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Abstract. Eigenvalue and eigenpair backward errors are computed for matrix pencils arising in optimal control. In

particular, formulas for backward errors are developed that are obtained under block-structure-preserving and symmetry-

structure-preserving perturbations. It is shown that these eigenvalue and eigenpair backward errors are sometimes significantly

larger than the corresponding backward errors that are obtained under perturbations that ignore the special structure of the

pencil.
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1. Introduction. In this paper, we consider the perturbation theory, in particular the calculation of

structured backward errors, for eigenvalues and eigenvectors of structured matrix pencils L(z) of the form

(1.1) L(z) = M + zN :=

 0 J −R B

(J −R)H Q 0

BH 0 S

+ z

 0 E 0

−EH 0 0

0 0 0

 ,
where J,R,E,Q ∈ Cn,n, B ∈ Cn,m and S ∈ Cm,m satisfy JH = −J , RH = R EH = E, QH = Q, and

SH = S > 0, i.e., S is positive definite. These pencils are special cases of so-called even pencils, i.e., matrix

pencils P (z) satisfying P (z) = P (−z)H ; see, e.g., [21]. Even pencils with an additional block-structure as

in (1.1) arise in optimal control and H∞ control problems as well as in the passivity analysis of dynamical

systems. For instance, if one considers the optimal control problem of minimizing the cost functional∫ ∞
t0

xHQx+ uHSu dt

subject to the constraint

(1.2) Eẋ = Ax+Bu, x(t0) = x0,

then it is well known (see [20, 23]) that the optimal solution is associated with the deflating subspace of a

pencil of the form (1.1) associated with the finite eigenvalues in the open left half plane. If there exist exactly
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n eigenvalues in the open left half plane then this deflating subspace is an extended Lagrangian subspace.

(For other applications in passivity analysis and robust control, see [7].) Note that for general descriptor

systems we need not have that E = EH . However, if this is not the case then we can just carry out the

polar decomposition (see [15]) to obtain E = UẼ with U unitary and Ẽ = ẼH . Multiplying equation (1.2)

from the left with UH we obtain a new system that has the desired property E = EH , so w.l.o.g. we assume

that E = EH and then partition A = J − R into its skew-symmetric and symmetric part. Note that the

condition E = EH holds by assumption if (1.2) is a port-Hamiltonian descriptor system; see [5, 27]. In this

case, we furthermore have that R ≥ 0, i.e., it is positive semidefinite.

The solution of the optimal control problem becomes highly ill-conditioned when eigenvalues are close

to the imaginary axis and the solution usually ceases to exist when the eigenvalues are on the imaginary

axis [6, 11]. When eigenvalues on the imaginary axis exist then it is an important question to find small

perturbations to the system (1.2) or the pencil (1.1) that remove the eigenvalues from the imaginary axis

[4, 13]. These questions motivate the principle aims of this paper to determine backward errors associated

with eigenvalues on the imaginary axis of pencils of the form (1.1). We will consider in this paper the special

case of pencils with Q = 0, which arises in optimal control without state weighting, and in the context of

passivity analysis [12, 13]. Thus, we will consider a pencil of the form

(1.3) L(z) = M + zN :=

 0 J −R B

(J −R)H 0 0

BH 0 S

+ z

 0 E 0

−EH 0 0

0 0 0

 .
Unfortunately many of our results do not carry over easily to the case Q 6= 0 where the perturbation theory

becomes much more involved and highly technical.

In the following, ‖ · ‖ denotes the spectral norm of a vector or a matrix and ‖A‖F denotes the Frobe-

nius norm of a matrix A. Herm(n) and SHerm(n) respectively denote the set of Hermitian and skew-

Hermitian matrices of size n. By iR we denote the set of nonzero purely imaginary numbers, i.e., iR =

{iα | α ∈ R \ {0}}, and by In the identity matrix of size n. For a matrix A we write A = 0 if each entry of

A is equal to zero.

The sensitivity analysis of eigenvalues and eigenvalue/eigenvector pairs (in the following, called eigen-

pairs) of matrix pencils and matrix polynomials with various structures has recently received a lot of atten-

tion; see, e.g., [1, 2, 3, 16, 18, 25]. In particular, backward error formulas for structured matrix pencils and

polynomials with respect to structure preserving perturbations have been obtained in [1, 2] and in [8, 9],

respectively.

For pencils of the form (1.3), if the structure of the pencil is ignored, then for a given pair (λ, x) ∈
C× (C2n+m \ {0}) the eigenpair backward error is defined as

η(L, λ, x) = inf
{
‖[∆M ∆N ]‖F

∣∣∣∆M , ∆N ∈ C2n+m,2n+m,
(
(M −∆M ) + λ(N −∆N )

)
x = 0

}
.

It can be interpreted as the Frobenius norm of the smallest perturbation that makes (λ, x) being an eigenpair

of the perturbed pencil. Minimizing this expression over all (λ, x) ∈ (iR)× (C2n+m) we obtain the distance

of L(z) to the next pencil having eigenvalues on the imaginary axis and thus, the passivity radius of L(z);

see [14, 24]. If the even structure of the pencil is taken into account, then a structured eigenpair backward
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error with respect to structure-preserving perturbations can be defined as

ηeven(L, λ, x) = inf
{
‖[∆M ∆N ]‖F

∣∣∣ ∆M ∈ Herm(2n+m), ∆N ∈ SHerm(2n+m),(
(M −∆M ) + λ(N −∆N )

)
x = 0

}
.

Clearly, we have η(L, λ, x) ≤ ηeven(L, λ, x). In fact, for a given (λ, x) ∈ C× (C2n+m \ {0}), it is well known

by [3, Theorem 4.6] that

(1.4) η(L, λ, x) =
‖L(λ)x‖

‖x‖
√

1 + |λ|2
,

and by [1, Theorem 3.3.7] that

(1.5) ηeven(L, λ, x) =

√
2‖x‖2‖L(λ)x‖2 − |xHL(λ)x|2

‖x‖4(1 + |λ|2)
.

However, both formulas ignore the special block-structure of the pencil L(z), in particular the zero structure

and the definiteness of the matrix S, and as we will show in this paper, eigenpair backward errors with

respect to perturbations that preserve the block-structure and possibly also the symmetry-structure may be

significantly larger than the more generally obtained backward errors η(L, λ, x) and ηeven(L, λ, x).

This is, in particular, the case when only one or two blocks are perturbed, while others are unperturbed,

a situation that arises in many applications, e.g. when E is the incidence matrix of a network [10], in the

case of semi-explicit differential-algebraic equations [19] where E is block-diagonal with an identity and a

zero block, when J is the structure matrix in a port-Hamiltonian system [27], or when the weight matrix

is just a scalar multiple of the identity as is common in optimal control problems for partial differential

equations [26].

We will mainly consider complex backward errors. In some situations, the corresponding minimal-norm

perturbations turn out to be real if the original pencil was real to start with. In those cases, we easily obtain

a corresponding result on real backward errors which we will explicitly state. In other situations, however,

this is not the case and the techniques developed in this paper cannot be used to compute the corresponding

real backward errors. In those cases, the development of real structure-preserving backward errors remains

a challenging open problem.

The remainder of this paper is organized as follows. In Section 2, we review some minimal norm

mapping problems. In Section 3, we introduce a terminology and define block- and symmetry-structure-

preserving eigenpair or eigenvalue backward errors for pencils L(z) of the form (1.3). These backward

errors are computed while perturbing any two, three or all of the blocks J,R,E or B in Sections 4, 5 and

6, respectively. The significance of these block- and symmetry-structure-preserving backward errors over

η(L, λ, x) and ηeven(L, λ, x) is shown via some numerical examples in Section 7.

2. Preliminaries. An important tool for the computation of backward errors are minimal norm solu-

tions to mapping problems. In this section, we will review some of these results and restate them in a form

that we need in the following sections.

The solution to the skew-Hermitian mapping problem, i.e., to find ∆ ∈ SHerm(n) that maps a matrix

X ∈ Cn,k to Y ∈ Cn,k, is well known; see, e.g., [1], where also solutions that are minimal with respect to
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the spectral and the Frobenius norms are characterized. The following theorem is a particular case of [1,

Theorem 2.2.3].

Theorem 2.1. Let X, Y ∈ Cn,k. Then there exists ∆ ∈ SHerm(n) satisfying ∆X = Y if and only if

Y X†X = Y and Y HX = −XHY . If the latter conditions are satisfied, then

min
{
‖∆‖F

∣∣∆ ∈ SHerm(n), ∆X = Y
}

=

√
2‖Y X†‖2F − trace

(
Y X†(Y X†)H(XX†)

)
and the unique minimum is attained for

∆̂ = Y X† − (Y X†)H − (X†)HXHY X†.

The second mapping problem that we will need is the following; see [17, Theorem 2’], [22, Theorem 2.1].

Theorem 2.2. Let u ∈ Cm \ {0}, r ∈ Cn, w ∈ Cn \ {0} and s ∈ Cm. Define

S = {∆ ∈ Cn,m | ∆u = r, ∆Hw = s}.

Then S 6= ∅ if and only if uHs = rHw. If the latter condition is satisfied, then

∆̂ =
ruH

‖u‖2
+
wsH

‖w‖2
− (sHu)wuH

‖w‖2‖u‖2

is the unique matrix such that ∆̂u = r and ∆̂Hw = s, and

inf
∆∈S
‖∆‖F = ‖∆̂‖F =

√
‖r‖2

‖u‖2
+
‖s‖2

‖w‖2
− |s

Hu|2

‖w‖‖u‖
.

Moreover,

inf
∆∈S
‖∆‖ = max

{
‖r‖
‖u‖

,
‖s‖
‖w‖

}
.

The following result (see [22, Remark 2.1]) gives a real minimal Frobenius norm solution of the mapping

problem considered in Theorem 2.2.

Theorem 2.3. Let u ∈ Cm, r ∈ Cn, w ∈ Cn and s ∈ Cm be such that rank([u ū]) = 2 and rank([w w̄]) =

2 and define

SR = {∆ ∈ Rn,m | ∆u = r, ∆Hw = s}.

Then SR 6= ∅ if and only if uHs = rHw and uT s = rTw. If the latter conditions are satisfied, then

inf
∆∈SR

‖∆‖F = ‖∆̃‖,

where

∆̃ = [r r̄][u ū]† + ([s s̄][w w̄]†)H − ([s s̄][w w̄]†)H [u ū][u ū]†.

We mention that the form of the minimal norm perturbation given in [22, Remark 2.4] slightly differs

from the one given here, because in [22] it was presented using real and imaginary parts rather than complex

vectors and their complex conjugates.
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3. Structured eigenpair backward errors. In this section, we consider structured matrix pencils

L(z) of the form (1.3). We use the results on the mapping problems from the previous section to estimate

structure-preserving backward errors for eigenvalues λ or eigenpairs (λ, x) of L(z), while perturbing only

certain block entries of L(z) for the case when λ is purely imaginary and S is definite. To distinguish between

different cases, we introduce a terminology for perturbations ∆M + z∆N of the pencil L(z) = M + zN that

affect only some of the blocks J,R,E,B of L(z). For example, suppose that only the blocks J and E in L(z)

are subject to perturbations. Then the corresponding perturbations to M and N are given by

(3.1) ∆M =

 0 ∆J 0

∆H
J 0 0

0 0 0

 and ∆N =

 0 ∆E 0

−∆H
E 0 0

0 0 0

 ,
where ∆J , ∆E ∈ Cn,n. For λ ∈ C and x ∈ C2n+m \ {0} we then define

1) the block-structure-preserving eigenpair backward error ηB(J,E, λ, x) with respect to perturbations

only to J and E by

(3.2) ηB(J,E, λ, x) = inf
{
‖[∆J ∆E ]‖F

∣∣∣ ((M −∆M ) + λ(N −∆N )
)
x = 0, ∆M + z∆N ∈ B

}
,

where B denotes the set of all pencils ∆M + z∆N as in (3.1) with ∆J , ∆E ∈ Cn,n;

2) the symmetry-structure-preserving eigenpair backward error ηS(J,E, λ, x) with respect to structure-

preserving perturbations only to J and E by

(3.3) ηS(J,E, λ, x) = inf
{
‖[∆J ∆E ]‖F

∣∣ ((M −∆M ) + λ(N −∆N )
)
x = 0, ∆M + z∆N ∈ S

}
,

where S denotes the set of all pencils ∆M+z∆N as in (3.1) with ∆J ∈ SHerm(n) and ∆E ∈ Herm(n).

For a given λ ∈ C, we also define the block-structure-preserving and symmetry-structure-preserving eigenvalue

backward errors ηB(J,E, λ) and ηS(J,E, λ), respectively, by

ηB(J,E, λ) := inf
x∈C2n+m\{0}

ηB(J,E, λ, x) and ηS(J,E, λ) := inf
x∈C2n+m\{0}

ηS(J,E, λ, x).

For other combinations of perturbations to the blocks J,R,E,B in L(z), the corresponding sets B and S
as well as the block- and symmetry-structure-preserving eigenpair or eigenvalue backward errors are defined

analogously.

4. Perturbation in any two of the blocks J , R, E and B. In this section, we compute block- and

symmetry-structure-preserving backward errors of λ ∈ iR and x ∈ C2n+m \ {0} as approximate eigenpair,

resp. eigenvalue of the pencil L(z) defined in (1.3) while perturbing any two of the blocks J,R,E, or B at a

time. As we have discussed in the introduction, it is a common situation in many applications that not all

blocks are perturbed. Although restrictions in the perturbation structure are more common in some blocks

than in the others, for completeness we also discuss several other perturbation combinations.

4.1. Perturbation only in J and E. Let L(z) be a pencil as in (1.3) and furthermore let (λ, x) ∈
C × (C2n+m \ {0}). Suppose that only the blocks J and E of L(z) are subject to perturbations. Then by

Section 3, B is the set of all pencils ∆L(z) = ∆M + z∆N , where ∆M and ∆N have the block structure as

in (3.1), and S is the set of all pencils from B where in addition we have ∆H
J = −∆J and ∆H

E = ∆E for the

blocks in (3.1).
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The corresponding block-structure- and symmetry-structure-preserving eigenpair backward errors

ηB(J,E, λ, x) and ηS(J,E, λ, x) are defined by (3.2) and (3.3), respectively. We first discuss under which

conditions these backward errors are finite.

