
Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 34, pp. 566-581, November 2018.

ASYMPTOTIC RESULTS ON THE CONDITION NUMBER OF FD MATRICES

APPROXIMATING SEMI-ELLIPTIC PDES∗

PARIS VASSALOS†

Abstract. This work studies the asymptotic behavior of the spectral condition number of the matrices Ann arising from

the discretization of semi-elliptic partial differential equations of the form

− (a(x, y)uxx + b(x, y)uyy) = f(x, y),

on the square Ω = (0, 1)2, with Dirichlet boundary conditions, where the smooth enough variable coefficients a(x, y), b(x, y) are

nonnegative functions on Ω with zeros. In the case of coefficient functions with a single and common zero, it is discovered that

apart from the minimum order of the zero also the direction that it occurs is of great importance for the characterization of the

growth of the condition number of Ann. On the contrary, when the coefficient functions have non intersecting zeros, it is proved

that independently of the order their zeros, and their positions, the condition number of Ann behaves asymptotically exactly

as in the case of strictly elliptic differential equations, i.e., it grows asymptotically as n2. Finally, the more complicated case

of coefficient functions having curves of roots is considered, and conjectures for future work are given. In conclusion, several

experiments are presented that numerically confirm the developed theoretical analysis.
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1. Introduction. A classical but still pertinent problem, appearing in many applications, is the nu-

merical solution of partial differential equations (PDEs) of the form

(1.1) − ∂

∂x

(
a(x, y)

∂

∂x
u(x, y)

)
− ∂

∂y

(
b(x, y)

∂

∂y
u(x, y)

)
= f(x, y),

with Dirichlet boundary conditions on the domain Ω = (0, 1)2. Important examples of PDEs with such a

nonnegative canonical form, which appear in the study of transonic flow, are the families of equations of the

so called Keldysh/Tricomi type (see [7, 8]), which are given by

y2m+1uxx + uyy = 0

and

uxx + y2m+1uyy = 0,

respectively. Also the Laplace-Beltrami equation, defined as

(1− x2)uxx + (1− y2)uyy = 0,

belongs to the considered class. The latter has applications in differential geometry and specifically to

isometric embedding of Riemannian manifolds. We can indicate other research fields where PDEs with a
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nonnegative characteristic form are involved: mathematical biology, physical models, chemistry and math-

ematical finance. Usually, the strict ellipticity is lost due to some isolated zeros of the coefficient functions

usually located at the boundary ∂Ω of the definition domain Ω (see [2],[9], and references therein). Using

the centered finite difference (FD) formula of precision order two and minimal bandwidth for discretizing

(1.1), we obtain a 5-points formula, with respect to the x axis and to the y axis. The resulting linear system

is

(1.2) Annx = b,

where Ann is a symmetric positive definite two-level banded matrix. Although the latter does not have

the multilevel Toeplitz structure, the associated matrix sequence belongs to the wider class of Generalized

Locally Toeplitz (GLT) sequences of matrices (see [15], [13], and for more details [3]). In the framework of

this beautiful and powerful theory, many properties concerning the spectral distribution of these sequences

of matrices can be proved.

Despite the block band form of Ann, the associated system (1.1) is not trivial to solve. In the 1D case

there are many optimal direct solvers, with Thomas being the best known, but in multidimensional settings

things are completely changed. The reason relies in the difficulty of exploiting the inner structure of block

band matrices and, as a consequence, to benefit from their inner sparsity. Adding to the above reasoning,

the inevitably sequential nature of such methods makes direct methods not an ideal choice for multilevel

linear systems, as those appearing in (1.2).

Iterative techniques, like SOR, ADI, Chebyshev or the Conjugate Gradient method, take advantage of

the sparsity of Ann, but their convergence features depend mainly on the condition number of the matrix

which, as we will show for our problem, grows at least as O(n2 ). To alleviate this problem, preconditioning

is usually the first option. Popular preconditioners arise from the incomplete Cholesky factorization or

matrices belonging to some special class, such as trigonometric matrix algebras (usually circulant or τ), and

Toeplitz plus diagonal [12], or band plus algebra matrices [6]. On the other hand, full-multigrid (FMG)

techniques are probably the fastest known solver for discretized elliptic PDEs. However, attempts to extend

the same techniques to its degenerate cases, for example the Keldysh equation, have met with a more limited

success. We mention that multigrid methods can be used also within the PCG method in the “inversion” of

the preconditioner in each step, if the latter is chosen to belong to some specific class of matrices [1].

For all the above methods and for any iterative methods that will be developed in the future, the

crucial information that is needed in order to establish fast convergence is the knowledge of the spectrum

of Ann and, especially, the source of ill conditioning. In this work, we extend the theory developed in [4]

concerning the asymptotic behavior of the condition number of An, i.e., the analogue of the 1D matrix,

in the multidimensional case. We note that in the aforementioned paper, it was mentioned that the main

goal of that work was to develop the tools and to set the foundations for the interesting two-dimensional,

or, more generally, to the multi-dimensional, case. Our results complete the spectral picture described by

the GLT theory. Specifically, adopting a different point of view, we show again that there are two sources

of ill conditioning, one coming from the discretization of differential operator via the FD method and the

other from the sampling of the functions a(x, y) and b(x, y) near their zeros. Moreover, our analysis leads

to the interesting corollary that the two sources of ill-conditioning, i.e., the low frequencies coming from

the constant-coefficient Laplacian, and the space spanned by few canonical vectors related to the position

of the zeros of the coefficient functions, do not in general interfere, and thus, also the extreme eigenvalues

of the aforementioned matrices behave smoothly and according to what we expect from the GLT theory.
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These results can be directly used in the development of efficient preconditioners when the Preconditioned

Conjugate Gradient (PCG) method is used and in the construction of optimal multigrid methods.

