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Abstract. New expressions are given for the Moore-Penrose inverse of a product AB of two complex matrices. Furthermore,
an expression for (AB)† − B†A† for the case where A or B is of full rank is provided. Necessary and su�cient conditions for
the forward order law for the Moore-Penrose inverse of a product to hold are established. The perturbation results presented in
this paper are applied to characterize some mixed-typed reverse order laws for the Moore-Penrose inverse, as well as the reverse
order law.
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1. Introduction. In numerous applications, such as in the celebrated Karmarkar algorithm [12], one

has to �nd the Moore-Penrose inverse of a matrix product AB, denoted by (AB)†. Traditionally the problem

of updating (AB)† has been attacked by considering AB as a string of rank-one perturbations of A. This is

rather cumbersome and poses di�culty in trying to express the �nal answer in terms of the original matrices

A and B. Our goal in this work is to present two formulas for (AB)† and to show that it allow us to explore

the forward order law and mixed-type reverse order laws.

Throughout this paper, Cm×n is the vector space of m× n complex matrices and we shall respectively

denote column space (range), row space, and null space of a matrix A by C(A), R(A), and N (A). The

Moore-Penrose inverse of A is the unique matrix satisfying the four Penrose equations

(1) AXA = A, (2) XAX = X, (3) (AX)∗ = AX, (4) (XA)∗ = XA,

and will be denoted by A†. It always exists for complex matrices. For convenience we shorten Moore-Penrose

to �M-P�. Any solution to the equation (1) is called either a {1}-inverse or g-inverse of A. The symbol A{1}
will stand for the set of all g-inverses of A. Any solution to the ith, . . . , jth equations of the four Penrose

equations is called an {i, . . . , j}-inverse, denoted by A(i,...,j). The group inverse of a square matrix A, is the

unique matrix, whenever it exists, satisfying the equations

AXA = A, XAX = X, AX = XA,

and will be denoted by A]. If A = A∗, then the group inverse exists and A] = A†. We shall assume

familiarity with the basic results on the generalized inverses as given in [3].
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The problem of determining an expression for the Moore-Penrose inverse of a matrix product AB has

been �rst attacked by Cline [4], who established a formula which allows one to reduce the problem to a type

of matrix product where one of the factors is an orthogonal projector.

Lemma 1.1 ([4]). Let A ∈ Cm×n and B ∈ Cn×p. Then (AB)† = K†R†, where R = ABB† and

K = A†AB.

The reverse order law (ROL) is concerned with the problem of when B†A† is the M-P inverse of AB.

A solution to this problem has been �rst given by Greville [9], who showed the following necessary and

su�cient conditions for the ROL:

(1.1) (AB)† = B†A† ⇔ C(A∗AB) ⊆ C(B) and R(ABB∗) ⊆ R(A).

These conditions were later expressed by Arghiriade [1] in the single condition that A∗ABB∗ is EP, i.e.,

(1.2) (AB)† = B†A† ⇔ C(A∗ABB∗) = C(BB∗A∗A).

Since then, the problem of the reverse order law for the M-P inverse has been widely studied and several

other equivalent conditions have been established for the product of two and more matrices or for operators

[7, 8, 11, 17, 19].

The ROL for g-inverses has been investigated in [2, 16, 21], for {1, 2}-inverses in [5, 15, 20] and for

{1, 3, 4}-inverses in [6, 14].

A formulation of the forward order law (FOL) for g-inverses of the product of two matrices deals with

the problem of when A{1}B{1} ⊆ (AB){1}. This law has been studied in [10] and for multiple matrix

products in [22]. In the present work, we shall consider the problem of when (AB)† = A†B†, and we solve

it by giving, among others conditions, a set of necessary and su�cient conditions for this forward order law

to hold in terms of the matrices A and B.

The paper is organized as follows. In Section 2, we give two alternative formulas to Cline's formula for

the M-P of the product of two matrices shown in Lemma 1.1. These formulas lead to another expression for

(AB)† involving the M-P inverse of the product of two orthogonal projectors. In addition, an expression for

(AB)† −B†A† for the case where A or B is of full rank is provided.

These perturbation formulas for (AB)† are utilized to derive necessary and su�cient conditions for

(AB)† to be equal any of the convenient choices, say Y , such as Y = A†B†, B†R†,K†A† or B†A†. In Section

3, several characterizations are established for the forward order law for the M-P inverse, (AB)† = A†B†,

to hold. In Section 4, it is shown that the perturbation results presented in Section 2 can be utilized to

examine some mixed-typed reverse order laws for the M-P inverse, as well as the reverse order law.