Remark 4.1. Let L(z) be a pencil as in (1.3), and let λ ∈ iR and x = [xT1 xT2 xT3 ]T be such that

x1, x2 ∈ Cn and x3 ∈ Cm. Then for any ∆J , ∆E ∈ Cn,n and corresponding ∆L(z) = ∆M + z∆N ∈ B, we

have (L(λ)−∆L(λ))x = 0 if and only if

(∆J + λ∆E)x2 = (J −R+ λE)x2 +Bx3,(4.1)

(∆J + λ∆E)Hx1 = (−J −R− λE)x1,(4.2)

0 = BHx1 + Sx3,(4.3)

i.e., ηB(J,E, λ, x) is finite if and only if there exist matrices ∆J and ∆E such that these equations are

satisfied.

In the next lemma, we present conditions that are equivalent to the existence of matrices ∆J and ∆E

that satisfy the first two of the three equations in Remark 4.1.

Lemma 4.2. Let L(z) be a pencil as in (1.3), and let λ ∈ iR and x = [xT1 xT2 xT3 ]T be such that

x1, x2 ∈ Cn and x3 ∈ Cm. Furthermore, set r := (J −R+ λE)x2 +Bx3 and s := (−J −R− λE)x1. Then

the following statements are equivalent.

1) There exist ∆J ∈ Cn,n and ∆E ∈ Cn,n satisfying (4.1) and (4.2).

2) There exists ∆ ∈ Cn,n such that ∆x2 = r and ∆Hx1 = s.

3) The identity xH3 B
Hx1 = 0 is satisfied.

Moreover, we have

inf
{
‖∆J‖2F + ‖∆E‖2F

∣∣∣ ∆J , ∆E ∈ Cn,n satisfy (4.1) and (4.2)
}

= inf

{
‖∆‖2F

1 + |λ|2

∣∣∣∣∣ ∆ ∈ Cn,n, ∆x2 = r, ∆Hx1 = s

}
.(4.4)

Proof. “1) ⇒ 2)”: Let ∆J ∈ Cn,n and ∆E ∈ Cn,n be such that (4.1) and (4.2) are satisfied. Then by

setting ∆ = ∆J +λ∆E we get ∆x2 = r, ∆Hx1 = s which shows 2). Furthermore, using the Cauchy-Schwarz

inequality (in R2), we obtain

‖∆‖2F ≤
(
‖∆J‖F + |λ| ‖∆E‖F

)2 ≤ (1 + |λ|2)(‖∆J‖2F + ‖∆E‖2F ).

This implies

inf

{
‖∆‖2F

1 + |λ|2

∣∣∣∣∣ ∆J , ∆E ∈ Cn,n satisfy (4.1) and (4.2), ∆ = ∆J + λ∆E

}
≤ inf

{
‖∆J‖2F + ‖∆E‖2F

∣∣ ∆J , ∆E ∈ Cn,n satisfy (4.1) and (4.2)
}
,

and thus,

inf

{
‖∆‖2F

1 + |λ|2

∣∣∣∣∣ ∆ ∈ Cn,n, ∆x2 = r, ∆Hx1 = s

}
≤ inf

{
‖∆J‖2F + ‖∆E‖2F

∣∣ ∆J , ∆E ∈ Cn,n satisfy (4.1) and (4.2)
}
,(4.5)
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which yields “≥” in (4.4).

“2) ⇒ 1)”: Conversely, suppose that ∆ ∈ Cn,n satisfies ∆x2 = r and ∆Hx1 = s. Then by setting

∆J = ∆
1+|λ|2 and ∆E = λ̄∆

1+|λ|2 we get ∆J + λ∆E = ∆, and hence, ∆J and ∆E satisfy (4.1) and (4.2) which

proves 1). Furthermore, we obtain

‖∆J‖2F + ‖∆E‖2F =
‖∆‖2F

(1 + |λ|2)2
+
|λ|2‖∆‖2F
(1 + |λ|2)2

=
‖∆‖2F

1 + |λ|2
.

This implies

inf

{
‖∆J‖2F + ‖∆E‖2F

∣∣∣∣∆ ∈ Cn,n, ∆x2 = r, ∆Hx1 = s, ∆J =
∆

1 + |λ|2
,∆E =

λ̄∆

1 + |λ|2

}
= inf

{
‖∆‖2F

1 + |λ|2
∣∣∣ ∆ ∈ Cn,n, ∆x2 = r, ∆Hx1 = s

}
,

and hence,

inf
{
‖∆J‖2F + ‖∆E‖2F

∣∣∣ ∆J , ∆E ∈ Cn,n satisfy (4.1) and (4.2)
}

≤ inf

{
‖∆‖2F

1 + |λ|2
∣∣∣ ∆ ∈ Cn,n, ∆x2 = r, ∆Hx1 = s

}
,

which proves “≤” in (4.4).

“2) ⇔ 3)”: This follows from Theorem 2.2, because there exists ∆ ∈ Cn,n satisfying ∆x2 = r and

∆Hx1 = s if and only if xH2 s = rHx1. Since λ is purely imaginary, this latter equation is equivalent to

xH3 B
Hx1 = 0.

Theorem 4.3. Let L(z) be a pencil as in (1.3), and let λ ∈ iR and x ∈ C2n+m \ {0}. Partition x =

[xT1 xT2 xT3 ]T such that x1, x2 ∈ Cn and x3 ∈ Cm and set r = (J−R+λE)x2+Bx3 and s = −(J+R+λE)x1.

Then ηB(J,E, λ, x) is finite if and only if x3 = 0 and BHx1 = 0. If the latter conditions hold then

ηB(J,E, λ, x) =
‖∆̂‖F√
1 + |λ|2

and ηB(J,E, λ) =
σmin(J −R+ λE)√

1 + |λ|2
,(4.6)

where ∆̂ is given by

∆̂ =


rxH

2

‖x2‖2 if x1 = 0,

x1s
H

‖x1‖2 if x2 = 0,

rxH
2

‖x2‖2 + x1s
H

‖x1‖2

(
In − x2x

H
2

‖x2‖2

)
otherwise.

Proof. Combining Remark 4.1 and Lemma 4.2, we obtain that ηB(J,E, λ, x) is finite if and only if x

satisfies xH3 B
Hx1 = 0 and BHx1 +Sx3 = 0, or equivalently, x3 = 0 and BHx1 = 0, since S is definite. Thus,
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assume that x satisfies x3 = 0 and BHx1 = 0. Then, we obtain

ηB(J,E, λ, x) = inf
{
‖[∆J ∆E ]‖F

∣∣∣ ((M −∆M ) + λ(N −∆N )
)
x = 0, ∆M + z∆N ∈ B

}
= inf

{
‖[∆J ∆E ]‖F

∣∣∣∆J , ∆E ∈ Cn,n satisfy (4.1) and (4.2)
}

= inf

{
‖∆‖F√
1 + |λ|2

∣∣∣∣∣ ∆ ∈ Cn,n, ∆x2 = r, ∆Hx1 = s

}

=
1√

1 + |λ|2
inf
{
‖∆‖F

∣∣∣ ∆ ∈ Cn,n, ∆x2 = r, ∆Hx1 = s
}
,(4.7)

where the second last equality is due to Lemma 4.2. Thus, the formula for ηB(J,E, λ, x) in (4.6) follows

from Theorem 2.2 for the case x1, x2 6= 0 and for the case x1 = 0 or x2 = 0 it is straightforward. (Indeed,

in the case x1 = 0, any matrix ∆ with ∆x2 = r satisfies ‖∆‖F ≥ ‖r‖
‖x2‖ and ∆̂ =

rxH
2

‖x2‖2 is a matrix for which

equality is attained. The case x2 = 0 is analogous.)

Next we will prove the formula for ηB(J,E, λ) in (4.6). To this end, let

M :=
{
y =

[
yT1 yT2 0

]
∈ C2n+m

∣∣ y1, y2 ∈ Cn, (y1, y2) 6= (0, 0), BHy1 = 0
}
.

Then, we obtain(√
1 + |λ|2

)
· ηB(J,E, λ) =

(√
1 + |λ|2

)
· inf
y∈C2n+m\{0}

ηB(J,E, λ, y)

= inf
y∈M

inf
{
‖∆‖F

∣∣∣ ∆ ∈ Cn,n, ∆y2 = (J −R+ λE)y2, ∆Hy1 = −(J +R+ λE)y1

}
≥ inf
y∈M

inf
{
‖∆‖

∣∣∣ ∆ ∈ Cn,n, ∆y2 = (J −R+ λE)y2, ∆Hy1 = −(J +R+ λE)y1

}
,(4.8)

where the second equality is due to (4.7) and the inequality in the last line follows from the fact that for any

∆ ∈ Cn,n, we have ‖∆‖ ≤ ‖∆‖F . Defining

µ := inf
y∈M

inf
{
‖∆‖

∣∣∣ ∆ ∈ Cn,n, ∆y2 = (J −R+ λE)y2, ∆Hy1 = −(J +R+ λE)y1

}
,

we get by applying Theorem 2.2 for the case of the spectral norm that

µ = inf
y∈M

max

{
‖(J −R+ λE)Hy1‖

‖y1‖
,
‖(J −R+ λE)y2‖

‖y2‖

}
(4.9)

= min

{
inf

y1∈Cn\{0},BHy1=0

‖(J −R+ λE)Hy1‖
‖y1‖

, inf
y2∈Cn\{0}

‖(J −R+ λE)y2‖
‖y2‖

}
,(4.10)

where in (4.9) we interpret the undefined expressions 0
0 that occur in the cases y1 = 0 or y2 = 0 as being

equal to zero. Let the columns of U = [u1, . . . , uk] ∈ Cn,k form an orthonormal basis of null(BH). Then

inf
y1∈Cn\{0},BHy1=0

‖(J −R+ λE)Hy1‖
2

‖y1‖2
= inf
y1∈null(BH)\{0}

‖(J −R+ λE)Hy1‖
2

‖y1‖2

= inf
α∈Ck\{0}

‖(J −R+ λE)HUα‖2

‖α‖2

=
(
σmin

(
(J −R+ λE)HU

) )2

.(4.11)



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 34, pp. 526-560, October 2018.

Christian Mehl, Volker Mehrmann, and Punit Sharma 534

By inserting (4.11) in (4.10), we get

µ = min
{
σmin

(
(J −R+ λE)H

)
, σmin

(
(J −R+ λE)HU

)}
= σmin

(
(J −R+ λE)H

)
= σmin

(
J −R+ λE

)
,(4.12)

Using the value of µ from (4.12), we show that equality holds in (4.8) by constructing ∆ such that ‖∆‖ =

‖∆‖F = µ. For this, let u and v, respectively, be unit left and right singular vectors of (J − R + λE)

corresponding to the singular value σ∗ := σmin

(
J − R + λE

)
and consider ∆̃ := σ∗uvH . Then, clearly

‖∆̃‖ = ‖∆̃‖F = σ∗ as ∆̃ is of rank one, and

∆̃v = σ∗u = (J −R+ λE)v and ∆̃Hu = σ∗v = (J −R+ λE)Hu.

Thus, we have equality in (4.8), i.e.,

ηB(J,E, λ) =
µ√

1 + |λ|2
=

‖∆̃‖F√
1 + |λ|2

=
σmin(J −R+ λE)√

1 + |λ|2

which finishes the proof.

Next we aim to compute the symmetry-structure-preserving eigenpair error ηS(J,E, λ, x), i.e., when we

have ∆H
J = −∆J and ∆H

E = ∆E in the pencils L(z) = ∆M + z∆N ∈ S. We start with a criterion for the

finiteness of the eigenpair error, where we focus on the case that λ is on the imaginary axis.

Remark 4.4. Let L(z) be a pencil as in (1.3), and let λ ∈ iR and x = [xT1 xT2 xT3 ] be such that

x1, x2 ∈ Cn and x3 ∈ Cm. Then using ∆H
J = −∆J and ∆H

E = ∆E and also the fact that λ is purely

imaginary, the equations (4.1)–(4.3) take the form

(∆J + λ∆E)x2 = (J −R+ λE)x2 +Bx3,

(−∆J − λ∆E)x1 = (−J −R− λE)x1,

0 = BHx1 + Sx3.

Thus, combining the first two of these equations, we find that ηS(J,E, λ, x) is finite if and only if there exist

∆J ∈ SHerm(n) and ∆E ∈ Herm(n) such that the equations

(∆J + λ∆E)
[
x2 x1

]
=
[

(J −R+ λE)x2 +Bx3 (J +R+ λE)x1

]
,(4.13)

0 = BHx1 + Sx3

are satisfied.

We start with a lemma that contains equivalent conditions for equation (4.13) to be satisfied.

Lemma 4.5. Let L(z) be a pencil as in (1.3), and let λ ∈ iR and x ∈ C2n+m \ {0}. Partition x =

[xT1 xT2 xT3 ]T such that x1, x2 ∈ Cn and x3 ∈ Cm, and define

X =
[
x2 x1

]
and Y =

[
(J −R+ λE)x2 +Bx3 (J +R+ λE)x1

]
.

Then the following statements are equivalent.

1) There exist ∆J ∈ SHerm(n) and ∆E ∈ Herm(n) satisfying (4.13).

2) There exists ∆ ∈ SHerm(n) such that ∆X = Y .
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3) X and Y satisfy Y HX = −XHY and Y X†X = Y .

Moreover, we have

inf
{
‖∆J‖2F + ‖∆E‖2F

∣∣∣ ∆J ∈ SHerm(n), ∆E ∈ Herm(n) satisfying (4.13)
}

= inf

{
‖∆‖2F

1 + |λ|2

∣∣∣∣∣ ∆ ∈ SHerm(n), ∆X = Y

}
.(4.14)

Proof. “1) ⇒ 2)”: Let ∆J ∈ SHerm(n) and ∆E ∈ Herm(n) be such that they satisfy (4.13), then by

setting ∆ = ∆J + λ∆E we get ∆X = Y , and ∆ ∈ SHerm(n) as λ ∈ iR. The inequality “≥” in (4.14) then

follows by the same arguments as in “1)⇒ 2)” in the proof of Lemma 4.2.