2. Preliminaries. Throughout our work, we will extensively use the following notations and definitions.

Let f, g real valued functions both defined on some unbounded subset D of R+.

• f(x) = O(g(x)) as x → ∞, if and only if there exists a pure positive constant M such that

|f(x)| ≤Mg(x), for all sufficient large values of x.

• f(x) = o(g(x)) if and only if for every positive constant ε, exists positive constant N , such that

|f(x)| ≤ εg(x), for all x > N . In other words, if g(x) is nonzero (or at least becomes nonzero beyond

a certain point), it holds limx→∞
f(x)
g(x) = 0.

• f(x) = Ω(g(x)) is the negation of f(x) = o(g(x)), i.e., if and only if limx→∞
f(x)
g(x) > 0.

• f(x) ∼ g(x) if and only if f(x) = O(g(x)) and g(x) = O(f(x)).

Definition 2.1. A nonnegative function f has a zero at (x0, y0) if for every neighborhood I of (x0, y0)

we have inf(x,y)∈I f(x, y) = 0. Moreover, a set Z of the zeros of f ≥ 0 is called isolated if there exists a

neighborhood J of Z such that for every neighborhood I ⊂ J, I 6= J of Z we have inf(x,y)∈J\I f(x, y) > 0.

Definition 2.2. A nonnegative function f has a zero of order α > 0 at (x0, y0), if for some norm ‖ · ‖,
there exist pure positive constants c, C such that

c ‖(x, y)− (x0, y0)‖α ≤ f(x, y) ≤ C ‖(x, y)− (x0, y0)‖α ,

i.e., f(x, y) ∼ ‖(x, y)− (x0, y0)‖α in a suitable neighborhood of (x0, y0).

We mention that in [5], a more general definition about the order of a zero was given. However, for our

needs, Definition 2.2 is sufficient.

We briefly introduce the 1D instance of the problem, i.e.,

(2.3)

 −
d
dx

(
a(x) d

dxu(x)
)

= f (x) on I = (0, 1),

Dirichlet B.C. on ∂I,

since results referring to this case, will be used in our generalization process.

Using centered finite differences, of minimal bandwidth and precision order two, and stepsize h =

(n+1)−1 on the grid-points x0 = 0, x1, x2, . . . , xn, xn+1 = 1, we arrive to the n×n linear system An(a)x = b

whose coefficient matrix has the form

(2.4) An(a) =



a 1
2

+ a 3
2

−a 3
2

−a 3
2

a 3
2

+ a 5
2
−a 5

2

−a 5
2

. . .
. . .

. . .
. . .

. . .

. . .
. . . −an− 1

2

−an− 1
2

an− 1
2

+ an+ 1
2


,

where ai− 1
2
, i = 1(1)n + 1 are the sampling values of the bounded smooth enough function a(x) on the

points xi − h
2 , i = 1(1)n+ 1, of the interval (0, 1). Considering A(·) as an operator from a suitable function

space J ([0, 1]) into the set of symmetric matrices Sym(Rn×n), defines a linear positive operator, i.e.,
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• An(c1a+ c2b) = c1An(a) + c2An(b),

• An(a) is nonnegative definite, for every nonnegative function a ∈ J ([0, 1]).

An immediate consequence is that An(·) is also a monotone operator, that is, a ≥ ã implies An(a)−An(ã) > 0,

and thus, An(a) > An(ã). Moreover, the j-th eigenvalue of An(a) is bounded by the j-th eigenvalue of An(ã),

where the eigenvalues of each matrix are ordered non decreasingly (see [11], [14], for a general discussion

and several results on matrix-valued linear positive operators).

In [4], the asymptotic behavior of the condition number of An(a) was studied, and the main result

presented there is summarized in the next theorem.

Theorem 2.3. Let {An(a)}n, An(a) ∈ Rn×n, be the sequence of matrices derived from the discretization

of the semi-elliptic differential equation (2.3) with the bounded coefficient function a(x) having a unique

root at x0 ∈ I = [0, 1] of order α, i.e., a(x) ∼ |x − x0|α on I. Then, for the spectral condition number

κ(An(a)) , ‖An(a)‖2‖A−1
n (a)‖2 of the matrix An(a), which coincides in order with the spectral radius

ρ(A−1
n (a)) of A−1

n (a), it holds that

(2.5) κ(An(a)) ∼ ρ(A−1
n (a)) ∼


n2, 0 ≤ α < 2,

O(n2 log(n)) ∩ Ω(n2), α = 2,

nα, α > 2.

3. Main analysis. We return to the 2D setting, i.e., to the problem described by (1.1), where we have

assumed Dirichlet boundary conditions on the domain Ω = [0, 1]2 and both the coefficient functions are

bounded, piecewise continuous and nonnegative on it. Discretizing the rectangular boundary of Ω in n and

m nodes in the x and y direction, respectively, and using centered FDs with step-size h = 1
n+1 in the x

direction and k = 1
m+1 in y direction, we arrive at the following set of equations:

−bi,j− 1
2
ui,j−1 − ai− 1

2 ,j
ui−1,j + (ai+ 1

2 ,j
+ ai− 1

2 ,j
+ bi,j+ 1

2
+ bi,j− 1

2
)ui,j − ai+ 1

2 ,j
ui+1,j − bi,j+ 1

2
ui,j+1 = fi,j ,

for i = 1(1)n and j = 1(1)m, or, in matrix vector notation, to the system

Anm(a, b)unm = fnm,

where fnm depends on the nm vector containing the discretized values of f on the grid and Anm(a, b) =

Anm (a(x, y), b(x, y)). Since, in practice we always have n ∼ m, for simplification in the computations, and

without loss of generality, for the rest of the manuscript we will assume n = m. Obviously, the coefficient

matrix Ann(a, b) is block tridiagonal with the diagonal blocks being tridiagonal matrices and the upper and

lower to these blocks being diagonal matrices containing the sampling values bi,j− 1
2

and bi,j+ 1
2
, respectively.