We shall need the following results.

Lemma 1.2. Let X,Y ∈ Cm×n and let F and G be two idempotent matrices of orders m and n, respec-

tively. Then, the following hold:

(i) (I − F )X = Y ⇔ FY = 0 and C(X − Y ) ⊆ C(F ).

(ii) X(I −G) = Y ⇔ Y G = 0 and R(X − Y ) ⊆ R(G).

Proof. Part (i). Pre-multiplying (I − F )X = Y by F , yields FY = 0. Pre-multiplying (I − F )X = Y

by I − F , leads to (I − F )(X − Y ) = 0, which is equivalent to C(X − Y ) ⊆ N (I − F ) = C(F ). Likewise, the
converse holds.
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Part (ii) follows from part (i) applied to (I −G∗)X∗ = Y ∗.

Lemma 1.3. ([13, Proposition 4]). Let A ∈ Cm×n and let F ∈ Cn×n be idempotent. Then

N (AF ) = (N (A) ∩ C(F ))⊕N (F ).

2. Perturbation formulas for the Moore-Penrose inverse of a product. In this section, two

formulas are derived for (AB)†, which show that (AB)† = B†R† + % and (AB)† = K†A† + θ, where the

expressions of % and θ involve the matrices B†, R† and A†,K†, respectively. Furthermore, a formula is estab-

lished for (AB)† that involves the Moore-Penrose of the product of two orthogonal projectors, (A†ABB†)
†
,

in which there is certain symmetry like in the Cline's formula shown in Lemma 1.1.

We are now ready for our main theorem.

Theorem 2.1. Let A ∈ Cm×n and B ∈ Cn×p.

(a) If R = ABB†, then

(AB)† = (I − εε†)B†R† = B†(I − ε†B†)R† = B†(I − U†ε∗B†)R†,(2.1)

AB(AB)† = RR† and (AB)†AB = B†B − εε†,(2.2)

where ε = B†(I −R†R) and U = R†R+ ε∗ε.

(b) If K = A†AB, then

(AB)† = K†A†(I − δ†δ) = K†(I −A†δ†)A† = K†(I −A†δ∗V †)A†,(2.3)

AB(AB)† = AA† − δ†δ and (AB)†AB = K†K,(2.4)

where δ = (I −KK†)A† and V = KK† + δδ∗.

Proof. Part (a). Let X = (I − εε†)B†R†. We shall prove that X satis�es the four Penrose equations of

(AB)†. We begin by observing that R† = B(AB)†, which can be easily checked. Also note that ABε = 0,

and hence, that (3): ABX = AB(I − εε†)B†R† = RR† = AB(AB)†, which is Hermitian. It is now clear

that (1): ABXAB = AB and (2): XABX = (I − εε†)B†R†RR† = X. Lastly,

XAB = (I − εε†)B†R†AB = (I − εε†)(B†R†R)B = (I − εε†)(B† − ε)B = (I − εε†)B†B.

Next we observe that B†Bε = ε, and thus, B†Bεε† = εε†. This gives (4): XAB = B†B − εε†, which is

Hermitian, completing the proof of the �rst identity in (2.1) and the proof of (2.2).

To show the equivalence of the second and third expressions in (2.1), we note that (I − R†R)ε† = ε†,

and hence, εε†B† = B†(I −R†R)ε†B† = B†ε†B†. Next we observe that U = R†R+ (ε∗ε) is Hermitian, and

since R†Rε∗ = 0 and εR†R = 0, we have

(2.5) U† = U# = R†R+ (ε∗ε)†.

As such Uε∗B†R† =† (R†R + (ε∗ε)†)ε∗B†R† = ε†B†R†, which establishes the equivalence of the last two

equalities in (2.1).

Part (b) follows by left-right symmetry.

Of particular use is the full-rank case since then we recover an expression for (AB)† −B†A†.
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Corollary 2.2. Let A ∈ Cm×n and B ∈ Cn×p. Then the following hold:

(a) If BB† = I, then

(AB)† = (I − εε†)B†A† = B†(I − U−1ε∗B†)A†,
AB(AB)† = AA† and (AB)†AB = B†B − εε†,

where ε = B†(I −A†A) and U = A†A+ ε∗ε.