“2)⇒ 1)”: Conversely, let ∆ ∈ SHerm(n) be such that ∆X = Y . Then, setting

∆J =
∆

1 + |λ|2
and ∆E =

λ̄∆

1 + |λ|2
,

we obtain (∆J +λ∆E)X = Y as well as ∆J ∈ SHerm(n) and ∆E ∈ Herm(n), since λ ∈ iR. Again, the proof

“≤” in (4.14) follows by arguments similar to those in the part “2)⇒ 1)” in the proof of Lemma 4.2.

“2)⇔ 3)”: This follows immediately by Theorem 2.1.

Theorem 4.6. Let L(z) be a pencil defined as in (1.3), and let λ ∈ iR and x ∈ C2n+m \ {0}. Partition

x = [xT1 xT2 xT3 ]T such that x1, x2 ∈ Cn and x3 ∈ Cm and set

X =
[
x2 x1

]
and Y =

[
(J −R+ λE)x2 +Bx3 (J +R+ λE)x1

]
.

Then ηS(J,E, λ, x) is finite if and only if Y HX = −XHY , Y X†X = Y and BHx1 + Sx3 = 0. If the three

latter conditions are satisfied, then

(4.15) ηS(J,E, λ, x) =

√
1

1 + |λ|2
(

2‖Y X†‖2F − trace
(
Y X†(Y X†)HXX†

))
.

Proof. Combining Remark 4.4 and Lemma 4.5 it follows that ηS(J,E, λ, x) is finite if and only if x

satisfies

Y HX = −XHY, Y X†X = Y and BHx1 + Sx3 = 0.

In the following, let us assume that these conditions on x are satisfied. Then we obtain

ηS(J,E, λ, x) = inf
{
‖[∆J ∆E ]‖F

∣∣∣∆J ∈ SHerm(n), ∆E ∈ Herm(n) satisfy (4.13)
}

=
1√

1 + |λ|2
· inf

{
‖∆‖F

∣∣∣ ∆ ∈ SHerm(n), ∆X = Y
}
,

where the last equality is due to Lemma 4.5. Hence, (4.15) follows by using Theorem 2.1.

4.2. Perturbations only in R and E. In this section, we consider the case where only the blocks R

and E in a pencil L(z) as in (1.3) are perturbed. Let λ ∈ C and x ∈ C2n+m \ {0}. Then by the terminology

outlined in Section 3, the block- and symmetry-structure-preserving eigenpair backward errors ηB(R,E, λ, x)

and ηS(R,E, λ, x) are defined by

(4.16) ηB(R,E, λ, x) = inf
{
‖[∆R ∆E ]‖F

∣∣∣ ((M −∆M ) + λ(N −∆N )
)
x = 0, ∆M + z∆N ∈ B

}
,
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and

(4.17) ηS(R,E, λ, x) = inf
{
‖[∆R ∆E ]‖F

∣∣∣ ((M −∆M ) + λ(N −∆N )
)
x = 0, ∆M + z∆N ∈ S

}
,

respectively, where B is the set of all pencils of the form ∆L(z) = ∆M + z∆N with the block-structure

(4.18) ∆M =

 0 −∆R 0

−∆H
R 0 0

0 0 0

 and ∆N =

 0 ∆E 0

−∆H
E 0 0

0 0 0

 .
and ∆R,∆E ∈ Cn,n, while S is the corresponding set of pencils ∆L(z) = ∆M + z∆N as in (4.18) with

∆R,∆E ∈ Herm(n).

We highlight that in the case that only the block-structure is preserved, the perturbation matrices

in (4.18) have exactly the same structure as the ones in (3.1), and hence, by following exactly the same lines

as in the previous section, we obtain the following theorem which shows that the values of ηB(R,E, λ, x),

and also of ηB(R,E, λ) := infx∈C2n+m\{0} η
B(R,E, λ, x) are equal to the corresponding values ηB(J,E, λ, x)

and ηB(J,E, λ).

Theorem 4.7. Let L(z) be a pencil as in (1.3), and let λ ∈ iR and x ∈ C2n+m \ {0}. Partition x =

[xT1 xT2 xT3 ]T such that x1, x2 ∈ Cn and x3 ∈ Cm and set r = (J−R+λE)x2+Bx3 and s = −(J+R+λE)x1.

Then ηB(R,E, λ, x) is finite if and only if x3 = 0 and BHx1 = 0. If the latter conditions hold then

ηB(R,E, λ, x) = ηB(J,E, λ, x) =
‖∆̂‖F√
1 + |λ|2

,

and

ηB(R,E, λ) = ηB(J,E, λ) =
σmin(J −R+ λE)√

1 + |λ|2
,

where ∆̂ is given by

∆̂ =


rxH

2

‖x2‖2 if x1 = 0,

x1s
H

‖x1‖2 if x2 = 0,

rxH
2

‖x2‖2 + x1s
H

‖x1‖2

(
In − x2x

H
2

‖x2‖2

)
otherwise.

Proof. The proof is similar to the proof of Theorem 4.3.

Next, we turn to the eigenpair backward error ηS(R,E, λ, x) for purely imaginary λ ∈ iR and x =

[xT1 x
T
2 x

T
3 ]T ∈ C2n+m\{0}. Note that in this case, ∆H

R = ∆R and ∆H
E = ∆E . In particular, the perturbations

now have a different symmetry structure than the corresponding ones from the previous section, so that we

expect the backward error ηS(R,E, λ, x) to differ from ηS(J,E, λ, x). We start again with a criterion for the

finiteness of ηS(R,E, λ, x) and continue with a lemma giving equivalent conditions.

Remark 4.8. Let L(z) be a pencil as in (1.3), and let λ ∈ iR and x = [xT1 xT2 xT3 ] be such that

x1, x2 ∈ Cn and x3 ∈ Cm. Then using ∆H
R = ∆R and ∆H

E = ∆E and also the fact that λ is purely

imaginary, we find that there exist ∆R, ∆E ∈ Herm(n) and correspondingly ∆L(z) = ∆M + z∆N ∈ S such
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that (L(λ)−∆L(λ))x = 0 if and only if

(−∆R + λ∆E)x2 = (J −R+ λE)x2 +Bx3(4.19)

(−∆R + λ∆E)Hx1 = (−J −R− λE)x1(4.20)

0 = BHx1 + Sx3.(4.21)

Thus, ηS(R,E, λ, x) is finite if and only if there exist ∆R, ∆E ∈ Herm(n) such that (4.19)–(4.21) are satisfied.

Lemma 4.9. Let L(z) be a pencil as in (1.3), and let λ ∈ iR and x ∈ C2n+m \ {0}. Partition x =

[xT1 xT2 xT3 ]T such that x1, x2 ∈ Cn and x3 ∈ Cm and let r = (J−R+λE)x2 +Bx3 and s = (−J−R−λE)x1.

Then the following statements are equivalent.

1) There exist ∆R, ∆E ∈ Herm(n) satisfying (4.19) and (4.20).

2) There exists ∆ ∈ Cn,n such that ∆x2 = r and ∆Hx1 = s.

3) The identity xH3 B
Hx1 = 0 is satisfied.

Moreover, we have

inf
{
‖∆R‖2F + ‖∆E‖2F

∣∣∣ ∆R, ∆E ∈ Herm(n) satisfy (4.19) and (4.20)
}

= inf

{∥∥∥∥∆ + ∆H

2

∥∥∥∥2

F

+
1

|λ|2

∥∥∥∥∆−∆H

2

∥∥∥∥2

F

∣∣∣∣∣ ∆ ∈ Cn,n, ∆x2 = r, ∆Hx1 = s

}
.(4.22)

Proof. “1) ⇒ 2)”: Let ∆R, ∆E ∈ Herm(n) be such that they satisfy (4.19) and (4.20). Setting ∆ =

−∆R + λ∆E , we get ∆x2 = r, ∆Hx1 = s. Also note that −∆R and λ∆E are the unique Hermitian and

skew-Hermitian parts of ∆, respectively, i.e., ∆R = −(∆ + ∆H)/2 and λ∆E = (∆−∆H)/2. This implies

‖∆R‖2F + ‖∆E‖2F =

∥∥∥∥∆ + ∆H

2

∥∥∥∥2

F

+
1

|λ|2

∥∥∥∥∆−∆H

2

∥∥∥∥2

F

and

inf
{
‖∆R‖2F + ‖∆E‖2F

∣∣∣ ∆R, ∆E ∈ Herm(n) satisfy (4.19) and (4.20)
}

= inf

{∥∥∥∥∆ + ∆H

2

∥∥∥∥2

F

+
1

|λ|2

∥∥∥∥ ∆−∆H

2

∥∥∥∥2

F

∣∣∣∣∣ ∆ = −∆R + λ∆E , ∆R, ∆E ∈ Herm(n)

satisfy (4.19) and (4.20)

}
.

Thus, we obtain

inf
{
‖∆R‖2F + ‖∆E‖2F

∣∣ ∆J , ∆E ∈ Herm(n) satisfy (4.19) and (4.20)
}

(4.23)

≥ inf

{∥∥∥∥∆ + ∆H

2

∥∥∥∥2

F

+
1

|λ|2

∥∥∥∥∆−∆H

2

∥∥∥∥2

F

∣∣∣∣∣ ∆ ∈ Cn,n, ∆x2 = r, ∆Hx1 = s

}

which gives “≥” in (4.22).

“2)⇒ 1)”: Suppose that ∆ ∈ Cn,n is such that ∆x2 = r and ∆Hx1 = s. Then, by setting ∆R = −∆+∆H

2

and ∆E = λ̄
|λ|2 (∆−∆H

2 ), we get ∆R, ∆E ∈ Herm(n) such that (4.19) and (4.20) are satisfied, because
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−∆R + λ∆E = ∆. Also, we have

‖∆R‖2F + ‖∆E‖2F =

∥∥∥∥∆ + ∆H

2

∥∥∥∥2

F

+
1

|λ|2

∥∥∥∥∆−∆H

2

∥∥∥∥2

F

which implies

inf

{∥∥∥∥∆ + ∆H

2

∥∥∥∥2

F

+
1

|λ|2

∥∥∥∥∆−∆H

2

∥∥∥∥2

F

∣∣∣∣∣ ∆ ∈ Cn,n, ∆x2 = r, ∆Hx1 = s

}
= inf

{
‖∆R‖2F + ‖∆E‖2F

∣∣∣∆ ∈ Cn,n, ∆x2 = r, ∆Hx1 = s, ∆R = −∆+∆H

2 , ∆E = λ
|λ|2 ·

(
∆−∆H

2

)}
and hence

inf
{
‖∆R‖2F + ‖∆E‖2F

∣∣ ∆R, ∆E ∈ Herm(n) satisfying (4.19) and (4.20)
}

≤ inf

{∥∥∥∥∆ + ∆H

2

∥∥∥∥2

F

+
1

|λ|2

∥∥∥∥∆−∆H

2

∥∥∥∥2

F

∣∣∣ ∆ ∈ Cn,n, ∆u = r, ∆Hw = s

}
(4.24)

which finishes the proof of (4.22).

“2) ⇔ 3)”: By Theorem 2.2, there exists ∆ ∈ Cn,n satisfying ∆x2 = r and ∆Hx1 = s if and only if

xH2 s = rHx1 which in turn is equivalent to xH3 B
Hx1 = 0.

In contrast to Theorem 4.6 and 4.7, we only obtain bounds for the symmetry-structure-preserving

eigenpair backward error ηS(R,E, λ, x).

Theorem 4.10. Let L(z) be a pencil as in (1.3), and let λ ∈ iR and x ∈ C2n+m \ {0}. Partition x =

[xT1 xT2 xT3 ]T so that x1, x2 ∈ Cn and x3 ∈ Cm, and set r = (J−R+λE)x2 +Bx3 and s = −(J+R+λE)x1.

Then ηS(R,E, λ, x) is finite if and only if x3 = 0 and BHx1 = 0. If the latter conditions are satisfied, then

‖∆̂‖F ≤ ηS(R,E, λ, x) ≤

√√√√∥∥∥∥∥∆̂ + ∆̂H

2

∥∥∥∥∥
2

F

+
1

|λ|2

∥∥∥∥∥∆̂− ∆̂H

2

∥∥∥∥∥
2

F

if |λ| ≤ 1(4.25)

and

‖∆̂‖F
|λ|

≤ ηS(R,E, λ, x) ≤

√√√√∥∥∥∥∥∆̂ + ∆̂H

2

∥∥∥∥∥
2

F

+
1

|λ|2

∥∥∥∥∥∆̂− ∆̂H

2

∥∥∥∥∥
2

F

if |λ| ≥ 1,(4.26)

where ∆̂ is given by

∆̂ =


rxH

2

‖x2‖2 if x1 = 0,

x1s
H

‖x1‖2 if x2 = 0,

rxH
2

‖x2‖2 + x1s
H

‖x1‖2

(
In − x2x

H
2

‖x2‖2

)
otherwise.