Similarly to 1D case, Ann(·, ·) defines a linear positive operator from a suitable function space J into the

space Sym(Rn2×n2

), i.e., is linear with respect to its arguments and positive in the sense that for every

a, b ∈ J (Ω) with a, b ≥ 0, Ann(a, b) is symmetric nonnegative definite. In addition, the monotonicity implies

Ann(ã, b̃) ≤ Ann(a, b), whenever a ≤ ã, b ≤ b̃. An immediate consequence of the latter is that

(3.6) ‖Ann(a, b)‖∞ ≤ max {‖a‖∞, ‖b‖∞} · ‖Lnn‖∞ ≤ 8 max {‖a‖∞, ‖b‖∞},

where Lnn is the well known 2D Laplacian matrix that can be written as

Lnn = In ⊗ Ln + Ln ⊗ In,
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with Ln = trid[−1 2 −1] being the Laplace matrix, i.e., the tridiagonal Toeplitz matrix having 2 in the main

diagonal and −1 in the superdiagonal and subdiagonal, respectively. With In we denote the identity matrix

of dimension n. Since the functions a(x, y), b(x, y) are assumed to be bounded on the domain Ω, then, from

(3.6), also the maximum eigenvalue λmax (Ann(a, b)) is asymptotically bounded. Accordingly, the spectral

condition number of Ann(a, b), depends only on the behavior of λmin (Ann(a, b)), whose study is our main

goal.

There exists a specific selection of coefficient functions that, under some assumptions concerning their

zeros, significantly simplifies the analysis of the general problem and reveals some counterintuitive situations.

For that, we choose

(3.7) â(x, y) = |x− x0|α + |y − yo|β , b̂(x, y) = |x− x1|γ + |y − yo|δ,

where α, β, γ, δ ∈ R+
0 . Taking into account the specific structure of Ann(â, b̂), it can be shown that for these

coefficient functions, the matrix can be decomposed in the following form

Ânn = Ann(â(x, y), b̂(x, y)) = In ⊗An(|x− x0|α) +Dn(|y − y0|β)⊗ Ln
+Ln ⊗Dn(|x− x1|γ) +An(|y − y1|δ)⊗ In,(3.8)

where An(·) is defined in (2.4), and Dn(xγ), Dn(yβ) are the diagonal matrices formed by the values of the

functions xγ and yβ on the points i
n+1 , i = 1(1)n, respectively. In addition, (3.8) shows the exact connection

between the 2D case and 1D case, and uncovers the possible influence that each term can have separately.

A concrete application is the following lemma.

Lemma 3.1. Let a(x, y), b(x, y) be nonnegative, piecewise continuous and bounded functions of Ω. If at

least one of them is strictly positive on Ω, then, no matter how many zeros the other has or which are their

orders, the minimum eigenvalue of Ann(a, b), behaves as n−2.

Proof. Assuming that a(x, y) is the strictly positive function, then there exists a universal positive

constant c such that a(x, y) ≥ c > 0. Moreover, from (3.8),

Ann(a, b) > In ⊗An(c) + cIn ⊗ Ln > cIn ⊗ Ln,

while if b(x, y) ≥ c > 0,

Ann(a, b) > cLn ⊗ In +An(c)⊗ In > cLn ⊗ In.

Taking the Rayleigh quotient on the above relationships, and using the well known property connecting the

eigenvalues of the Kronecker product with these of each part, we arrive at

(3.9) λmin (Ann(a, b)) ≥ cλmin (Ln) = c

(
sin2

(
π

2(n+ 1)

))
∼ 1

n2
.

On the other hand,

Ann(a, b) ≤ Ann (‖a‖∞, ‖b‖∞) ≤ max {‖a‖∞, ‖b‖∞}Ann, (1, 1) = M · Lnn,

where M = max {‖a‖∞, ‖b‖∞}. Using the same reasoning as before, we have

(3.10) λmin (Ann(a, b)) ≤ sin2

(
π

2(n+ 1)

)
.
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Thus, from (3.9) and (3.10), whenever at least one of the coefficient functions is uniformly bounded below

by a positive constant, then

λmin (Ann(a, b)) ∼ 1

n2
.

Corollary 3.2. A concrete application of Lemma 3.1 is the case of the Keldysh class of PDEs that

we presented in the introductory section. As a result, the FD techniques applied to this kind of problem will

lead to a coefficient matrix having spectral condition number behaving exactly as the constant Laplace 2D

analogue, i.e., as n2.

The following theorem concerns the case where both the coefficient functions have a single and common

zero at the point (x0, y0) ∈ Ω.

Theorem 3.3. Assume that the coefficient functions a(x, y),b(x, y) have a single and common zero at

the point (x0, y0), of orders α in the x direction and β in the y direction, respectively, i.e., there exist

ci > 0, i = 1(1)4, such that

c1 (|x− x0|α) ≤ a(x, y) ≤ c2 (|x− x0|α) ,

and

c3
(
|y − y0|β

)
≤ b(x, y) ≤ c4

(
|y − y0|β

)
.

By defining ρ = min {α, β}, we have

κ2(Ann) ∼


n2, 0 ≤ ρ < 2,

O(n2 log(n)) ∩ Ω(n2), ρ = 2,

nρ, ρ ≥ 2.

