE (1.1a) is not of de-smoothing type. Then the DDAE (1.1a) is

exponentially stable if and only if α(E,A,B) < 0.

Proof. Since the DDAE (1.1a) is not of de-smoothing type, we have NDa = 0. The result follows directly

from [9, Proposition 3.4 and Theorem 3.4].

Note that we refrain from using the terminology retarded, neutral, and advanced in Definition 3.3, although

these terms are widely used in the delay literature [2, 3, 16, 18]. The reason for this is, that in the classical

definition in [3], a retarded DDE becomes advanced if it is solved backward in time, an advanced equation

becomes retarded and a neutral equation stays neutral. For the classification introduced in Definition 3.3

this is however not true. To see this, we introduce the new variable ξ(t − τ) = x(−t) such that (1.1a)

transforms to

Eξ̇(t− τ) = −Dξ(t)−Aξ(t− τ)− f(−t).

This leads to the following definition.

Definition 3.14. Consider the DDAE (1.1a). Define

E :=

[
0 E

0 0

]
∈ F2n,2n, A :=

[
−D 0

0 In

]
∈ F2n,2n, B :=

[
−A 0

−In 0

]
∈ F2n,2n.

Then we call the DDAE

(3.33) E ζ̇(t) = Aζ(t) + Bζ(t− τ) + F(t)

with F : I→ F2n the backward system for the DDAE (1.1a).

Note that the backward system satisfies Assumption 2.2 if and only if det(D) 6= 0. In this case, we can

transform the backward system (3.33) to quasi-Weierstraß form via the matrices

S =

[
−D−1 0

0 In

]
and T = I2n.

In particular, we have

(SET )(SBT ) =

[
0 −D−1E

0 0

] [
D−1A 0

−In 0

]
=

[
−D−1E 0

0 0

]
.

Thus, Theorem 3.9 implies that E = 0 is a necessary condition for the backward system (3.33) to be

of smoothing type or discontinuity invariant type, which implies that the DDAE (1.1a) cannot be of de-

smoothing type.
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Example 3.15. Consider the DDAE given by F = R, n = 2, f ≡ 0, τ = 1, and

E =

[
0 1

0 0

]
, A =

[
1 0

0 1

]
, D =

[
1 1

0 1

]
.

Since (E,A) is already in Weierstraß form and ED 6= 0, Theorem 3.9 implies that the DDAE is of de-

smoothing type. Since E 6= 0 also the backward system is of de-smoothing type.

Let us mention that if det(B) = 0, then the method of steps (2.6) cannot be used to determine the solution

of the backward system. Instead, one may use the shift-index concept defined in [16,17] to make the pencil

(E ,A) regular.

4. Impact of splicing conditions. In the previous section, we have established algebraic criteria to

check whether a discontinuity in the derivative of ẋ at t = 0 is smoothed out, is propagated to t = τ or is

amplified in the sense that x becomes discontinuous at t = τ . While the definition of discontinuity invariant

type is valid for all integer multiples of the delay time, the definitions of smoothing type and de-smoothing

type are based on single time points, and hence, the question whether the (de-)smoothing continues is

imminent. For DDAEs of smoothing type, this can be answered positively (see Remark 3.11). For DDAEs

of de-smoothing type the question can be rephrased as follows: If we restrict the set of admissible history

functions such that the splicing condition (cf. [2])

(4.34) φ(k)(0−) = x(k)(0) for k = 0, . . . , κ

is satisfied for some κ ∈ N, is there an integer j ∈ N such that the inital condition

xj(0) = xj−1(τ−)

is not consistent for the DAE (2.6)? Similarly, we can ask if for DDAEs of discontinuity invariant type

the smoothness at integer multiples of the delay time stays invariant? Before we answer these question, we

note that in order to check if the splicing condition (4.34) is satisfied, it seems that one has to solve the

DDAE (1.1a) first. That is however not necessary, since the splicing condition (4.34) can be checked by

solely investigating the history function φ with Proposition 3.1.

Lemma 4.1. Suppose that the DDAE (1.1a) is of discontinuity invariant type and the admissible history

function φ ∈ C∞([−τ, 0],Fn) satisfies the splicing condition (4.34). Then

x
(k)
i (0) = x

(k)
i−1(τ−) for all i ∈ N, k = 0, . . . , κ.

Proof. Since (1.1a) is of discontinuity invariant type, we have NDa = 0 in (2.19) according to Theorem 3.9.

It suffices to show that

x
(j)
2 (0) = x

(j)
1 (τ−) for all j = 0, . . . , κ.

Since φ is admissible and the DDAE is of discontinuity invariant type, equation (2.19a) implies that

v̇2(0)− v̇1(τ−) = J (v2(0)− v1(τ)) +Dd (x1(0)− φ(0)) = 0.