Proof. Combining Remark 4.8 and Lemma 4.9, we obtain that ηS(R,E, λ, x) is finite if and only if

xH3 B
Hx1 = 0 and BHx1 +Sx3 = 0. The latter conditions hold if and only if x3 = 0 and BHx1 = 0, because
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S is definite. Thus, let x = [xT1 xT2 xT3 ]T be such that x3 = 0 and BHx1 = 0. Then we obtain from (4.17)

and by using Lemma 4.9 that

(ηS(R,E, λ, x))2= inf
{
‖[∆R ∆E ]‖2F

∣∣∣ ∆R,∆E ∈ Herm(n), satisfying (4.19) and (4.20)
}

= inf

{∥∥∥∥∆ + ∆H

2

∥∥∥∥2

F

+
1

|λ|2

∥∥∥∥∆−∆H

2

∥∥∥∥2

F

∣∣∣∣∣∆ ∈ Cn,n, ∆x2 = r, ∆Hx1 = s

}
,(4.27)

where the last equality is due to Lemma 4.9. Note that for any ∆ ∈ Cn,n, the Hermitian and skew-Hermitian

parts of ∆ satisfy ‖∆‖2F =
∥∥∆+∆H

2

∥∥2

F
+
∥∥∆−∆H

2

∥∥2

F
. This implies

‖∆‖2F ≤
∥∥∥∥∆ + ∆H

2

∥∥∥∥2

F

+
1

|λ|2

∥∥∥∥∆−∆H

2

∥∥∥∥2

F

if |λ| ≤ 1(4.28)

and

‖∆‖2F
|λ|2

≤
∥∥∥∆ + ∆H

2

∥∥∥2

F
+

1

|λ|2
∥∥∥∆−∆H

2

∥∥∥2

F
if |λ| ≥ 1(4.29)

for all ∆ ∈ Cn,n. Then taking the infimum over all ∆ satisfying ∆x2 = r and ∆Hx1 = s in (4.28) and (4.29),

and by using the minimal Frobenius norm mapping from Theorem 2.2 we obtain (4.25) and (4.26).

Example 4.11. The reason why we only obtain bounds in Theorem 4.10 is the fact that the infimum

in (4.27) need not be attained by the matrix ∆̂ from Theorem 4.10. As an example, consider the pencil L(z)

as in (1.3) with

J =

[
0 −1

1 0

]
, R =

[
0 0

0 1

]
, E = B =

[
0 0

0 0

]
, and S = I2,

and let λ = 1
4 i and x =

[
0 0 1 1 0 0

]T
, i.e., x1 = x3 = 0 ∈ C2 and x2 =

[
1 1

]T
. We then

obtain s = −(J +R+ λE)x1 = 0 as well as

r = (J −R− λE)x2 +Bx3 =

[
−1

0

]
and ∆̂ =

rxH2
‖x2‖2

=

[
− 1

2 − 1
2

0 0

]
which by (4.25) gives the bounds

1

2
= ‖∆̂‖F ≤ ηS(R,E, λ, x) ≤

√√√√∥∥∥∥[ − 1
2 − 1

4

− 1
4 0

]∥∥∥∥2

F

+
1

|λ|2

∥∥∥∥[ 0 − 1
4

1
4 0

]∥∥∥∥2

F

=
√

2.375.

On the other hand, for the Hermitian matrix

∆ :=

[
−1 0

0 0

]
,

we have ∆x2 = r, and thus, we obtain from (4.27) that ηS(R,E, λ, x) ≤ ‖∆‖F = 1.

It remains an open problem to determine the exact value for ηS(R,E, λ, x) and for the same reason, also

the computation of the eigenvalue backward error ηS(R,E, λ) is a challenging problem.
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4.3. Perturbations only in J and R. Next, we consider perturbations that only effect the blocks

J and R in a pencil L(z) as in (1.3). Let λ ∈ C and x ∈ C2n+m \ {0}. Then by the terminology outlined

in Section 3, the block- and symmetry-structure-preserving eigenpair backward errors ηB(J,R, λ, x) and

ηS(J,R, λ, x) are defined by

(4.30) ηB(J,R, λ, x) = inf
{
‖[∆J ∆R]‖F

∣∣∣ ((M −∆M ) + λ(N −∆N )
)
x = 0, ∆M + z∆N ∈ B

}
and

(4.31) ηS(J,R, λ, x) = inf
{
‖[∆J ∆R]‖F

∣∣∣ ((M −∆M ) + λ(N −∆N )
)
x = 0, ∆M + z∆N ∈ S

}
,

respectively, where B is the set of all pencils of the form ∆L(z) = ∆M + z∆N with the block-structure

∆M =

 0 ∆J −∆R 0

(∆J −∆R)
H

0 0

0 0 0

 , ∆N = 0,

and ∆J ,∆R ∈ Cn,n, while S is the corresponding set of pencils ∆L(z) = ∆M + z∆N as in (4.18) with

∆J ∈ SHerm(n) and ∆R ∈ Herm(n). If the perturbations are restricted to be real, then the above backward

errors are denoted by ηBR(J,R, λ, x) and ηSR(J,R, λ, x), respectively. As usual, we first investigate conditions

for the finiteness of ηB(J,R, λ, x).

Remark 4.12. Let L(z) be a pencil as in (1.3), and let λ ∈ C and x = [xT1 xT2 xT3 ]T be such that

x1, x2 ∈ Cn and x3 ∈ Cm. Then for any ∆J , ∆R ∈ Cn,n and corresponding ∆L(z) = ∆M + z∆N ∈ B, we

have (L(λ)−∆L(λ))x = 0 if and only if

(∆J −∆R)x2 = (J −R+ λE)x2 +Bx3,(4.32)

(∆J −∆R)Hx1 = (−J −R− λE)x1,(4.33)

0 = BHx1 + Sx3.(4.34)

Consequently, ηB(J,R, λ, x) is finite if and only if (4.32)–(4.34) are satisfied.

Lemma 4.13. Let L(z) be a pencil as in (1.3), and let λ ∈ iR and x ∈ C2n+m \ {0}. Partition x =

[xT1 xT2 xT3 ]T such that x1, x2 ∈ Cn and x3 ∈ Cm and set r = (J−R+λE)x2+Bx3 and s = (−J−R−λE)x1.

Then the following statements are equivalent.

1) There exist ∆J , ∆R ∈ Cn,n satisfying (4.32) and (4.33).

2) There exists ∆ ∈ Cn,n such that ∆x2 = r and ∆Hx1 = s.

3) There exist ∆J ∈ SHerm(n), ∆R ∈ Herm(n) satisfying (4.32) and (4.33).

4) The identity xH3 B
Hx1 = 0 is satisfied.

Moreover,

inf
{
‖∆J‖2F + ‖∆R‖2F

∣∣∣ ∆J , ∆R ∈ Cn,n satisfy (4.32) and (4.33)
}

= inf

{
‖∆‖2F

2

∣∣∣∣∣ ∆ ∈ Cn,n, ∆x2 = r, ∆Hx1 = s

}
,(4.35)

and

inf
{
‖∆J‖2F + ‖∆R‖2F

∣∣∣∆J ∈ SHerm(n), ∆R ∈ Herm(n) satisfying (4.32) and (4.33)
}

= inf
{
‖∆‖2F

∣∣∣ ∆ ∈ Cn,n, ∆x2 = r, ∆Hx1 = s
}
.(4.36)
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Proof. “1) ⇒ 2)”: Let ∆J , ∆R ∈ Cn,n be such that they satisfy (4.32) and (4.33). By setting ∆ =

∆J −∆R we get ∆x2 = r and ∆Hx1 = s. Furthermore, we have

‖∆‖2F ≤
(
‖∆J‖F + ‖∆R‖F

)2 ≤ 2
(
‖∆J‖2F + ‖∆R‖2F

)
,

where the last inequality is an elementary application of the Cauchy Schwartz inequality (in R2). But then

the inequality “≥” in (4.35) can be easily shown by following the arguments in the proof of “1) ⇒ 2)” in

Lemma 4.2.

“2) ⇒ 1)”: Suppose that ∆ ∈ Cn,n is such that ∆x2 = r and ∆Hx1 = s and define ∆J = 1
2∆ and

∆R = − 1
2∆. Then ∆J and ∆R satisfy (4.32) and (4.33). Also, we obtain

‖∆J‖2F + ‖∆R‖2F =
‖∆‖2F

2
,

and hence, “≤” in (4.35) can be easily shown by following the arguments of the proof of “2) ⇒ 1)” in

Lemma 4.2.

“2) ⇒ 3)”: Let ∆ ∈ Cn,n be such that ∆u = r and ∆Hw = s. Then by setting ∆J = ∆−∆H

2 and

∆R = −∆+∆H

2 , we get ∆J ∈ SHerm(n), ∆R ∈ Herm(n) such that (4.32) and (4.33) hold. Furthermore, we

have

‖∆J‖2F + ‖∆R‖2F =

∥∥∥∥∆−∆H

2

∥∥∥∥2

F

+

∥∥∥∥∆ + ∆H

2

∥∥∥∥2

F

= ‖∆‖2F .

Thus, arguments similar to those in the proof of “2)⇒ 1)” in Lemma 4.2 give “≤” in (4.36).

“3)⇒ 2)”: Let ∆J ∈ SHerm(n) and ∆R ∈ Herm(n) be such that they satisfy (4.32) and (4.33). Define

∆ = ∆J − ∆R then ∆x2 = r and ∆Hx1 = s. Note that ∆J and −∆R are, respectively, the unique

skew-Hermitian and Hermitian parts of ∆, i.e., ∆J = ∆−∆H

2 and ∆R = −∆+∆H

2 . This implies

‖∆J‖2F + ‖∆R‖2F =

∥∥∥∥∆−∆H

2

∥∥∥∥2

F

+

∥∥∥∥∆ + ∆H

2

∥∥∥∥2

F

= ‖∆‖2F .

Then again arguments similar to those in the proof of “1)⇒ 2)” in Lemma 4.2 give “≥” in (4.36).

“2)⇔ 4)”: This follows immediately from Theorem 2.2.

The following theorem yields the values of ηB(J,R, λ, x), ηS(J,R, λ, x), and also of their real counterparts

if L(z) is real. It also gives the values of ηB(J,R, λ) := infx∈C2n+m\{0} η
B(J,R, λ, x) and ηS(J,R, λ) :=

infx∈C2n+m\{0} η
S(J,R, λ, x).

Theorem 4.14. Let L(z) be a pencil defined by (1.3), λ ∈ iR and x ∈ C2n+m \ {0}. Partition x =

[xT1 xT2 xT3 ]T such that x1, x2 ∈ Cn and x3 ∈ Cm, and set r = (J−R+λE)x2+Bx3 and s = −(J+R+λE)x1.

Then the following statements hold:

1) ηB(J,R, λ, x) and ηS(J,R, λ, x) are finite if and only if x3 = 0 and BHx1 = 0. If the latter conditions

are satisfied, then

ηB(J,R, λ, x) =
‖∆̂‖F√

2
and ηS(J,R, λ, x) = ‖∆̂‖F ,



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 34, pp. 526-560, October 2018.

Christian Mehl, Volker Mehrmann, and Punit Sharma 542

as well as

ηB(J,R, λ) =
σmin(J −R+ λE)√

2
and ηS(J,R, λ) = σmin(J −R+ λE),

where ∆̂ is given by

∆̂ =


rxH

2

‖x2‖2 if x1 = 0,

x1s
H

‖x1‖2 if x2 = 0,

rxH
2

‖x2‖2 + x1s
H

‖x1‖2

(
In − x2x

H
2

‖x2‖2

)
otherwise.

2) Suppose that L(z) is real. If rank ([x1 x1]) = rank ([x2 x2]) = 2, then ηBR(J,R, λ, x) and

ηSR(J,R, λ, x) are finite if and only if x3 = 0, BTx1 = 0 and λxT2 Ex1 = 0. If the latter condi-

tions are satisfied, then

ηBR(J,R, λ, x) =
‖∆̃‖F√

2
and ηSR(J,R, λ, x) = ‖∆̃‖F ,(4.37)

where ∆̃ ∈ Rn,n is given by

∆̃ = [r r][x2 x2]† +
(
[s s][x1 x1]†

)H − ([s s][x1 x1]†
)H(

[x2 x2][x2 x2]†
)
.

Proof. The proof of 1) follows the same lines as that of Theorem 4.3 by using Lemma 4.13 and Theo-

rem 2.2.

Concerning the proof of 2), recall that when L(z) is real, then ηBR(J,R, λ, x) is the eigenpair backward

error obtained by allowing only real perturbations to the blocks J and R of L(z). Now for any ∆J , ∆R ∈ Rn,n

and corresponding real ∆L(z) = ∆M + z∆N ∈ B, we have (L(λ)−∆L(λ))x = 0 if and only if

(∆J −∆R)x2 = (J −R+ λE)x2 +Bx3,(4.38)

(∆J −∆R)Tx1 = (−J −R− λE)x1,(4.39)

0 = BTx1 + Sx3.(4.40)

Since ∆J and ∆R are real, (4.38) and (4.39) can be equivalently written as

(∆J −∆R)[x2 x̄2] = [r r̄] and (∆J −∆R)T [x1 x̄1] = [s s̄].(4.41)

Following the lines of the proof of Lemma 4.13, there exist real matrices ∆J and ∆R satisfying (4.41) if and

only if there exists ∆ ∈ Rn,n such that ∆[x2 x̄2] = [r r̄] and ∆T [x1 x̄1] = [s s̄]. Applying Theorem 2.3, we

find that this is the case if and only if

xH2 s = rHx1 and xT2 s = rTx1

which, using the definition of r and s, is in turn equivalent to the conditions

xH3 B
Hx1 = 0 and 2λxT2 Ex1 = xT3 B

Tx1.

The latter conditions together with BTx1 + Sx3 = 0 give x3 = 0, BTx1 = 0 and λxT2 Ex1 = 0, because S

is assumed to be positive definite. Therefore, from (4.30), ηBR(J,R, λ, x) is finite if and only if x satisfies
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x3 = 0, BTx1 = 0 and λxT2 Ex1 = 0. If this is the case, then we find that

ηBR(J,R, λ, x) = inf
{
‖[∆J ∆R]‖F

∣∣∣∆J , ∆R ∈ Rn,n satisfy (4.41)
}

= inf

{
‖∆‖F√

2

∣∣∣∣ ∆ ∈ Rn,n, ∆[x2 x̄2] = [r r̄] and ∆T [x1 x̄1] = [s s̄]

}
.

Thus (4.37) follows for ηBR(J,R, λ, x) by using Theorem 2.3. Similarly, we can also establish (4.37) for

ηSR(J,R, λ, x).

4.4. Perturbation only to J and B, or R and B, or E and B. In this section, we obtain block-

structure-preserving eigenpair or eigenvalue backward errors when only the blocks J and B in a pencil L(z)

as in (1.3) are perturbed. Unfortunately, is seems that this approach cannot be generalized to obtain the

correpsonding symmetry-structure-preserving backward errors.