Proof. The key points of our proof are the monotonicity of the operator Ann(·, ·) and the use of proper

inequalities on the coefficients a(x, y) and b(x, y). We will study in details the case where ρ = α, and the

other case is similarly treated. From the monotonicity of the operator and the assumptions about the partial

minimum orders of the zero we have that

cAnn

(
â(x, y), b̂(x, y)

)
≤ Ann (a(x, y), b(x, y)) ≤ CAnn

(
â(x, y), b̂(x, y)

)
,

where c = min {c1, c3} and C = max {c2, c4}. Thus, taking advantage of the above equivalently, is sufficient

to study the behavior of the minimum eigenvalue of Ann(â, b̂).

Omitting in (3.8) the positive terms contain the matrix Ln, we have

Ann(â, b̂) > In ⊗An(|x− x0|α) +An(|y − y0|β)⊗ In > In ⊗An(|x− x0|α).

From [4] we know that the minimum eigenvalue of An(|x − x0|α) tends to zero as (2.5) predicts. As a

consequence, the minimum eigenvalue of Ann(a, b) cannot tend to zero asymptotical faster than the theorem

predicts.

On the other hand, using Rayleigh quotients we can show that the minimum eigenvalue of the matrix

Ann(â, b̂), and so this of Ann(a, b), tends to zero at least as fast as O(n−α). We break down the complete

analysis in two cases: α ≥ 2 and α < 2.

In the first case, we define

ā(x, y) ≡ |x− x0|α + |y − y0|α.
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Obviously a(x, y) ≤ C1ā(x, y) and b(x, y) ≤ C2ā(x, y), where C1, C2 are properly chosen universal positive

constants. Accordingly, we choose the normalized vector ekl = ek ⊗ el where ek, el are the k-th and l-th

columns of n× n identity matrix, respectively. The indexes k, l are given by

k = arg min
i
|xi − x0|, l = arg min

j
|yi − y0|,

with xi, yj being the discretization points in x and y direction, respectively. The idea behind this selection

is to point at the minimum value of the diagonal of Ann. Hence, using this vector in the Rayleigh quotient

and C = max {C1, C2}, we obtain that

λmin(Ann(a, b)) ≤ eTklAnn(a, b)ekl ≤ C
(
eTklAnn(â, â)ekl

)
= 2C

(
â(xk− 1

2
, yl) + â(xk+ 1

2
, yl)

)
.(3.11)

Then, from the way we selected k, l, we obtain that the latter quantity tends to zero as n−α.

In the second case, since max(x,y)∈Ω x
α + yα = 2,

Ann(xα + yα, xα + yα) ≤ 2Ann(1, 1) = 2Lnn.

Since Lnn is the 2D Laplacian matrix, the eigenvalues are explicitly known and are given by

λi,j = 4

(
sin2

(
πi

2(n+ 1)

)
+ sin2

(
πj

2(n+ 1)

))
, i, j = 1(1)n,

with the corresponding eigenvectors being

li,j = li ⊗ lj , i, j = 1(1)n,

where

(3.12) lk =

√
2

n+ 1

[
sin

(
kπ

n+ 1

)
sin

(
2kπ

n+ 1

)
· · · sin

(
nkπ

n+ 1

)]T
, k = 1(1)n.

Defining c = max {‖a‖∞, ‖β‖∞}, we have

λmin(Ann(a, b)) = min
z∈Rn2 ,‖z‖2=1

zTAnn(a, b)z ≤ min
z∈Rn2 ,‖z‖2=1

czTAnn(1, 1)z

≤ c (l1 ⊗ l1)
T ·Ann(1, 1) · l1 ⊗ l1 = cλ1,1 ∼

1

n2
,

and the proof is completed.

Remark 3.4. The assumptions of Theorem 3.3 exclude cases where the minimum of the order is in y

direction of a(x, y) or the x direction of b(x, y). The reason is evident, again, by virtue of (3.8). Specifically,

the terms Ln⊗Dn(xγ) and Dn(yβ)⊗Ln increase the corresponding orders of the zero by 2. Therefore, if the

rest of the partial orders are large enough, there exists a possibility that the order of growth of the condition

number of Ann(a, b) is greater than the quantity min {β, γ}. An illustrative example describing the above

situation is the following: let a(x, y) = x10 + y1 and b(x, y) = x10 + y10, i.e., α = γ = δ = 10, β = 1. Then,

from (3.8) we expect that λmin (Ann(a, b)) can tend to zero much faster than the order of the differential

operator, which is 2, a speculation numerically confirmed in Section 6. We mention that, in the above

example, swapping the value of α with that of β, we can guarantee that the condition number of the new

matrix will grow as n2, since now the assumptions of Theorem 3.3 hold.
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4. a(x, y) and b(x, y) with zeros at different points. We start this section assuming that the

coefficient functions a(x, y), b(x, y) each have a single zero on Ω, but the zeros are different to each other. As

we prove in the next theorem, in this case the orders of the zeros of a(x, y) and b(x, y) do not play any role

in the asymptotic behavior of the condition number of Ann(a(x, y), b(x, y)). In that case, it is the differential

operator that always governs the behavior of the minimum eigenvalue of this matrix.

Theorem 4.1. Let us assume that the nonnegative coefficient functions a(x, y), b(x, y) each have in Ω a

single, but different from each other, zero, at the points (x0, y0) and (x1, y1), respectively, of any polynomial

order. Then, the minimum eigenvalue of Ann(a, b) tends asymptotically to zero as n−2, and thus, the spectral

condition number of Ann(a, b) grows as n2.

Proof. From the inequality

(4.13) Ann(a, b) ≤ max {‖a‖∞, ‖b‖∞}Ann(1, 1),

we immediately have that λmin(Ann(a, b)) tends to zero at least as fast as the minimum eigenvalue of 2D

Laplacian, i.e., as O(n−2).