(b) If A†A = I, then

(AB)† = B†A†(I − δδ†) = B†(I −A†δ∗V −1)A†,
AB(AB)† = AA† − δ†δ and (AB)†AB = B†B,

where δ = (I −BB†)A† and V = BB† + δδ∗.

Proof. Part (a). If BB† = I then U will be invertible. Indeed, if Q = B† then [A†A+(I−A†A)Q∗Q(I−
A†A)]x = 0⇒ A†Ax = 0 and (I − A†A)Q∗Q(I − A†A)x = 0. The latter says that Q(I − A†A)x = 0, and

since Q†Q = I, we arrive at (I − A†A)x = 0, forcing x = 0. In particular, the expression (2.5) takes the

form

U−1 = A†A+ [(I −A†A)Q∗Q(I −A†A)]†.

Thus, (a) holds by referring to part (a) of Theorem 2.1.

Part (b) follows by left-right symmetry.

Combining parts (a) and (b) of Theorem leads to the following formula for (AB)†.

Corollary 2.3. Let A ∈ Cm×n and B ∈ Cn×k. Then

(AB)† = (I − εε†)B†J†A†(I − σ†σ),

where J = A†ABB†, ε = B†(I − J†J), and σ = (I − JJ†)A†.

Proof. By the �rst identity in (2.1) of Theorem 2.1, (AB)† = (I − εε†)B†R†, where R = ABB† and

ε = B†(I −R†R). Now, we write R = AC, where C = BB†. Then by �rst identity in (2.3), we obtain

(2.6) R† = J†A†(I − σ†σ),

where J = A†AC and σ = (I−JJ†)A†. Moreover, R†R = J†J , and therefore ε = B†(I−R†R) = B†(I−J†J),
which completes the proof.

The perturbation formulas can be used to explore the necessary and su�cient conditions needed for

(AB)† to be equal to Y , where Y denotes any of the convenient choices of expressions for the M-P of the

product AB. This will be our task in the next section, but here we derive a general characterization result.

Theorem 2.4. Let A ∈ Cm×n, B ∈ Cn×k, R = ABB†, and K = A†AB. The following statements are

equivalent:

(a) Y = (AB)†.

(b) C(BY ) ⊆ C(BB∗A∗) and C(B†R† − Y ) ⊆ C
(
B†(I −R†R)

)
.

(c) R(Y A) ⊆ R(B∗A∗A) and R(K†A† − Y ) ⊆ R
(
(I −KK†)A†

)
.
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Proof. (a) ⇔ (b). Let Y = (AB)†. Then by Theorem 2.1, �rst identity in (2.1), Y = (I − εε†)B†R†,
which according to part (i) of Lemma 1.2 is equivalent to

(2.7) (i) ε∗Y = 0 and (ii) C(B†R† − Y ) ⊆ C(ε),

where ε = B†(I − R†R). Now (2.7)-(i) reduces to (I − R†R)B∗†Y = 0 or C(B∗†Y ) ⊆ C(R∗) = C(BB†A∗).
This in turn is equivalent to C(B∗B∗†Y ) ⊆ C(B∗A∗), i.e.,

(2.8) (i) ⇔ C(BY ) ⊆ C(BB∗A∗) or R(Y ∗B†B) ⊆ R(AB),

and thus, completing the proof of (a) ⇔ (b).

(a) ⇔ (c). Likewise by the �rst identity in (2.3), Y = K†A†(I − δ†δ), which according to part (ii) of

Lemma 1.2 is equivalent to

(2.9) (i) Y δ∗ = 0 and (ii) R(K†A† − Y ) ⊆ R(δ),

where δ = (I − KK†)A†. Now (2.9)-(i), reduces to Y A∗†(I − KK†) = 0 or R(Y A∗†) ⊆ R(K∗) =

R(B∗A†A). This in turn is equivalent to R(Y A∗†A∗) ⊆ R(B∗A∗), i.e.,

(2.10) (i) ⇔ R(Y A) ⊆ R(B∗A∗A) or C(AA†Y ∗) ⊆ C(AB).

This concludes the proof that (a) ⇔ (c).