Let λ ∈ C and x ∈ C2n+m \ {0}, then by the terminology outlined in Section 3, the block-structure-

preserving eigenpair backward error ηB(J,B, λ, x) is defined by

ηB(J,B, λ, x) = inf
{
‖[∆J ∆B ]‖F

∣∣∣∆J ∈ Cn,n, ∆B ∈ Cn,m, ∆M + z∆N ∈ B,(
(M −∆M ) + λ(N −∆N )

)
x = 0

}
,(4.42)

where B is the set of all pencils of the form ∆L(z) = ∆M + z∆N with

∆M =

 0 ∆J ∆B

∆H
J 0 0

∆H
B 0 0

 and ∆N = 0.

If the perturbations are restricted to be real then the above error is denoted by ηBR(J,B, λ, x).

Remark 4.15. Let L(z) be a pencil as in (1.3), and let λ ∈ C and x = [xT1 xT2 xT3 ]T be such that x1, x2 ∈
Cn and x3 ∈ Cm. Then for any ∆J ∈ Cn,n, ∆B ∈ Cn,m, and corresponding ∆L(z) = ∆M + z∆N ∈ B, we

have (L(λ)−∆L(λ))x = 0 if and only if

∆Jx2 + ∆Bx3 = (J −R+ λE)x2 +Bx3,

∆H
J x1 = (−J −R− λE)x1,

∆H
Bx1 = BHx1 + Sx3,

which in turn is equivalent to

[
∆J ∆B

] [ x2

x3

]
︸ ︷︷ ︸

=u

= (J −R+ λE)x2 +Bx3︸ ︷︷ ︸
=r

,(4.43)

[
∆J ∆B

]H
x1︸︷︷︸
=w

=

[
−(J +R+ λE)x1

BHx1 + Sx3

]
︸ ︷︷ ︸

=s

.(4.44)

In particular, ηB(J,B, λ, x) is finite if and only if (4.43)–(4.44) are satisfied.
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Lemma 4.16. Let L(z) be a pencil as in (1.3), and let λ ∈ iR and x ∈ C2n+m \ {0}. Partition x =

[xT1 xT2 xT3 ]T such that x1, x2 ∈ Cn and x3 ∈ Cm, and let u ,w , r and s be defined as in (4.43) and (4.44).

Then the following statements are equivalent.

1) There exist ∆J ∈ Cn,n and ∆B ∈ Cn,m satisfying (4.43) and (4.44).

2) There exists ∆ ∈ Cn,n+m such that ∆u = r and ∆Hw = s.

3) x satisfies x3 = 0.

Moreover, we have

inf
{
‖∆J‖2F + ‖∆B‖2F

∣∣∣ ∆J ∈ Cn,n, ∆B ∈ Cn,m satisfy (4.43) and (4.44)
}

= inf
{
‖∆‖2F

∣∣∣ ∆ ∈ Cn,n+m, ∆u = r, ∆Hw = s
}
.

Proof. “1)⇒ 2)” is obvious while “2)⇒ 3)” is implied by Theorem 2.2 using the fact that S is definite.

The last part then follows from the observation that any ∆ ∈ Cn,n+m can be written as ∆ = [∆1 ∆2], where

∆1 ∈ Cn,n and ∆2 ∈ Cn,m such that

‖∆‖F = ‖[∆1 ∆2]‖F =

√
‖∆1‖2F + ‖∆2‖

2

F
.

Theorem 4.17. Let L(z) be a pencil as in (1.3), let λ ∈ iR and x ∈ C2n+m \ {0}. Partition x =

[xT1 xT2 xT3 ]T such that x1, x2 ∈ Cn and x3 ∈ Cm and set u = [xT2 xT3 ]T , w = x1,

r = (J −R+ λE)x2 +Bx3 and s = [−((J +R+ λE)x1)T (BHx1 + Sx3)T ]T .

Then the following statements hold.

1) ηB(J,B, λ, x) is finite if and only if x3 = 0. In that case, we have

ηB(J,B, λ, x) =

√
‖∆̂1‖

2

F + ‖∆̂2‖
2

F ,

and

ηB(J,B, λ) = min
{
σmin

([
J −R+ λE B

]H)
, σmin(J −R+ λE)

}
,

where ∆̂1 and ∆̂2 are given by

[∆̂1 ∆̂2] =


ruH

‖u‖2 if x1 = 0,

wsH

‖w‖2 if x2 = 0,

ruH

‖u‖2 + wsH

‖w‖2

(
In+m − uuH

‖u‖2

)
otherwise.

2) Suppose that L(z) is real. If rank ([x1 x1]) = rank ([x2 x2]) = 2 then ηBR(J,B, λ, x) is finite if and

only if x3 = 0 and λxT2 Ex1 = 0. If the latter conditions are satisfied, then

ηBR(J,B, λ, x) =

√
‖∆̃1‖

2

F + ‖∆̃2‖
2

F ,(4.45)

where ∆̃1 ∈ Rn,n and ∆̃2 ∈ Rn,m are given by

[∆̃1 ∆̃2] = [r r̄][u ū]† +
(
[s s̄][w w̄]†

)H − ([s s̄][w w̄]†
)H(

[u ū][u ū]†
)
.
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Proof. The proof is analogous to the one of Theorem 4.3 by using Lemma 4.16 as well as Theorem 2.2

in the complex case and Theorem 2.3 in the real case.

Remark 4.18. A result similar to Theorem 4.17 can be obtained for the complex and real block-

structure-preserving eigenpair backward errors ηB(R,B, λ, x) and ηBR(R,B, λ, x) of a pair (λ, x) ∈ (iR) ×
(C2n+m \ {0}) when only the blocks R and B in a pencil L(z) as in (1.3) are subject to perturbation. In

fact, one easily obtains

ηB(R,B, λ, x) = ηB(J,B, λ, x) and ηBR(R,B, λ, x) = ηBR(J,B, λ, x).

As a consequence, we also have

ηB(R,B, λ) = ηB(J,B, λ).

Finally, also the backward errors ηB(E,B, λ, x) and ηB(E,B, λ) with respect to perturbations only in

the blocks E and B of L(z) as in (1.3) can be obtained in a similar manner. Since the actual result differs

slightly from the previous formulas, we present it as a theorem, but we omit the proof, since it is similar to

the one of Theorem 4.3.

Theorem 4.19. Let L(z) be a pencil as in (1.3), and let λ ∈ iR and x ∈ C2n+m \ {0}. Partition

x = [xT1 xT2 xT3 ]T such that x1, x2 ∈ Cn and x3 ∈ Cm, and set u = [λxT2 xT3 ]T , w = x1,

r = (J −R+ λE)x2 +Bx3 and s =
[ 1

λ
((J +R+ λE)x1)T (BHx1 + Sx3)T

]T
.

Then the following statements hold.

1) ηB(E,B, λ, x) is finite if and only if x3 = 0. In that case, we have

ηB(E,B, λ, x) =

√
‖∆̂1‖

2

F + ‖∆̂2‖
2

F ,

and

ηB(E,B, λ) = min

{
σmin

([
− (J−R+λE)

λ B
]H)

,
σmin(J −R+ λE)

|λ|

}
,

where ∆̂1 ∈ Cn,n and ∆̂2 ∈ Cn,m are given by

[∆̂1 ∆̂2] =


ruH

‖u‖2 if x1 = 0,

wsH

‖w‖2 if x2 = 0,

ruH

‖u‖2 + wsH

‖w‖2

(
In+m − uuH

‖u‖2

)
otherwise.

2) Suppose that L(z) is real. If rank ([x1 x1]) = rank ([x2 x2]) = 2 then ηBR(E,B, λ, x) is finite if and

only if x3 = 0 and λxT2 Ex1 = 0. If the latter conditions are satisfied, then

ηBR(E,B, λ, x) =

√
‖∆̃1‖

2

F + ‖∆̃2‖
2

F ,

where ∆̃1 ∈ Rn,n and ∆̃2 ∈ Rn,m are given by

[∆̃1 ∆̃2] = [r r][u u]† +
(
[s s][w w]†

)H − ([s s][w w]†
)H(

[u u][u u]†
)
.
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5. Perturbation in any three of the matrices J , R, E and B. In this section, we define and

compute block- and symmetry-structure-preserving eigenpair or eigenvalue backward errors for pencils L(z)

as in (1.3), while we consider perturbations in any three of the blocks J,R,E,B of L(z).

5.1. Perturbations in the blocks J , R and B. We first concentrate on the case that perturbations

are allowed to affect only the blocks J , R, and B of a pencil L(z) as in (1.3). If λ ∈ C and x ∈ C2n+m \
{0}, then following the terminology of Section 3, the block- and symmetry-structure-preserving eigenpair

backward errors ηB(J,R,B, λ, x) and ηS(J,R,B, λ, x), respectively, are defined by

ηB(J,R,B, λ, x) = inf
{∥∥[∆J ∆R ∆B ]

∥∥
F

∣∣∣ ((M −∆M ) + λ(N −∆N )
)
x = 0, ∆M + z∆N ∈ B

}
,

ηS(J,R,B, λ, x) = inf
{∥∥[∆J ∆R ∆B ]

∥∥
F

∣∣∣ ((M −∆M ) + λ(N −∆N )
)
x = 0, ∆M + z∆N ∈ S

}
,

where B denotes the set of all pencils of the form ∆L(z) = ∆M + z∆N with

∆M =

 0 ∆J −∆R ∆B

(∆J −∆R)
H

0 0

(∆B)H 0 0

 , ∆N = 0,

and ∆J ,∆R ∈ Cn,n, ∆B ∈ Cn,m, while S denotes the corresponding set of pencils that satisfy in addition

∆J ∈ SHerm(n) and ∆R ∈ Herm(n). If the perturbations are restricted to be real then the above backward

errors are denoted by ηBR(J,R,B, λ, x) and ηSR(J,R,B, λ, x), respectively.

Remark 5.1. Let L(z) be a pencil as in (1.3), and let λ ∈ C and x = [xT1 xT2 xT3 ]T such that x1, x2 ∈ Cn

and x3 ∈ Cm. Then for any ∆J , ∆R ∈ Cn,n and ∆B ∈ Cn,m, and corresponding ∆L(z) = ∆M + z∆N ∈ B,

we have (L(λ)−∆L(λ))x = 0 if and only if

(∆J −∆R)x2 + ∆Bx3 = (J −R+ λE)x2 +Bx3,

(∆J −∆R)Hx1 = (−J −R− λE)x1,

(∆B)Hx1 = BHx1 + Sx3,

if and only if

[
∆J −∆R ∆B

] [ x2

x3

]
︸ ︷︷ ︸

=u

= (J −R+ λE)x2 +Bx3︸ ︷︷ ︸
=r

,(5.1)

[
∆J −∆R ∆B

]H
x1︸︷︷︸
=w

=

[
−(J +R+ λE)x1

BHx1 + Sx3

]
︸ ︷︷ ︸

=s

.(5.2)

Lemma 5.2. Let L(z) be a pencil defined by (1.3), λ ∈ iR and x ∈ C2n+m \ {0}. Partition x =

[xT1 xT2 xT3 ]T such that x1, x2 ∈ Cn and x3 ∈ Cm and let u ,w , r and s be as defined in (5.1) and (5.2).

Then the following statements are equivalent.

1) There exist ∆J , ∆R ∈ Cn,n and ∆B ∈ Cn,m satisfying (5.1) and (5.2).

2) There existss ∆ ∈ Cn,n+m such that ∆u = r and ∆Hw = s.

3) There exist ∆J ∈ SHerm(n), ∆R ∈ Herm(n) and ∆B ∈ Cn,m satisfying (5.1) and (5.2).

4) x satisfies x3 = 0.
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Moreover, we have

inf
{
‖[∆J ∆R ∆B ]‖2F

∣∣∣∆J , ∆R ∈ Cn,n, ∆B ∈ Cn,m satisfy (5.1) and (5.2)
}

= inf

{
‖∆1‖2F

2
+ ‖∆2‖2F

∣∣∣∣∣ ∆1 ∈ Cn,n, ∆2 ∈ Cn,m, [∆1 ∆2]u = r, [∆1 ∆2]
H
w = s

}
,

and

inf
{
‖[∆J ∆R ∆B ]‖2F

∣∣∣∆J ∈ SHerm(n), ∆R ∈ Herm(n), ∆B ∈ Cn,m satisfy (5.1) and (5.2)
}

= inf
{
‖∆1‖2F + ‖∆2‖2F

∣∣∣ ∆1 ∈ Cn,n, ∆2 ∈ Cn,m, [∆1 ∆2]u = r, [∆1 ∆2]
H
w = s

}
.

Proof. As seen in the proof of Lemma 4.16, any ∆ ∈ Cn,n+m can be written as ∆ = [∆1 ∆2] where

∆1 ∈ Cn,n and ∆2 ∈ Cn,m such that ‖∆‖F = ‖[∆1 ∆2]‖F =

√
‖∆1‖2F + ‖∆2‖

2

F
. With this key observation

the proof is obtained by following exactly the same arguments as in the proof of Lemma 4.13.

Theorem 5.3. Let L(z) be a pencil as in (1.3), and let λ ∈ iR and x ∈ C2n+m \ {0}. Partition

x = [xT1 xT2 xT3 ]T such that x1, x2 ∈ Cn and x3 ∈ Cm and define û = [
√

2xT2 xT3 ]T , w = x1,

r = (J −R+ λE)x2 +Bx3 and ŝ =
[
− 1√

2
((J +R+ λE)x1)T (BHx1 + Sx3)T

]T
.

Then the following statements hold:

1) ηB(J,R,B, λ, x) is finite if and only if x3 = 0. In that case, we have

ηB(J,R,B, λ, x) =

√
‖∆̂1‖

2

F + ‖∆̂2‖
2

F ,

and

ηB(J,R,B, λ) = min

{
σmin

([
(J−R+λE)√

2
B
]H)

,
σmin(J −R+ λE)√

2

}
,

where ∆̂1 and ∆̂2 are given by

[∆̂1 ∆̂2] =


rûH

‖û‖2 if x1 = 0,

wŝH

‖w‖2 if x2 = 0,

rûH

‖û‖2 + wŝH

‖w‖2

(
In+m − ûûH

‖û‖2

)
otherwise.