From the assumptions of the theorem and (3.7), we have that

c1â(x, y) ≤ a(x, y) ≤ C1â(x, y),

and

c2b̂(x, y) ≤ b(x, y) ≤ C2b̂(x, y).

Consequently, from the monotonicity of the operator Ann we have that

cÂnn ≡ cAnn(â, b̂) ≤ Ann(a, b) ≤ CAnn(â, b̂) ≡ CÂnn,

where c = min {c1, c2}, C = max {C1, C2}. Thus, the behavior of the minimum eigenvalue of Ann(a, b) is

similar to that of Ann(â, b̂). Moreover using (3.8), we have

(4.14) Ânn = In ⊗An(|x− x0|α) + Ln ⊗Dn(|x− x1|γ) +An(|y − y1|δ)⊗ In +Dn(|y − y0|β)⊗ Ln.

Since the zeros are different from each other, either x0 6= x1 or y0 6= y1. If x0 6= x1, omitting the symmetric

and positive definite terms caused by the variable y, we have

Ânn ≥ In ⊗An(|x− x0|α) + Ln ⊗Dn(|x− x1|γ),

otherwise, it holds that

Ânn ≥ An(|y − y1|δ)⊗ In +Dn(|y − y0|β)⊗ Ln.
In both cases, the following argument holds unaltered. Thus, we choose to present only the first case, i.e.,

x0 6= x1 and the other case is similarly treated. Without loss of generality, we assume x0 < x1. Knowing

that λmin(Ln) ∼ n−2, there exist a pure constant d > 0 such that

Ln ≥
d

n2
In.

Hence,

Ânn ≥ In ⊗An(|x− x0|α) +
d

n2
In ⊗Dn(|x− x1|γ)

= In ⊗
(
An(|x− x0|α) +

d

n2
Dn(|x− x1|γ)

)
≥ In ⊗

(
An(|x− x0|r) +

d

n2
Dn(|x− x1|r)

)
,
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where r = max {γ, α}. As a result, we concentrate our attention to the study of the asymptotic behavior of

the minimum eigenvalue of

Ân = An(|x− x0|r) +
1

n2
Dn(d|x− x1|r) = An(a(x)) +

1

n2
Dn(b(x)),

or, equivalently, to the study of the Rayleigh quotient

(4.15) min
z∈Rn, ‖z‖2=1

zT
(
An(a(x)) +

1

n2
Dn(b(x))

)
z = min

z∈Rn, ‖z‖2=1
zT Ânz,

where

(4.16) Ân =



a
(n)
1
2

+ a
(n)
3
2

+ 1
n2 b

(n)
1 −a(n)

3
2

−a(n)
3
2

a
(n)
3
2

+ a
(n)
5
2

+ 1
n2 b

(n)
2 −a(n)

5
2

−a(n)
5
2

. . .
. . .

. . .
. . .

. . .

. . .
. . . −a(n)

n− 1
2

−a(n)

n− 1
2

a
(n)

n− 1
2

+ a
(n)

n+ 1
2

+ 1
n2 b

(n)
n


,

with bni = b(xni ) = d
∣∣∣ i
n+1 − x

1
∣∣∣r, i = 1(1)n.

Since a(x0) = 0, there exists an index kn depending on the dimension n, such that

(4.17) ikn = arg min
i∈{1,2,...,n+1}

|x(n)
i−1/2 − x

0|.

Consequently, if we define as Ix0 the set containing all the neighboring indexes i’s of ikn for which

a
(n)

i− 1
2

= a(x
(n)

i− 1
2

) = o(1),

then that set will have cardinality o(n). Moreover, for all the others O(n) indexes belonging to Icx0 , with

Ix0 ∪ Icx0 = {1, 2, . . . , n+ 1}, it will hold that

a(x
(n)

i− 1
2

) ∼ O(1) ∩ Ω(1).

The same argument, but for a different index iln , holds true also for b(x1). Specifically, there exists an

index ln such that

iln = arg min
i∈{1,2,...,n}

|x(n)
i − x1|,

and similarly to Ix0 and Icx0 , there exist Ix1 and Icx1 with Ix1 ∪ Icx1 = {1, 2, . . . , n}, such that

b(x
(n)
i ) = o(1), i ∈ Ix1 ,

and

b(x
(n)
i ) ∼ O(1) ∩ Ω(1), i ∈ Icx1 .
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In addition, it must hold that |ikn − iln | ∼ n, since we have assumed that the zeros x0, x1 are sufficiently

far away from each other. Thus, there exists sequence of indexes iqn belonging to Icx0 ∩ Icx1 , for example

iqn = b |ikn−iln |
2 c, such that

(4.18) a(x
(n)
i ) = O(1), i ≥ iqn and b(xi) = O(1), i ≤ iqn .

We use this index to split Ân in two positive semidefinite terms, ÂUn and ÂLn , such that

Ân = ÂUn + ÂLn ,

where

ÂUn [ij] =



Ân[ij], i < iqn , j = 1(1)n,

−aiqn− 1
2
, i = iqn , j = iqn − 1,

aiqn− 1
2

+ 1
n2 biqn , i = iqn , j = iqn ,

0, i = iqn , j 6= {iqn − 1, iqn},
0, i > iqn , j = 1(1)n,

and

ÂLn [ij] =



0, i < iqn , j = 1(1)n,

aiqn+ 1
2
, i = iqn , j = iqn ,

−aiqn+ 1
2

i = iqn , j = iqn + 1,

0, i = iqn , j 6= {iqn , iqn + 1} ,
Ân[ij], i > iqn , j = 1(1)n,

Choosing the canonical base {e1, e2, . . . , en} for writing z in (4.15), we arrive at

(4.19) min
z∈Rn,‖z‖2=1

zT Ânz =

iqn∑
i=1

iqn∑
j=1

cicje
T
i (ÂUn )ijej +

n∑
i=iqn

n∑
j=iqn

cicje
T
i (ÂLn)ijej ,

where we have omitted in the first term the zeros obtained by the last n− iqn zero rows and columns of ÂUn ,

and in the second one, the zeros obtained by the first iqn−1 rows and columns. This is permitted, since we

know that the initial matrix Â is diagonally dominant and as such it has only positive eigenvalues.