Iteratively, we obtain

v
(k+1)
2 (0)− v(k+1)

1 (τ−) = J
(
v

(k)
2 (0)− v(k)

1 (τ−)
)

+Dd

(
x

(k)
1 (0)− φ(k)(0)

)
= 0
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for k = 2, . . . , κ. For the fast system (2.19b) we infer directly

w
(k)
2 (0)− w(k)

1 (τ−) = Da

(
φ(k)(0−)− x(k)

1 (0)
)

= 0

for k = 0, 1, . . . , κ, which completes the proof.

Note that Lemma 4.1 guarantees that the solution of the DDAE is at least as smooth as the initial transition

from the history function to the solution. Conversely, assume that the Jordan canonical form of Da,2 exists

and let w̃ ∈ Fna \ {0} be an eigenvector of Da,2 for the eigenvalue λ 6= 0. Then Proposition 3.8 implies (with

m = κ+ 1) the existence of an history function φ such that the solution of the IVP (1.1) satisfies

w
(κ+1)
2 (0)− w(κ+1)

1 (τ−) = Da,2

(
η(κ+1)(0−)− w(κ+1)

1 (0)
)

= λw̃ 6= 0.

Thus, in general, we cannot expect the solution of a DDAE of discontinuity invariant type to get any

smoother, which again justifies the terminology. For DDAEs of de-smoothing type, Example 1.2 might

suggest that the solution becomes less and less smooth until it becomes discontinuous. This is however not

necessarily the case as the following example demonstrates.

Example 4.2. Suppose that the DDAE (1.1a) satisfies Assumptions 2.1 and 2.2 and additionally satisfies

NDa,2 = 0, NDa 6= 0, and N2Da = 0, i.e., the DDAE is of de-smoothing type according to Theorem 3.9.

Suppose that the history function φ satisfies (3.21). Then

w2(0)− w1(0) =

ind(E,A)−1∑
k=0

NkDa

(
φ(k)(0−)− x(k)

1 (0)
)

=

1∑
k=0

NkDa

(
φ(k)(0−)− x(k)

1 (0)
)

= 0.

However, we have v̇2(0)− v̇1(τ−) = 0 by the definition of the slow system (2.19a), and by induction, we infer

wi+1(0)− wi(τ−) = NDa,1

(
v̇i−1(τ−)− v̇i(0)

)
= 0.

Thus, the initial condition xi(0) = xi−1(τ−) is consistent for (2.6), and hence, the solution exists for all

tf > 0.

For a general analysis let us assume that the DDAE (1.1a) satisfies Assumptions 2.1 and 2.2, is of de-

smoothing type, and the history function φ satisfies the splicing condition (4.34) for some κ ∈ N. From

(2.19a) we infer inductively

v
(k)
2 (0) = Jv

(k−1)
2 (0) +Ddx

(k−1)
1 (0) + g

(k)
2 (0) = v

(k)
1 (τ−)

for k = 1, . . . , κ+ 1. For the fast subsystem, the splicing condition (4.34) implies

w2(0)− w1(τ−) =

ind(E,A)−1∑
k=κ+1

NkDa

(
φ(k)(0−)− x(k)

1 (0)
)
,
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and hence, a sufficient condition for the initial condition w2(0) = w1(τ−) to be consistent is to assume

NkDa = 0 for k ≥ κ+ 1. Note that this is immediately satisfied for ind(E,A) ≤ κ+ 1. To analyze the next

interval we compute

w3(0)− w2(τ−) =

κ∑
k=1

NkDaT

[
v

(k)
1 (τ−)− v(k)

2 (0)

w
(k)
1 (τ−)− w(k)

2 (0)

]

=

κ∑
k=1

NkDa,2

(
w

(k)
1 (τ−)− w(k)

2 (0)
)
.

Thus, the assumption NDa,2 = 0 implies w3(0)− w2(τ−) = 0. Unfortunately, we have

v
(2)
3 (0)− v(2)

2 (τ−) = Dd,2

(
ẇ2(0)− ẇ1(τ−)

)
,

and thus cannot show that the initial condition w4(0) = w3(τ) is consistent without posing further assump-

tions on the matrices E,A, and D. Since this becomes quite technical, we summarize our findings only for

the case ind(E,A) ≤ 3.

Theorem 4.3. Suppose the IVP (1.1) satisfies Assumptions 2.1 and 2.2 and ind(E,A) ≤ 3. Moreover,

assume NDa,2 = 0 and N2Da,1Dd,2 = 0. Then for every admissible history function φ that satisfies (3.22)

for κ = 2, the IVP (1.1) has a unique solution.

Proof. The assumptions on φ imply that the splicing condition (4.34) is satisfied for κ = 2 (see Proposi-

tion 3.1). Since ind(E,A) ≤ 3, we have N3 = 0. Together with NDa,2 = 0 the previous discussion guarantees

that a solution exists on the interval [−τ, 3τ ]. Using NDa,2 = 0, we observe (inductively)

wi+1(0)− wi(τ−) =

2∑
k=0

NkDa,1

(
v

(k)
i−1(τ−)− v(k)

i (0)
)

= N2Da,1Dd,2

(
ẇi−2(τ−)− ẇi−1(0)

)
= 0,

and thus, the initial condition xi+1(0) = xi(τ
−) is consistent for all i ∈ N. The result follows from Corol-

lary 2.6.