2) If L(z) is real, and rank ([x1 x1]) = rank ([x2 x2]) = 2, then ηBR(J,R,B, λ, x) is finite if and only if

x3 = 0 and λxT2 Ex1 = 0. If the latter conditions are satisfied, then

ηBR(J,R,B, λ, x) =

√
‖∆̃1‖

2

F + ‖∆̃2‖
2

F ,

where ∆̃1 ∈ Rn,n and ∆̃2 ∈ Rn,m are given by

[∆̃1 ∆̃2] = [r r][û û]† +
(
[ŝ ŝ][w w]†

)H − ([ŝ ŝ][w w]†
)H(

[û û][û û]†
)
.
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Proof. Observe that if u = [xT2 xT3 ]T and s =
[
− ((J +R+ λE)x1)T (BHx1 + Sx3)T

]T
, then

inf

{
‖∆1‖2F

2
+ ‖∆2‖2F

∣∣∣∣∣ ∆1, ∆2 ∈ Cn,n, [∆1 ∆2]u = r, [∆1 ∆2]
H
w = s

}
= inf

{
‖∆̂1‖

2

F + ‖∆̂2‖
2

F

∣∣∣ ∆̂1, ∆̂2 ∈ Cn,n, [∆̂1 ∆̂2]û = r, [∆̂1 ∆̂2]
H
w = ŝ

}
.

Therefore, the proof is analogous to that of Theorem 4.3 by using first Lemma 5.2 and then Theorem 2.2

for 1) and Theorem 2.3 for 2).

The following theorem presents the value of ηS(J,R,B, λ, x) and its real counterpart if the original pencil

is real. It also gives ηS(J,R,B, λ) := infx∈C2n+m\{0} η
S(J,R,B, λ, x).

Theorem 5.4. Let L(z) be a pencil as in (1.3), and let λ ∈ iR and x ∈ C2n+m \ {0}. Partition

x = [xT1 xT2 xT3 ]T such that x1, x2 ∈ Cn and x3 ∈ Cm and define u = [xT2 xT3 ]T , w = x1,

r = (J −R+ λE)x2 +Bx3 and s =
[
− ((J +R+ λE)x1)T (BHx1 + Sx3)T

]T
.

Then the following statements hold.

1) ηS(J,R,B, λ, x) is finite if and only if x3 = 0. In such a case the following holds.

ηS(J,R,B, λ, x) =

√
‖∆̂1‖

2

F + ‖∆̂2‖
2

F ,

and

ηS(J,R,B, λ) = min
{
σmin

([
(J −R+ λE) B

]H)
, σmin(J −R+ λE)

}
,

where ∆̂1 ∈ Cn,n and ∆̂2 ∈ Cn,m are given by

[∆̂1 ∆̂2] =


ruH

‖u‖2 if x1 = 0,

wsH

‖w‖2 if x2 = 0,

ruH

‖u‖2 + wsH

‖w‖2

(
In+m − uuH

‖u‖2

)
otherwise.

2) If L(z) is real, and rank ([x1 x1]) = rank ([x2 x2]) = 2 then ηSR(J,R,B, λ, x) is finite if and only if

x3 = 0 and λxT2 Ex1 = 0. If the latter conditions are satisfied, then

ηSR(J,R,B, λ, x) =

√
‖∆̃1‖

2

F + ‖∆̃2‖
2

F ,

where ∆̃1 ∈ Rn,n and ∆̃2 ∈ Rn,m are given by

[∆̃1 ∆̃2] = [r r][u u]† +
(
[s s][w w]†

)H − ([s s][w w]†
)H(

[u u][u u]†
)
.

Proof. The proof is similar to that of Theorem 4.3 by using first Lemma 5.2, and then Theorem 2.2 for

1) and Theorem 2.3 for 2).
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5.2. Perturbations to R, E and B, or J , E and B. This section is devoted to the block- and

symmetry-structure-preserving eigenpair and eigenvalue backward errors when only the blocks R, E and B

of a pencil L(z) as in (1.3) are subject to perturbations. Let λ ∈ C and x ∈ C2n+m \ {0}, then in view of

Section 3, we have the definitions

ηB(R,E,B, λ, x) = inf
{
‖[∆R ∆E ∆B ]‖F

∣∣∣ ((M −∆M ) + λ(N −∆N )
)
x = 0,∆M + z∆N ∈ B

}
,

ηS(R,E,B, λ, x) = inf
{
‖[∆R ∆E ∆B ]‖F

∣∣∣ ((M −∆M ) + λ(N −∆N )
)
x = 0,∆M + z∆N ∈ S

}
,

respectively, where B is the set of all pencils of the form ∆L(z) = ∆M + z∆N with

∆M =

 0 −∆R ∆B

−∆R
H 0 0

∆H
B 0 0

 and ∆N =

 0 ∆E 0

−∆H
E 0 0

0 0 0


and ∆R,∆E ∈ Cn,n, ∆B ∈ Cn,m, and S is the corresponding set of all such pencils that in addition satisfy

∆R,∆E ∈ Herm(n).

Remark 5.5. Let L(z) be a pencil as in (1.3), and let λ ∈ iR and x = [xT1 xT2 xT3 ]T be such that

x1, x2 ∈ Cn and x3 ∈ Cm. Then for any ∆R, ∆E ∈ Cn,n and ∆B ∈ Cn,m, and corresponding ∆L(z) =

∆M + z∆N ∈ B, we have (L(λ)−∆L(λ))x = 0 if and only if

(−∆R + λ∆E)x2 + ∆Bx3 = (J −R+ λE)x2 +Bx3,

(−∆R + λ∆E)Hx1 = (−J −R− λE)x1,

∆H
Bx1 = BHx1 + Sx3,

which, in turn, is equivalent to

[
−∆R + λ∆E ∆B

] [ x2

x3

]
︸ ︷︷ ︸

=u

= (J −R+ λE)x2 +Bx3︸ ︷︷ ︸
=r

,(5.3)

[
−∆R + λ∆E ∆B

]H
x1︸︷︷︸
=w

=

[
−(J +R+ λE)x1

BHx1 + Sx3

]
︸ ︷︷ ︸

=s

.(5.4)

Lemma 5.6. Let L(z) be a pencil as in (1.3), and let λ ∈ iR and x ∈ C2n+m \ {0}. Partition x =

[xT1 xT2 xT3 ]T such that x1, x2 ∈ Cn and x3 ∈ Cm and let u ,w , r and s be defined as in (5.3) and (5.4).

Then the following statements are equivalent.

1) There exist ∆R, ∆E ∈ Cn,n and ∆B ∈ Cn,m satisfying (5.3) and (5.4).

2) There exists ∆ ∈ Cn,n+m such that ∆u = r and ∆Hw = s.

3) There exist ∆R, ∆E ∈ Herm(n) and ∆B ∈ Cn,m satisfying (5.3) and (5.4).

4) x satisfies x3 = 0.

Moreover,

inf
{
‖∆R ∆E ∆B‖2F

∣∣∣ ∆R, ∆E ∈ Cn,n, ∆B ∈ Cn,m satisfy (5.3) and (5.4)
}

= inf

{
‖∆1‖2F
1 + |λ|2

+ ‖∆2‖2F

∣∣∣∣∣ ∆1 ∈ Cn,n, ∆2 ∈ Cn,m, [∆1 ∆2]u = r, [∆1 ∆2]Hw = s

}
,
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and

inf
{
‖∆R ∆E ∆B‖2F

∣∣∣ ∆R, ∆E ∈ Herm(n), ∆B ∈ Cn,m satisfy (5.3) and (5.4)
}

= inf

{∥∥∥∥∆1 + ∆H
1

2

∥∥∥∥2

F

+
1

|λ|2

∥∥∥∥∆1 −∆H
1

2

∥∥∥∥2

F

+ ‖∆2‖2F

∣∣∣∣∣ ∆1 ∈ Cn,n, ∆2 ∈ Cn,m,

[∆1 ∆2]u = r, [∆1 ∆2]Hw = s

}
.

Proof. Again, by using the fact that any ∆ ∈ Cn,n+m can be written as ∆ = [∆1 ∆2] where ∆1 ∈ Cn,n

and ∆2 ∈ Cn,m such that ‖∆‖F = ‖[∆1 ∆2]‖F =

√
‖∆1‖2F + ‖∆2‖

2

F
, the proof is obtained by arguments

similar to those in the proof Lemma 4.2 and Lemma 4.9.

Theorem 5.7. Let L(z) be a pencil as in (1.3), and let λ ∈ iR and x ∈ C2n+m \ {0}. Partition x =

[xT1 xT2 xT3 ] so that x1, x2 ∈ Cn, and x3 ∈ Cm, and define w = x1, u = [xT2 xT3 ]T , û = [(1 + |λ|2)1/2xT2 xT3 ]T ,

r = (J −R+λE)x2 +Bx3, s = [−((J +R+λE)x1)T (BHx1 +Sx3)T ]T , and ŝ =
[
− (1 + |λ|2)−1/2((J +R+

λE)x1)T (BHx1 + Sx3)T
]T

. Then ηB(R,E,B, λ, x) and ηS(R,E,B, λ, x) are finite if and only if x3 = 0.

Furthermore, the following statements hold.

1) If x3 = 0, then

ηB(R,E,B, λ, x) =

√
‖∆̂1‖

2

F + ‖∆̂2‖
2

F ,(5.5)

and

(5.6) ηB(R,E,B, λ) = min

{
σmin

([
(J−R+λE)√

1+|λ|2
B
]H)

,
σmin(J −R+ λE)√

1 + |λ|2

}
,

where ∆̂1 and ∆̂2 are given by

[∆̂1 ∆̂2] =


rûH

‖û‖2 if x1 = 0,

wŝH

‖w‖2 if x2 = 0,

rûH

‖û‖2 + wŝH

‖w‖2

(
In+m − ûûH

‖û‖2

)
otherwise.

2) If x3 = 0, then√
‖∆̃1‖

2

F + ‖∆̃2‖
2

F ≤ η
S(R,E,B, λ, x) ≤

√√√√∥∥∥∥∥ ∆̃1 + ∆̃H
1

2

∥∥∥∥∥
2

F

+
1

|λ|2

∥∥∥∥∥ ∆̃1 − ∆̃H
1

2

∥∥∥∥∥
2

F

+ ‖∆̃2‖
2

F ,(5.7)

when |λ| ≤ 1, and√
‖∆̃1‖

2

F

|λ|2 + ‖∆̃2‖
2

F ≤ η
S(R,E,B, λ, x) ≤

√√√√∥∥∥∥∥ ∆̃1 + ∆̃H
1

2

∥∥∥∥∥
2

F

+
1

|λ|2

∥∥∥∥∥ ∆̃1 − ∆̃H
1

2

∥∥∥∥∥
2

F

+ ‖∆̃2‖
2

F ,(5.8)

when |λ| ≥ 1, where ∆̃1 and ∆̃2 are given by

[∆̃1 ∆̃2] =


ruH

‖u‖2 if x1 = 0,

wsH

‖w‖2 if x2 = 0,

ruH

‖u‖2 + wsH

‖w‖2

(
In+m − uuH

‖u‖2

)
otherwise.
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Proof. In view of (5.3) and (5.4), we have(
ηB(R,E,B, λ, x)

)2
= inf

{
‖[∆R ∆E ∆B ]‖2F

∣∣∣∆R, ∆E ∈ Cn,n, ∆B ∈ Cn,m satisfy (5.3) and (5.4)
}

= inf

{
‖∆1‖2F
1 + |λ|2

+ ‖∆2‖2F

∣∣∣∣ ∆1 ∈ Cn,n, ∆2 ∈ Cn,m, [∆1 ∆2]u = r, [∆1 ∆2]Hw = s

}
,

where the last equality follows from Lemma 5.6. Observe that if we set ∆̂2 = ∆2 and ∆̂1 = ∆1√
1+|λ|2

, then

we obtain(
ηB(R,E,B, λ, x)

)2
= inf

{
‖∆̂1‖

2

F + ‖∆̂2‖
2

F

∣∣∣ ∆̂1 ∈ Cn,n, ∆̂2 ∈ Cn,m, [∆̂1 ∆̂2]û = r, [∆̂1 ∆̂2]Hw = ŝ
}
.

Thus (5.5) follows from Theorem 2.2, and arguments similar to those in the proof of Theorem 4.3 give (5.6).

Similarly, by using Lemma 5.6 in the definition of ηS(R,E,B, λ, x), we can write

(
ηS(R,E,B, λ, x)

)2
= inf

{∥∥∥∥∆1 + ∆H
1

2

∥∥∥∥2

F

+
1

|λ|2

∥∥∥∥∆1 −∆H
1

2

∥∥∥∥2

F

+ ‖∆2‖2F

∣∣∣∣∣ ∆1, ∆2 ∈ Cn,n,

[∆1 ∆2]u = r, [∆1 ∆2]Hw = s

}
.

For any ∆1 ∈ Cn,n we have ‖∆1‖2F =
∥∥∥∆1+∆H

1

2

∥∥∥2

F
+
∥∥∥∆1−∆H

1

2

∥∥∥2

F
. This implies

‖∆1‖2F + ‖∆2‖2F ≤
∥∥∥∥∆1 + ∆H

1

2

∥∥∥∥2

F

+
1

|λ|2

∥∥∥∥∆1 −∆H
1

2

∥∥∥∥2

F

+ ‖∆2‖2F if |λ| ≤ 1(5.9)

and

‖∆1‖2F
|λ|2

+ ‖∆2‖2F ≤
∥∥∥∥∆1 + ∆H

1

2

∥∥∥∥2

F

+
1

|λ|2

∥∥∥∥∆1 −∆H
1

2

∥∥∥∥2

F

+ ‖∆2‖2F if |λ| ≥ 1(5.10)

for all ∆1 ∈ Cn,n and ∆2 ∈ Cn,m. Taking the infimum over all ∆1 ∈ Cn,n, ∆2 ∈ Cn,m satisfying [∆1 ∆2]u = r

and [∆1 ∆2]Hw = s in (5.9) and (5.10) followed by applying Theorem 2.2 yields (5.7) and (5.8).