The first term in (4.19) is bounded from below by λmin((ÂU )iqn ), i.e., from the minimum eigenvalue of

the principal submatrix of order iqn of ÂUn . From the monotonicity of a(x) and b(x) we obtain

(4.20) (ÂU )iqn ≥ 2a(xikn+ 1
2
)L1 +

b(iqn)

n2
Iiqn ≥

b(iqn)

n2
Iiqn ,

where L1 is the 1D Laplace matrix of dimension iqn , with the only difference being that at the position

(iqn , iqn) it has the value 1 instead of 2. We recall that matrices of this form can be obtained by the

discretization of the second derivative using mixed boundary conditions and especially Dirichlet condition

on the left and Neumann condition on the right. Since iqn belongs to Icx1 , from (4.20) we conclude that the

first part of the sum in (4.15) can give terms up to an order n−2.
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Similarly, the second term in (4.19) is bounded from below by the minimum eigenvalue of (ÂL)n+1−iqn .

In addition, omitting the positive values b(xi), i ≥ iqn in its diagonal, we have that

(ÂL)n+1−iqn ≥ a(xiqn− 1
2
)L1,

where the dimension n+1− iqn matrix L1 is like Ln+1−iqn with the only difference being that at the position

(1, 1) it is equal to 1 instead of 2. Similarly to L1 this matrix - observe that for the same dimension L1

and L1 are similar matrices- can be obtained by the discretization of the second derivative using Neumann

condition on the left and Dirichlet condition on the right. Moreover, using difference equations, it can be

shown that the minimum eigenvalue λ1(L1) of L1 is given by the formula

λ1 = 4 sin2

(
π

2(2n+ 1)

)
,

and, thus, tends to zero as fast as n−2. Since iqn belongs to Icx0 , we conclude that also the second term in

(4.19) cannot tend to zero faster than n−2, and the proof is completed .

The above rigorous proof can be supplemented with an informal one, that spotlights in-depth our

reasoning and shows in a different way the local effect of the possible zeros of the coefficients functions in

(1.1), in the ill-conditioning subspace of Ann.

The matrix Ân can be expressed (see [10]) as,

Ân =

n∑
i=2

∣∣∣∣ 2i+ 1

2(n+ 1)
− x0

∣∣∣∣r Qn(i) +

n−1∑
i=2

∣∣∣∣ 2i+ 1

2(n+ 1)
− x1

∣∣∣∣r En(i, i)

+

(∣∣∣∣ 1

2(n+ 1)
− x0

∣∣∣∣r +

∣∣∣∣ 1

2(n+ 1)
− x1

∣∣∣∣r)En(1, 1)

+

(∣∣∣∣ 2n− 1

2(n+ 1)
− x0

∣∣∣∣r +

∣∣∣∣ 2n− 1

2(n+ 1)
− x1

∣∣∣∣r)En(n, n),(4.21)

where the matrices Qn(i) are symmetric nonnegative definite dyads given by

Qn(i) =

i

0 · · · 0 0 · · · 0
...

. . .
...

...
...

0 · · · 1 −1 · · · 0

0 · · · −1 1 · · · 0
...

. . .
...

...
. . .

...

0 · · · 0 0 · · · 0


, i = 2, . . . , n,

and En(i, i) = eie
T
i , with ej , j = 1, . . . , n, representing the j-th column of the identity matrix. Obviously,

Qn(i) = En(i, i) + En(i− 1, i− 1)− En(i, i− 1)− En(i− 1, i).

We recall that the matrix Ln, which is the contribution of the differential operator, can be completely

decomposed in terms of dyads. From the above relationship we infer that the influence of the zeros of the

coefficient function has a local effect and contributes to a specific elements En(s, t) of the basis of the vector

space of matrices, i.e., affects only o(n) elements where the generating vectors es and et are close, in the
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geometrical sense, to the zero of the function. Thus, due to this “local structure”, whenever the zeros x0, x1

are sufficiently far away from each other, the relationship (4.21) ensure us that the asymptotically small

weights on the correspondent En(i, j), caused by the zero of the first coefficient, are canceled by the O(1)

weights on the same En(i, j) caused by the second one, and vise versa. As a consequence, we expect that the

case where the coefficient functions have zeros at different locations, is quite similar in the spectral analysis

sense, to the case where the coefficient functions are strictly positive.

Remark 4.2. Things significantly change if we assume that each of a(x, y), b(x, y) has two -or more-

isolated zeros in points of Ω. In this circumstance, in Section 6, we give numerical examples where the

condition number of the generated matrix behaves in an unpredictable way. This result is not surprising

since it has been observed in the 1D case (see[4]) and the analysis presented in (3.8) exposes the influence of

the latter one to the multidimensional one. As a result, the observed anomaly in the asymptotic behavior of

the condition number of An(a(x)) is expected to be inherited by that of κ2(Ann), when analogous assumptions

hold.

5. Curves of zeros. In this section, we study the case where the coefficient functions a(x, y), b(x, y)

have curves of zeros on Ω. Obviously, under these assumptions, the general analysis is much more complicated

and perhaps new tools have to be used. Similarly to the case of more than one isolated roots per coefficient,

it seems that there might not be a general rule describing the asymptotic behavior of the condition number

of Ann. The following statements, which are supported by the numerical experiments of the next section,

describe the difficulties. Let r = min {α, β, γ, δ}. Then:

• There exist a(x, y), b(x, y) such that r < 2 and κ2(Ann) � n2.