Note that the assumptions in Theorem 4.3 can also be formulated in terms of the underlying DDE (2.16)

and the matrices defined in (2.11). More precisely, (3.32) and

D0(In −Acon) = T

[
Dd,1 Dd,2

0 0

]
T−1T

([
Ind

0

0 Ina

]
−
[
Ind

0

0 0

])
T−1 = T

[
0 Dd,2

0 0

]
T−1

imply that NDa,2 = 0 and N2Da,1Dd,2 = 0 if, and only if, D2(In−Acon) = 0 and D3A
conD0(In−Acon) = 0,

respectively.

Remark 4.4. The proof of Theorem 4.3 shows that the result can be further improved by requiring different

splicing conditions for the history function ψ for the slow state v and for the history function η of the fast

state w.

5. Comparison to the existing classification. In [16], the authors replace the delayed argument in

the DDAE (1.1a) with a function parameter λ : I→ Fn and obtain the initial value problem

(5.35)
Eẋ(t) = Ax(t) +Dλ(t) + f(t),

x(t) = φ(0),
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on the time interval I. They call the function parameter λ consistent if there exists a consistent initial

condition φ(0) for the IVP (5.35). Based on the function parameter λ the following classification for DDAEs

[16] is introduced.

Definition 5.1. The DDAE (1.1a) is called retarded, neutral, or advanced, if the minimum smoothness

requirement for a consistent function parameter λ is that λ ∈ C(I,Fn), λ ∈ C1(I,Fn), or λ ∈ Ck(I,Fn) for

some k ≥ 2.

To compare the classification based on propagation of primary discontinuities (cf. Definition 3.3) with the

classification of [16], we need to understand Definition 5.1 in terms of the quasi-Weierstraß form.

Proposition 5.2. Suppose that the DDAE (1.1a) satisfies Assumptions 2.1 and 2.2. Then the DDAE (1.1a)

is

• retarded if and only if Da = 0,

• neutral if and only if Da 6= 0 and NDa = 0, and

• advanced otherwise,

where Da and N are the matrices from the quasi-Weierstraß form (Theorem 2.4) and (2.19).

Proof. The smoothness requirements for λ can be directly seen from the underlying DDE (2.16). Note that

we have

D0 = T

[
Ind

0

0 0

]
SD = T

[
Dd

0

]
and

Dk = −T
[
0 0

0 Nk−1

]
SD = −T

[
0

Nk−1Da

]
for k = 1, . . . , ind(E,A). Hence, (1.1a) is retarded if and only if Nk−1Da = 0 for all k = 1, . . . , ind(E,A),

which is equivalent to Da = 0. The DDAE is neutral, if Nk−1Da = 0 for all k = 2, . . . , ind(E,A), which is

equivalent to NDa = 0 and otherwise advanced.

With the characterization, we see immediately that the classification by [16] provides in the following sense

an upper bound for the new definition.

Corollary 5.3. Suppose that the DDAE (1.1a) satisfies Assumptions 2.2 and 2.2.

• If (1.1a) is not advanced, then the DDAE (1.1a) is not of de-smoothing type.

• If the DDAE (1.1a) is advanced, then it is of de-smoothing type.

Since the classification introduced in this paper is based on the worst-case scenario, the numerical method

described in [16], which is formulated for DDAEs that are not advanced, is safe to use.

Remark 5.4. The numerical method introduced in [16] is tailored to DDAEs that are not advanced and

cannot be used for advanced DDAEs. However, if it is known that the history function satisfies the splicing

condition (4.34) for some κ > 0 , then also advanced DDAEs may be solved (cf. Theorem 4.3). Thus,

there is a need for numerical integration schemes that can handle such situations. This is subject to further

research.
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6. Summary. In this paper, we have studied the propagation of primary discontinuities in initial value

problems for delay differential-algebraic equations. Based on the different possible propagation types we

have introduced a new classification for DDAEs and developed a complete characterization in terms of the

coefficient matrices. Moreover, the analysis shows that hidden delays may be possible in DDAEs and we have

introduced a systematic way to reformulate the DDAE in terms of these delays. As a consequence, we showed

that the stability analysis for such DDAEs can be performed by computing the spectral abscissa. Besides,

we have studied the impact of splicing conditions on the classification and derived sufficient conditions for

DDAEs of index less or equal three to have a unique solution.

Acknowledgments. The author would like to thank the anonymous referee and Prof. Stephan Trenn for

valuable feedback that helped to improve the presentation and the formulation of the main results in terms

of the matrices Dk (see Corollary 3.12 and the discussion after Theorem 4.3).
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