Remark 5.8. We mention that a result similar to Theorem 5.7 can also be obtained for the block-

structure-preserving eigenpair and eigenvalue backward errors ηB(J,E,B, λ, x) and ηB(J,E,B, λ), respec-

tively, when perturbations are restricted to affect only the blocks J , E and B of a pencil L(z) as in (1.3).

In fact, for λ ∈ iR and x ∈ C2n+m, using arguments analogous to those in this section, we obtain that

ηB(J,E,B, λ, x) = ηB(R,E,B, λ, x) and ηB(J,E,B, λ) = ηB(R,E,B, λ).

5.3. Perturbation to J , R and E. Let L(z) be a pencil as in (1.3), and let λ ∈ C and x ∈ C2n+m\{0}.
In this section, we allow perturbations in the blocks J , R and E of L(z). The block- and symmetry-structure-

preserving eigenpair backward errors ηB(J,R,E, λ, x) and ηS(J,R,E, λ, x) are defined by

ηB(J,R,E, λ, x) = inf
{∥∥[∆J ∆R ∆E ]

∥∥
F

∣∣∣((M −∆M ) + λ(N −∆N )
)
x = 0, ∆M + z∆N ∈ B

}
,

ηS(J,R,E, λ, x) = inf
{∥∥[∆J ∆R ∆E ]

∥∥
F

∣∣∣((M −∆M ) + λ(N −∆N )
)
x = 0, ∆M + z∆N ∈ S

}
,
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respectively, where B is the set of all pencils of the form ∆L(z) = ∆M + z∆N with

∆M =

 0 ∆J −∆R 0

(∆J −∆R)
H

0 0

0 0 0

 and ∆N =

 0 ∆E 0

−∆H
E 0 0

0 0 0


and S is the corresponding set of pencils from B that satisfy in addition ∆J ∈ SHerm(n) and ∆R,∆E ∈
Herm(n).

Remark 5.9. If λ ∈ iR and x = [xT1 xT2 xT3 ]T are such that x1, x2 ∈ Cn and x3 ∈ Cm, then for any

∆J , ∆R, ∆E ∈ Cn,n and corresponding ∆L(z) ∈ B, we have (L(λ)−∆L(λ))x = 0 if and only if

(∆J −∆R + λ∆E) x2︸︷︷︸
=u

= (J −R+ λE)x2 +Bx3︸ ︷︷ ︸
=r

,(5.11)

(∆J −∆R + λ∆E)H x1︸︷︷︸
=w

= (−J −R− λE)x1︸ ︷︷ ︸
=s

,(5.12)

0 = BHx1 + Sx3.(5.13)

Lemma 5.10. Let L(z) be a pencil as in (1.3), and let λ ∈ iR and x ∈ C2n+m \ {0}. Partition x =

[xT1 xT2 xT3 ]T such that x1, x2 ∈ Cn and x3 ∈ Cm and let u ,w , r and s be defined as in (5.11) and (5.12).

Then the following statements are equivalent.

1) There exist ∆J ,∆R, ∆E ∈ Cn,n satisfying (5.11) and (5.12).

2) There exists ∆ ∈ Cn,n such that ∆u = r and ∆Hw = s.

3) There exist ∆J ∈ SHerm(n) and ∆R, ∆E ∈ Herm(n) satisfying (5.11) and (5.12).

4) x satisfies xH3 B
Hx1 = 0.

Moreover, we have

inf
{∥∥[∆J ∆R ∆E

]∥∥2

F

∣∣∣ ∆J , ∆R, ∆E ∈ Cn,n satisfy (5.11) and (5.12)
}

= inf

{
‖∆‖2F

2 + |λ|2

∣∣∣∣∣ ∆ ∈ Cn,n, ∆u = r, ∆Hw = s

}
,(5.14)

and

inf
{∥∥[∆J ∆R ∆E

]∥∥2

F

∣∣∣ ∆J ∈ SHerm(n), ∆E , ∆R ∈ Herm(n) satisfying (5.11) and (5.12)
}

= inf

{∥∥∥∥∆ + ∆H

2

∥∥∥∥2

F

+
1

1 + |λ|2

∥∥∥∥∆−∆H

2

∥∥∥∥2

F

∣∣∣∣∣ ∆ ∈ Cn,n, ∆u = r, ∆Hw = s

}
.(5.15)

Proof. “1) ⇒ 2)”: Let ∆J , ∆R, ∆E ∈ Cn,n be such that they satisfy (5.11) and (5.12). By setting

∆ = ∆J −∆R + λ∆E we get ∆u = r and ∆Hw = s. Also, we obtain

(5.16) ‖∆‖2F ≤
(
‖∆J‖F + ‖∆R‖F + |λ|‖∆E‖F

)
≤ (2 + |λ|2)

(
‖∆J‖2F + ‖∆R‖2F + ‖∆E‖2F

)
,

where the latter inequality follows from the Cauchy-Schwarz inequality (in R3). Then “≥” in (5.14) can be

shown similarly as “1)⇒ 2)” in the proof of Lemma 4.2.

“2)⇒ 1)”: Conversely, let ∆ ∈ Cn,n such that ∆u = r and ∆Hw = s. Define

∆J =
∆

2 + |λ|2
, ∆R = − ∆

2 + |λ|2
, and ∆E =

λ̄∆

2 + |λ|2
.
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Then ∆J , ∆R and ∆E satisfy ∆J −∆R + λ∆E = ∆ and hence (5.11) and (5.12). Furthermore, we have

‖∆J‖2F + ‖∆R‖2F + ‖∆E‖2F =
‖∆‖2F

2 + |λ|2
.

Thus, we get “≤” in (5.14) by following arguments similar to those of “2)⇒ 1)” in the proof of Lemma 4.2.

“2)⇒ 3)”: To show this, let ∆ ∈ Cn,n be such that ∆u = r and ∆Hw = s. Then by setting

∆R = −∆ + ∆H

2
, ∆J =

∆−∆H

2(1 + |λ|2)
, and ∆E =

λ̄(∆−∆H)

2(1 + |λ|2)
,

we have ∆J ∈ SHerm(n) and ∆R, ∆E ∈ Herm(n) (using λ ∈ iR), and furthermore we obtain

∆J −∆R + λ∆E =
∆−∆H

2(1 + |λ|2)
+

∆ + ∆H

2
+
|λ|2(∆−∆H)

2(1 + |λ|2)
=

∆ + ∆H

2
+

∆−∆H

2
= ∆.

Thus, ∆J , ∆R, and ∆E satisfy (5.11) and (5.12), and also

‖∆J‖2F + ‖∆R‖2F + ‖∆E‖2F =

∥∥∥∥∆ + ∆H

2

∥∥∥∥2

F

+
1

1 + |λ|2

∥∥∥∥∆−∆H

2

∥∥∥∥2

F

.

Now “≤” in (5.15) can be shown by arguments similar to those of “2)⇒ 1)” in the proof of Lemma 4.9.

“3) ⇒ 2)”: Suppose that ∆J ∈ SHerm(n) and ∆R, ∆E ∈ Herm(n) satisfy (5.11) and (5.12). Define

∆ = ∆J −∆R + λ∆E , then ∆u = r and ∆Hw = s. Note that ∆J + λ∆E is skew-Hermitian since λ ∈ iR,

and therefore, ∆J + λ∆E and −∆R are respectively the unique skew-Hermitian and Hermitian parts of ∆,

i.e.,

∆R = −∆ + ∆H

2
and ∆J + λ∆E =

∆−∆H

2
.

This implies ∥∥∥∥∆−∆H

2

∥∥∥∥
F

= ‖∆J + λ∆E‖F ≤ ‖∆J‖F + |λ| · ‖∆E‖F

and
1

1 + |λ|2

∥∥∥∥∆−∆H

2

∥∥∥∥2

F

≤ ‖∆J‖2F + ‖∆E‖2F ,

where the last inequality is obtained with the help of the Cauchy-Schwarz inequality (in R2). Furthermore,

we have

(5.17)
1

1 + |λ|2

∥∥∥∥∆−∆H

2

∥∥∥∥2

F

+

∥∥∥∥∆ + ∆H

2

∥∥∥∥2

F

≤ ‖∆J‖2F + ‖∆E‖2F + ‖∆R‖2F .

Thus, arguments similar to those in “1)⇒ 2)” in the proof of Lemma 4.2 give “≥” in (5.15).

“2)⇔ 4)”: This follows immediately from Theorem 2.2.

Theorem 5.11. Let L(z) be a pencil as in (1.3), and let λ ∈ iR and x ∈ C2n+m \ {0}. Partition

x = [xT1 xT2 xT3 ]T such that x1, x2 ∈ Cn and x3 ∈ Cm and define r = (J − R + λE)x2 + Bx3 and s =

−(J+R+λE)x1. Then ηB(J,R,E, λ, x) and ηS(J,R,E, λ, x) are finite if and only if x3 = 0 and BHx1 = 0.

If the latter conditions are satisfied, then
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ηB(J,R,E, λ, x) =
‖∆̂‖F√
2 + |λ|2

, ηB(J,R,E, λ) =
σmin(J −R+ λE)√

2 + |λ|2
(5.18)

and

‖∆̂‖F√
1 + |λ|2

≤ ηS(J,R,E, λ, x) ≤

√√√√∥∥∥∥∥∆̂ + ∆̂H

2

∥∥∥∥∥
2

F

+
1

1 + |λ|2

∥∥∥∥∥∆̂− ∆̂H

2

∥∥∥∥∥
2

F

,(5.19)

where ∆̂ is given by

∆̂ =


ruH

‖u‖2 if x1 = 0,

wsH

‖w‖2 if x2 = 0,

ruH

‖u‖2 + wsH

‖w‖2

(
In − uuH

‖u‖2

)
otherwise.

Proof. In view of Lemma 5.10 and Theorem 2.2, the proofs of (5.18) and (5.19) are based on similar

arguments as those in the proofs of Theorem 4.3 and Theorem 4.10, respectively.

6. Perturbations in J , R, E and B. Finally, in this section, we allow all four blocks J , R, E, and

B of a pencil L(z) as in (1.3) to be perturbed. Let λ ∈ C and x ∈ C2n+m \ {0}, then by the terminology of

Section 3 the block- and symmetry-structure-preserving eigenpair backward errors ηB(J,R,E,B, λ, x) and

ηS(J,R,E,B, λ, x) are respectively defined by

ηB(J,R,E,B, λ, x) = inf
{∥∥[∆J ∆R ∆E ∆B ]

∥∥
F

∣∣∣ ((M −∆M ) + λ(N −∆N )
)
x = 0, ∆M + z∆N ∈ B

}
,

ηS(J,R,E,B, λ, x) = inf
{∥∥[∆J ∆R ∆E ∆B ]

∥∥
F

∣∣∣ ((M −∆M ) + λ(N −∆N )
)
x = 0, ∆M + z∆N ∈ S

}
,

where B denotes the set of all pencils of the form ∆L(z) = ∆M + z∆N with

∆M =

 0 ∆J −∆R ∆B

(∆J −∆R)
H

0 0

∆H
B 0 0

 and ∆N =

 0 ∆E 0

−∆H
E 0 0

0 0 0


and S is the set of corresponding pencils where in addition we have that ∆J ∈ SHerm(n) and ∆R,∆E ∈
Herm(n).

Remark 6.1. If λ ∈ iR and x = [xT1 xT2 xT3 ]T are such that x1, x2 ∈ Cn and x3 ∈ Cm, then for any

∆B ∈ Cn,m, ∆J , ∆R, ∆E ∈ Cn,n, and corresponding ∆L(z) = ∆M+z∆N ∈ B, we have (L(λ)−∆L(λ))x = 0

if and only if

(∆J −∆R + λ∆E)x2 + ∆Bx3 = (J −R+ λE)x2 +Bx3,

(∆J −∆R + λ∆E)Hx1 = (−J −R− λE)x1,

∆H
Bx1 = BHx1 + Sx3,
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which in turn is equivalent to

[
∆J −∆R + λ∆E ∆B

] [ x2

x3

]
︸ ︷︷ ︸

=u

= (J −R+ λE)x2 +Bx3︸ ︷︷ ︸
=r

,(6.1)

[
∆J −∆R + λ∆E ∆B

]H
x1︸︷︷︸
=w

=

[
−(J +R+ λE)x1

BHx1 + Sx3

]
︸ ︷︷ ︸

=s

.(6.2)

Lemma 6.2. Let L(z) be a pencil as in (1.3), and let λ ∈ iR and x ∈ C2n+m \ {0}. Partition x =

[xT1 xT2 xT3 ]T such that x1, x2 ∈ Cn and x3 ∈ Cm and let u ,w , r and s be defined as in (6.1) and (6.2).

Then the following statements are equivalent.

1) There exist ∆J , ∆R, ∆E ∈ Cn,n and ∆B ∈ Cn,m satisfying (6.1) and (6.2).

2) There exists ∆ ∈ Cn,n+m such that ∆u = r and ∆Hw = s.

3) There exist ∆B ∈ Cn,m, ∆J ∈ SHerm(n), ∆R, ∆E ∈ Herm(n) satisfying (6.1) and (6.2).

4) x satisfies x3 = 0.