• There exist a(x, y), b(x, y) such that r = 2 and κ2(Ann) � n2 log(n) ∩ Ω(n2).

• There exist a(x, y), b(x, y) such that r > 2 and κ2(Ann) � nr.

However, there are concrete occasions where the condition number of Ann behaves according to what The-

orem 3.3 predicts. For instance, assuming that one of the coefficient functions, say a(x, y), is of the form

p(x, y) · |x− cy|α where α > 1, c positive constant and p(x, y) > 0, ∀(x, y) ∈ Ω, and the other, b(x, y), has a

root at the origin of order β, in the y direction, i.e., is of the form b(x, y) = (xγ +yβ)q(x, y) with q(x, y) > 0,

∀(x, y) ∈ Ω and β ≤ γ. Then, if β ≤ α,

0 ≤ |x− cy|α ≤ xα + cyα,

and

c1(xβ + yγ) ≤ b(x, y) ≤ c2(xβ + yγ),

it follows that

Ann
(
0, c1

(
xβ + yγ

))
≤ Ann(a, b) ≤ Ann

(
xα + yα, c2

(
xβ + yγ

))
,

where c1 = min(x,y)∈Ω q(x, y) and c2 = max(x,y)∈Ω q(x, y). Following the analysis presented in the previous

section, we conclude that

λmin

(
Ann

(
0, c1

(
xβ + yγ

)))
∼ λmin

(
Ann

(
0, xβ + yβ

))
∼ n−r

and

λmin

(
Ann

(
xα + yα, c2(xβ + yγ)

))
∼ λmin

(
Ann

(
xβ + yβ , c2(xβ + yβ)

))
∼ n−r,
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where

r =


2, 0 ≤ β < 2,

[2, 2 log (n)], β = 2,

β, β > 2.

Thus,

λmin(Ann(a(x, y), b(x, y))) ∼ n−r.

Similarly, it can be treated the case where β > α.

Remark 5.1. According to Remark 3.4, the assumption about the order of the single zero to occur in

a specific direction, i.e., in the x direction in the case of a(x, y) or in the y direction in the case of b(x, y), is

necessary in order the Theorem 3.3 to hold, and thus, to have the above analysis.

Remark 5.2. The restriction about the concrete zero being at the origin can be relaxed. The important

requirement is for it to belong on the line of zeros of the other function.

Conjecture 5.1. Assuming that the isolated zero of one function and the curve of zeros of the second,

or more generally the curves of zeros of both of them, are disjoint sets from each other, the condition number

of the generated FD matrix grows as n2.

The informal proof of the above hypothesis is based on the locality of the influence of the roots of the

coefficient functions presented and analyzed in the previous section. Unfortunately, the theory presented

there cannot be applied, at least unaltered, under the new assumptions since formula (3.8) does not hold.

Numerical experiments concerning that case are presented in the end of the following section.

Remark 5.3. The analysis we presented can be naturally extended to cover the p-dimensional semiel-

liptical problems with Dirichlet boundary conditions. The straightforward generalization requires only the

proper use of tensor arguments and the careful analysis of the resulting Rayleigh quotient.

6. Numerical experiments. We present several tests that numerically confirm the theoretical results

presented in the previous sections. For simplification in the notation we assume n = m and N = n2. The

quantity that we are focus on and is of great interest in our context is

ρm = log2

(
λmin (A2m)

λmin (A2(m+1))

)
.

Clearly, the sequence {ρm} reflects the rate of decrease of the minimal eigenvalue of the coefficient matrix

AN . The first set of examples contains functions that fulfill the assumptions of Theorem 3.3 and, for that, we

expect the minimum eigenvalue of the corresponding matrix to behave as Theorem 3.3 predicts. In addition,

we have considered coefficient functions with different analytical behaviors, and with zeros of order smaller,

equal or greater than 2, i.e., the order that the differential operator can contribute. In this direction, we

considered the following functions as coefficients in the equation(1.1):

1) a1(x, y) = x1 + y3 and b1(x, y) = x
3
2 + y4,

2) a2(x, y) = x2 + |y − 1|3 and b2(x, y) = x3 + |y − 1|2,
3) a3(x, y) = |x− 1

2 |
3 + y3, b3(x, y) = |x− 1

2 |
4 + y4.

Specifically, in the first example the minimum order of the zero of the coefficient functions is one, in the

second two, while in the last one three. From Theorem 3.3 we expect the condition number to grow as n2, n2

or slightly greater, and as n3, respectively. We remark that in each example we have chosen a different point
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Table 1

Asymptotic behavior of Ai
N (ai(x, y), bi(x, y)).

n A1
N A2

N A3
N A4

N A5
N A6

N

ρ4 1.944 2.143 2.967 3.219 2.771 2.885

ρ5 1.975 2.156 2.983 3.274 2.818 2.938

ρ6 1.989 2.154 2.996 3.301 2.834 2.967

ρ7 1.993 2.147 3.025 3.317 2.849 2.983

ρ8 1.996 2.145 3.031 3.325 2.858 2.991

to be the common zero. The asymptotic behavior of the minimum eigenvalue of AN is presented through

the quantity ρm in the columns 2–4 of Table 1.