3. Forward order laws. In this section, we investigate the forward order law (FOL) (AB)† = A†B†.

It is clear that both matrices must necessarily be square of the same size. For two invertible matrices the

answer is precisely when AB = BA. In general the conditions are considerably more di�cult since they

must involve a generalization of commutativity. Our next aim is to apply the perturbation result to obtain

a characterization in terms of A and B for the FOL of Moore-Penrose inverse to hold.

First we give two auxiliary results.

Lemma 3.1. Let A,B ∈ Cn×n. Then the following statements are equivalent:

(i) (AB)† = A†B†.

(ii) (BA)∗ = A∗A(AB)†BB∗, R(AB) ⊆ R(A), and C(AB) ⊆ C(B).

Proof. (i) ⇒ (ii). Suppose (AB)† = A†B†. Then

A∗B∗ = A∗AA†(B†BB∗) = A∗A(AB)†BB∗.

Also C ((AB)∗) = C
(
(AB)†

)
⊆ C(A†) ⊆ C(A∗), and thus, R(AB) ⊆ R(A). Likewise R ((AB)∗) =

R
(
(AB)†

)
⊆ R(B†) = R(B∗), and thus, (AB) ⊆ C(B).

(ii) ⇒ (i). The equality A∗B∗ = A∗A(AB)†BB∗ is equivalent to

(3.1) A†B† = A†A(AB)†BB†.

Next, from C(AB) ⊆ C(B) we see that BB†AB = AB and so (AB)∗BB† = (AB)∗ or (AB)†BB† = (AB)†.

Likewise R(AB) ⊆ R(A) ensures that (AB)† = A†A(AB)†. Substituting these in (3.1) reduces to the FOL.

Lemma 3.2. Let A,B ∈ Cn×n. Then, the following hold:

R(BA†∗) = R(AB)⇔ R(AB) ⊆ R(A) and R(BA) = R(ABA∗A).(3.2)

C(B†∗A) = C(AB)⇔ C(AB) ⊆ C(B) and C(BA) = C(BB∗AB).(3.3)
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Proof. The �rst necessary condition in (3.2) is clear. Post-multiplying the matrices involved in R(BA†∗)
= R(AB) by A∗A, we conclude the second part of the necessity. Conversely, post-multiplying the matrices

involved in R(ABA∗A) = R(BA) by A†A†∗ we obtain R(ABA∗AA†A†∗) = R(BAA†A†∗) or, equivalently,
R(ABA†A) = R(BA†∗). Now, the assumption R(AB) ⊆ R(A) yields R(AB) = R(BA†∗).

The equivalence (3.3) is settled in a similar way.

Theorem 3.3. Let A,B ∈ Cn×n and R = ABB†. Then the following conditions are equivalent:

(a) (AB)† = A†B†.

(b) C
(
B†(R† −BA†B†)

)
⊆ C[B†(I −R†R)] and R(BA†∗) = R(AB).

(c) R(1,3) = BA†B† and R(BA†∗) = R(AB).

(d) (AB)∗ = (AB)∗ABA†B† and R(BA†∗) = R(AB).

(e) (AB)∗BB∗ = (AB)∗ABA†B∗, C(AB) ⊆ C(B), and R(BA†∗) = R(AB).

(f) C(AB) ⊆ C(B), R(BA†∗) = R(AB), and R ([BA, BB∗AB]) ⊆ R ([A∗A, (AB)∗AB]).

(g) C(AB) ⊆ C(B), R(AB) ⊆ R(A), and R ([BA, BB∗AB]) ⊆ R ([A∗A(AB)∗, (AB)∗AB(AB)∗]).

Proof. (a) ⇒ (b). Set Y = A†B† in Theorem 2.4 (a) ⇔ (b). This gives (AB)† = Y if and only if

(3.4) C(BA†B†) ⊆ C(BB∗A∗) and C(B†R† −A†B†) ⊆ C
(
B†(I −R†R)

)
.

From the latter it follows that (I − B†B)(B†R† − A†B†) = 0, which reduces to (I − B†B)A†B† = 0. Then

we can write B†R†−A†B† = B†(R†−BA†B†) and �rst condition in (b) follows. Since (I−B†B)A†B† = 0,

then �rst condition in (3.4) reduces to C(A†B†) ⊆ C(B∗A∗) or R(BA†∗) ⊆ R(AB).

(b) ⇒ (c). Let X = BA†B†. We will check that X is a {1, 3}-inverse of R. From the �rst requirement

in (b) it follows that R(R† −BA†B†) = 0 and, hence, RR† = ABA†B† = RX. Therefore RX is Hermitian.