Moreover, we have

inf
{
‖∆J ∆R ∆E ∆B‖2F

∣∣∣ ∆J , ∆R, ∆E ∈ Cn,n, ∆B ∈ Cn,m satisfy (6.1) and (6.2)
}

= inf

{
‖∆1‖2F
2 + |λ|2

+ ‖∆2‖2F

∣∣∣∣∣ ∆1 ∈ Cn,n, ∆2 ∈ Cn,m, [∆1 ∆2]u = r, [∆1 ∆2]Hw = s

}
,(6.3)

and

inf
{
‖∆J ∆R ∆E ∆B‖2F

∣∣∣ ∆J ∈ SHerm(n), ∆R, ∆E ∈ Herm(n), ∆B ∈ Cn,m

satisfy (6.1) and (6.2)
}

= inf

{∥∥∥∥∆1 + ∆H
1

2

∥∥∥∥2

F

+
1

1 + |λ|2

∥∥∥∥∆1 −∆H
1

2

∥∥∥∥2

F

+ ‖∆2‖2F

∣∣∣∣∣ ∆1 ∈ Cn,n, ∆2 ∈ Cn,m,

[∆1 ∆2]u = r, [∆1 ∆2]Hw = s

}
.(6.4)

Proof. “1)⇒ 2)”: Let ∆J , ∆R, ∆E ∈ Cn,n and ∆B ∈ Cn,m be such that they satisfy (6.1) and (6.2). By

setting ∆1 = ∆J −∆R + λ∆E , ∆2 = ∆B and ∆ = [∆1 ∆2] we get ∆ ∈ Cn,n+m with ∆u = r and ∆Hw = s.

Also, observe that by (5.16) we have

(6.5)
‖∆1‖

2
F

2 + |λ|2
≤ ‖∆J‖2F + ‖∆R‖2F + ‖∆E‖2F

which implies

‖∆1‖
2
F

2 + |λ|2
+ ‖∆2‖

2
F
≤ ‖∆J‖2F + ‖∆R‖2F + ‖∆E‖2F + ‖∆B‖2F .

Now “≥” in (6.3) can be shown by arguments similar to those in the proof of “1)⇒ 2)” in Lemma 4.2.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 34, pp. 526-560, October 2018.

Christian Mehl, Volker Mehrmann, and Punit Sharma 556

“2)⇒ 1)”: Conversely, let ∆ ∈ Cn,n+m such that ∆u = r and ∆Hw = s and suppose that ∆ = [∆1 ∆2]

where ∆1 ∈ Cn,n and ∆2 ∈ Cn,m. Define

∆J =
∆1

2 + |λ|2
, ∆R = − ∆1

2 + |λ|2
, ∆E =

λ∆1

2 + |λ|2
, and ∆B = ∆2,

then ∆J , ∆R, ∆E and ∆B satisfy [∆J −∆R + λ∆E ∆B ] = ∆ and hence (6.1) and (6.2). Furthermore, we

have

‖∆J‖2F + ‖∆R‖2F + ‖∆E‖2F + ‖∆B‖2F =
‖∆1‖2F
2 + |λ|2

+ ‖∆2‖2F .

Therefore, we get “≤” in (6.3) by following arguments similar to those in the proof “2)⇒ 1)” in Lemma 4.2.

“2) ⇒ 3)”: To this end, let ∆ ∈ Cn,n+m be such that ∆u = r and ∆Hw = s, and suppose that

∆ = [∆1 ∆2] where ∆1 ∈ Cn,n and ∆2 ∈ Cn,m. Setting

∆R = −∆1 + ∆H
1

2
, ∆J =

∆1 −∆H
1

2(1 + |λ|2)
, ∆E =

λ(∆1 −∆H
1 )

2(1 + |λ|2)
, and ∆B = ∆2,

we have ∆J ∈ SHerm(n) and, because of λ ∈ iR, also ∆R, ∆E ∈ Herm(n). Furthermore, we obtain

[∆J −∆R + λ∆E ∆B ] = [∆1 ∆2] = ∆.

Thus, ∆J ,∆R,∆E , and ∆B satisfy (6.1) and (6.2), and we also have

‖∆J‖2F + ‖∆R‖2F + ‖∆E‖2F + ‖∆B‖2F =

∥∥∥∥∥∆1 + ∆1
H

2

∥∥∥∥∥
2

F

+
1

1 + |λ|2

∥∥∥∥∥∆1 −∆1
H

2

∥∥∥∥∥
2

F

+ ‖∆2‖2F .

Therefore, “≤” in (6.4) can be shown by arguments similar to those in the proof of “2)⇒ 1)” in Lemma 4.9.

“3) ⇒ 2)”: Let ∆R, ∆E ∈ Herm(n), ∆J ∈ SHerm(n) and ∆B ∈ Cn,m be such that they satisfy (6.1)

and (6.2). Define ∆1 = ∆J −∆R + λ∆E , ∆2 = ∆B and ∆ = [∆1 ∆2] then ∆ ∈ Cn,n+m with ∆u = r and

∆Hw = s. Again, observe that by (5.17) we have that

(6.6)
1

1 + |λ|2

∥∥∥∥∥∆1 −∆1
H

2

∥∥∥∥∥
2

F

+

∥∥∥∥∥∆1 + ∆1
H

2

∥∥∥∥∥
2

F

≤ ‖∆J‖2F + ‖∆E‖2F + ‖∆R‖2F .

This implies

1

1 + |λ|2

∥∥∥∥∥∆1 −∆1
H

2

∥∥∥∥∥
2

F

+

∥∥∥∥∥∆1 + ∆1
H

2

∥∥∥∥∥
2

F

+ ‖∆2‖2F ≤ ‖∆J‖2F + ‖∆E‖2F + ‖∆R‖2F + ‖∆B‖2F ,

and thus, “≥” in (6.4) can be shown by arguments similar to those in the proof of “1)⇒ 2)” in Lemma 4.9.

“2)⇔ 4)”: This follows immediately from Theorem 2.2.

Theorem 6.3. Let L(z) be a pencil as in (1.3), and let λ ∈ iR and x ∈ C2n+m \ {0}. Partition x =

[xT1 xT2 xT3 ]T so that x1, x2 ∈ Cn and x3 ∈ Cm and define w = x1, u = [xT2 xT3 ]T , û = [(2 + |λ|2)1/2.xT2 xT3 ]T ,

r = (J − R + λE)x2 + Bx3, s = [−((J + R + λE)x1)T (BHx1 + Sx3)T ]T , and ŝ =
[
− (2 + |λ|2)−1/2((J +

R + λE)x1)T (BHx1 + Sx3)T
]T

. Then ηB(J,R,E,B, λ, x) and ηS(J,R,E,B, λ, x) are finite if and only if

x3 = 0. Furthermore, the following statements hold.
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1) If x3 = 0 then

ηB(J,R,E,B, λ, x) =

√
‖∆̂1‖

2

F
+ ‖∆̂2‖

2

F

and

ηB(J,R,E,B, λ) = min

{
σmin

([
J−R+λE√

2+|λ|2
B
]H)

,
σmin(J −R+ λE)√

2 + |λ|2
,

}

where ∆̂1 and ∆̂2 are given by

[∆̂1 ∆̂2] =


rûH

‖û‖2 if x1 = 0,

wŝH

‖w‖2 if x2 = 0,

rûH

‖û‖2 + wŝH

‖w‖2

(
In+m − ûûH

‖û‖2

)
otherwise.

2) If x3 = 0 then√√√√ ‖∆̃1‖
2

F

1 + |λ|2 + ‖∆̃2‖
2

F ≤ η
S(J,R,E,B, λ, x) ≤

√√√√∥∥∥∥∥ ∆̃1 + ∆̃H
1

2

∥∥∥∥∥
2

F

+
1

1 + |λ|2

∥∥∥∥∥ ∆̃1 − ∆̃H
1

2

∥∥∥∥∥
2

F

+ ‖∆̃2‖
2

F ,

where ∆̃1 and ∆̃2 are given by

[∆̃1 ∆̃2] =


ruH

‖u‖2 if x1 = 0,

wsH

‖w‖2 if x2 = 0,

ruH

‖u‖2 + wsH

‖w‖2

(
In+m − uuH

‖u‖2

)
otherwise.

Proof. The proof is analogous to that of Theorem 5.7 by using Lemma 6.2 instead of Lemma 5.6.

7. Numerical experiments. In this section, we illustrate our results with the help of numerical

experiments. In particular, we show that the backward eigenpair errors computed in the previous sections

can sometimes be significantly larger than the backward errors that correspond to perturbations that ignore

the block structure of the pencil.

In the following, we compare the backward errors η(L, λ, x) and ηeven(L, λ, x) from (1.4) and (1.5) with

the block structured and symmetry structured eigenpair backward errors obtained in the Sections 4–6. We

consider random pencils L(z) in the form (1.3) and random pairs (λ, x) ∈ iR × (C2n+m \ {0}). To make

this a fair comparison it is necessary to multiply the block structured and symmetry structured eigenpair

backward errors with a factor of
√

2, because each of the perturbed blocks J , R, E, or B occurs twice in the

pencil L(z). We used Matlab Version No. 7.8.0 (R2009a) to compute the eigenpair backward errors in all

cases.

Example 7.1. We take a random asymptotically stable system with J,R,Q ∈ C4,4, B ∈ C4,3, S ∈ C3,3

and P = 0 such that JH = −J, RH = R, QH = Q > 0 and SH = S > 0. For a particular choice of these

matrices, the corresponding pencil L(z) in the form (1.3) turned out to have the eigenvalues±54.518−63.914i,

±46.8738− 16.2214i, ±6.8221− 3.2867i, ±4.7381 + 11.4052i and ∞, where ∞ is a semisimple eigenvalue of

multiplicity 3. Thus, the system is strictly passive. We fix a vector x = [xT1 xT2 xT3 ]T ∈ C11 \ {0}, where
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x1, x2 ∈ C4, 0 = x3 ∈ C3 and randomly select vectors x1 from the intersection of the kernels of BH and

R, and x2 from the kernel of R. Thus, x satisfies x3 = 0, BHx1 = 0, Rx1 = 0 and Rx2 = 0, and hence x

fulfils the finiteness criteria for all block- and symmetry-structure-preserving eigenpair backward errors from

Sections 4–7.

Table 7.1

Comparison of various block-structure-preserving eigenpair backward errors for the pencil L(z) of Example 7.1.

λ η(L) ηeven(L)
√

2 ηB(J,E)
√

2 ηB(E,B)
√

2 ηB(J,B)
√

2 ηB(J,E,B)

=
√

2 ηB(R,E) =
√

2 ηB(R,B) =
√

2 ηB(R,E,B)

.138i 3.687 4.752 6.501 47.560 6.563 6.501

-.510i 3.364 4.353 5.927 13.046 6.653 5.927

-.895i 2.849 3.698 5.021 7.529 6.739 5.021

1.048i 2.553 3.280 4.522 6.249 6.552 4.522

-1.321i 2.346 3.056 4.139 5.190 6.859 4.139

1.908i 1.734 2.230 3.095 3.494 6.668 3.095

2.508i 1.405 1.810 2.524 2.717 6.817 2.524

In Table 7.1, we compare η(L, λ, x) and ηeven(L, λ, x) with various block-structure-preserving eigenpair

backward errors of L(z) for pairs (λ, x), where x is chosen as above and random values for λ on the imaginary

axis were chosen. For the sake of saving space, we omit λ and x from the notation of backward errors in

Table 7.1 and also in the following Table 7.2.

Table 7.2

Comparison of various symmetry-structure-pres. eigenpair backward errors for the pencil L(z) of Example 7.1.

λ η(L) ηeven(L)
√

2 ηS(J,E) lower bound of upper bound of lower bound of upper bound of√
2 ηS(R,E)

√
2 ηS(R,E)

√
2 ηS(J,R,E)

√
2 ηS(J,R,E)

.138i 3.687 4.752 8.462 6.563 38.625 6.501 6.523

-.510i 3.364 4.353 7.647 6.653 11.330 5.927 6.178

-.895i 2.849 3.698 6.444 6.739 7.282 5.021 5.635

1.048i 2.553 3.280 5.954 6.249 6.362 4.522 5.357

-1.321i 2.346 3.056 5.283 5.190 5.767 4.139 5.152

1.908i 1.734 2.230 4.111 3.494 4.954 3.095 4.787

2.508i 1.405 1.810 3.369 2.717 4.760 2.524 4.694

In Table 7.2, we record various symmetry-structure-preserving eigenpair backward errors for the same

choice of pairs (λ, x) as in Table 7.1. We sometimes observe large differences between various of these

symmetry-structure-preserving eigenpair backward errors. The tightness of the lower and upper bounds for

ηS(R,E, λ, x) and ηS(J,R,E, λ, x) depends on the values of λ, which is clear by Theorem 4.10 and The-

orem 5.11. Also the corresponding block-structure-preserving eigenpair backward errors ηB(J,E, λ, x) and

ηB(R,E, λ, x) are sometimes significantly smaller than their symmetry-structure-preserving counterparts,

i.e., ηS(J,E, λ, x) and ηS(R,E, λ, x), respectively.

8. Conclusions. We have obtained eigenpair and eigenvalue backward errors of a pencil L(z) of the

form (1.3) with respect to perturbations that respect the given block structure of L(z) and also those that

in addition respect the symmetry structure of L(z). We have shown that these backward errors may be

significantly larger than those that ignore the special block structure of the pencil. The following table gives
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an overview of the existence of formulas (or bounds) for these backward errors, when only specific blocks in

the pencil are perturbed. In the second and third column, a check mark “X” means that an explicit formula

for a block- or symmetry-structure-preserving eigenpair backward error is available for perturbations that are

restricted to blocks from the first column. In some cases, the real eigenpair backward error is complementary.

Furthermore, in all cases block-structure-preserving eigenvalue backward errors can also be obtained while

symmetry-structure-preserving eigenvalue backward errors are obtained only for perturbations restricted to

any two of the three blocks J , R and B.

perturbed blocks block-str.-pres. backward error symm.-str.-pres. backward error

J and E X Theorem 4.3 X Theorem 4.6

R and E X Theorem 4.7 bounds in Theorem 4.10

J and R X Theorem 4.14 (also real) X Theorem 4.14 (also real)

J and B X Theorem 4.17 (also real) –

R and B XRemark 4.18 (also real) –

E and B X Theorem 4.19 (also real) –

J, R and B X Theorem 5.3 (also real) X Theorem 5.4 (also real)

R, E and B X Theorem 5.7 bounds in Theorem 5.7

J, E and B X Remark 5.8 –

J, R and E X Theorem 5.11 bounds in Theorem 5.11

J, R, E and B X Theorem 6.3 bounds in Theorem 6.3
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