The examples

4) a4(x, y) = x10 + y1 and b4(x, y) = x10 + y10,

5) a5(x, y) = x5 + y2 and b5(x, y) = x5 + y5,

6) a6(x, y) = |x− 1
2 |

5 + y3 and b6(x, y) = |x− 1
2 |

3 + y5,

do not fulfill the assumptions of Theorem 3.3 concerning the direction in which the minimum order must

occur, i.e., in the x direction for a(x, y) or in the y direction for b(x, y), and thus, fall in the cases mentioned

in Remark 3.4. In addition, Example 6 shows the following attribute: in the presence of equal contributions

in the minimum order of the zero in the y direction of a(x, y) and in x of b(x, y), the condition number of

matrix AN tends to infinity as exactly the order of the zero if the latter is greater or equal to 2. The results

of this group are presented in the last three columns of Table 1.

To illustrate the case of functions with zeros in different points, we used the functions

7) a7(x, y) = x3 + y3 and b7(x, y) = |x− 1|4 + |y − 1|4,
8) a8(x, y) = x3 + y3 and b8(x, y) = |x− 0.05|3 + y3.

The first one, numerically confirms what Theorem 4.1 certifies. The second one attempts to point, from a

different perspective, the “local effect” that the zeros of the coefficient function have in the conditioning of

the matrix AN . Obviously, the functions a8(x, y) and b8(x, y) have 2 different isolated zeros which are very

close to each other. In the third column of Table 2, we present the results. We observe that, as long as the

dimension of the matrix is relatively small, i.e., the discretization is coarse enough, then the two zeros are

considered by the numerical scheme as the same one and the behavior of the condition number of the matrix

is in agreement with what Theorem 3.3 predicts. When n is large enough such that 1
n � |x0 − x1| = 0.05,

then the condition number tends to infinity as n2 i.e., according to the Theorem 4.1, which covers the case

of functions with a single, but different from each other, zero in the domain Ω.

In agreement with the observations in the 1D case for the coefficient function having two or more concrete

zeros, here in the 2D case, when at least one of the coefficient functions have more than one zeros, even

if these are common in both functions, the behavior of the condition number could be unpredictable. The

following examples

9) a9(x, y) =
(
|x− 1

2 |
4 + y4

)
·
(
|x− 1|3 + y3

)
,

b9(x, y) =
(
|x− 1|3 + |y − 1|3

) (
|x− 1

2 |
)3

+
(
|y − 1

2 |
)3
,
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Table 2

Asymptotic behavior of Ai
N (ai(x, y), bi(x, y)).

n A7
N A8

N A9
N A10

N A11
N A12

N A13
N A14

N

ρ4 1.908 2.939 1.897 3.219 2.871 2.871 1.909 4.078

ρ5 1.955 2.676 1.952 2.219 2.915 2.912 1.955 2.619

ρ6 1.977 1.775 1.977 3.527 2.929 2.929 1.977 5.118

ρ7 1.988 1.924 1.988 2.334 2.934 2.937 1.988 1.582

ρ8 1.994 1.963 1.993 3.608 2.939 2.942 1.994 6.231

10) a10(x, y) =
(
|x− 1

2 |
4 + |y − 1|4

)
·
(
|x− 1

3 |
3 + |y − 1

2 |
3
)
,

b10(x, y) =
(
|x− 1

2 |
4 + |y − 1|4

)
·
(
|x− 1

3 |
3 + |y − 1

3 |
3
)
,

are indicative, and the results are presented in the correspondent columns of Table 2. If Theorem 3.3 holds,

then the condition number in the first example would grow as n3. Instead, we observe a growth of order

2. In addition, for the second example we notice the unexpected behavior of the condition number of the

matrix.

When one of the functions a(x, y), b(x, y) has a curve of zeros and the other has a single zero on this

curve, then as we have mentioned in the previous section, under suitable assumptions we can again precisely

described the asymptotic behavior of the minimum eigenvalue and so the behavior of the spectral condition

number. Representative case is the example 11. On the other hand, if the order of the single zero is not

in the appropriate, for the validity of Theorem 3.3, direction, then again we observe the condition number

to grow faster than Theorem 3.3 predicts. This case is illustrated by the example 12, where the order of

the single zero is 2 but the condition number grows as n3. The results are presented in the corresponding

columns of Table 2.

11) a11(x, y) = |x− y|4, and b11(x, y) = |x− 1
2 |

3 + |y − 1
2 |

3,

12) a12(x, y) = |x− y|5, and b12(x, y) = |x− 1
2 |

2 + |y − 1
2 |

4,

For the case of two disjoint curves of zeros we chose the functions

13) a13(x, y) = |x− y|3, and b13(x, y) = |x− y + 1
2 |

3.

The numerical results fully confirm the Conjecture 5.1. Finally, in the last column of Table 2, we give the

results of a rather complicate case where both functions

14) a14(x, y) = | cos 5x− y|4, and b14(x, y) = |x− y|3,

have curves of zeros intersecting each other. As we can observe, the condition number seems to grow in an

unpredictable way.

7. Conclusions. In this paper, we have studied the conditioning of the FD sequence of matrices

obtained from discretization process of 2D semi-elliptic differential problems. Using elementary and at

the same time indicative coefficient functions, we decomposed the matrix to a sum of four simpler terms.

Through the asymptotical study of their minimum eigenvalue we were able to estimate the condition number

of the matrix for a wide class of coefficient functions having a simple zero. Moreover, using this analysis

we were capable to understand the different influence that the order of the zero can offer to the minimum

eigenvalue of the matrix, depending on the variable and on the coefficient it happens. Finally, we pointed the
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difficulties that the general analysis will have if the coefficients functions have curves of zeros, we analyzed

the case of a combination of curve of zeros and a isolated zero, and we stated a conjecture for the case of

disjoint curves of zeros. Concluding, as a future work, we mention the open problem commented in Remark

3.4, the rigorous proof of Conjecture 5.1 and of course the study of the asymptotic behavior of the condition

number of the matrix under the hypothesis of more general and complicated cases of zeros.
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