Now RXR = RR†R = R.

(c) ⇒ (d). By Theorem 2.1, �rst identity in (2.2), we have (AB)(AB)† = RR†. On account of the

expression R† = R(1,4)RR(1,3), we have (AB)(AB)† = RR† = RR(1,3). Substituting R(1,3) = BA†B† into

latter equality leads to the condition (AB)(AB)† = ABA†B†. Pre-multiplying by (AB)∗ we get (AB)∗ =

(AB)∗ABA†B†, which is the desired result.

(d) ⇒ (e). First equality in (e) follows post-multiplying the equality (AB)∗ = (AB)∗ABA†B† by BB∗.

(e) ⇒ (a). We will show that the conditions (ii) in Lemma 3.1 are satis�ed. From R(BA†∗) = R(AB)

it follows that R(AB) ⊆ R(A) and

A†B∗ = (AB)†(AB)A†B∗ = (AB)†(AB)†∗(AB)∗ABA†B∗

= (AB)†(AB)†∗(AB)∗BB∗ = (AB)†BB∗,
(3.5)

where the third equality follows from the assumption (AB)∗BB∗ = (AB)∗ABA†B∗. Then A∗B∗ =

A∗A(AB)†BB∗.

(e) ⇒ (f). It remains to prove that R ([BA, BB∗AB]) ⊆ R ([A∗A, (AB)∗AB]). Since R(AB) ⊆ R(A),
the equality (AB)∗BB∗ = (AB)∗ABA†B∗ can be written as

(3.6)
[
−(AB)∗AB(A∗A)† A†A

] [ (BA)∗

(AB)∗BB∗

]
= 0.
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Let T ∈ Cn×2n denote the matrix T =
[
−(AB)∗AB(A∗A)† A†A

]
. It can be easily veri�ed that T− =[

0

A†A

]
is an inner inverse of T and

I − T−T =

[
I 0

(AB)∗AB(A∗A)† I −A†A

]
.

On account of N (T ) = C(I − T−T ) and A†A(AB)∗ = (AB)∗, if the condition (3.6) is ful�lled then

C
([

(BA)∗

(AB)∗BB∗

])
⊆ C

([
I

(AB)∗AB(A∗A)†

])
. Applying now A†A on the left leads to C

([
(BA)∗

(AB)∗BB∗

])
⊆ C

([
A∗A

(AB)∗AB

]
(A∗A)†

)
, which shows the inclusion R ([BA, BB∗AB]) ⊆ R ([A∗A, (AB)∗AB]).

(f) ⇒ (g). From the third condition in (f) it follows that for any x ∈ Cn there exists u ∈ Cn such

that

[
(BA)∗

(AB)∗BB∗

]
x =

[
A∗A

(AB)∗AB

]
u. Hence, (BA)∗x = A∗Au or A†B∗x = A†Au. Now, the requirement

R(BA†∗) = R(AB) implies that ABA†A = AB and there exists z ∈ Cn such that A†B∗x = (AB)∗z.

Consequently,

(3.7)

[
(BA)∗

(AB)∗BB∗

]
x =

[
A∗A

(AB)∗AB

]
(AB)∗z,

which shows that R ([BA, BB∗AB]) ⊆ R ([A∗A(AB)∗, (AB)∗AB(AB)∗]).

(g) ⇒ (e). From the third condition in (g) it follows that for any x ∈ Cn there exists z ∈ Cn such that

(3.7) holds. Furthermore, under the assumption R(AB) ⊆ R(A), we obtain

(
(AB)∗BB∗ − (AB)∗ABA†B∗

)
x =

[
(AB)∗AB(A∗A)† A†A

] [ A∗A

(AB)∗AB

]
(AB)∗z = 0,

showing that (AB)∗BB∗ = (AB)∗ABA†B∗. In view of (3.2), it remains to show that R(BA) = R(ABA∗A)
is ful�lled. But (3.7) clearly implies thatR(BA) ⊆ R(ABA∗A), which, on account of rank equality, concludes
the proof.

The following equivalences follow by left-right symmetry.

Theorem 3.4. Let A,B ∈ Cn×n and K = A†AB. Then the following statements are equivalent:

(a) (AB)† = A†B†.

(b) R[(K† −A†B†A)A†] ⊆ R[(I −KK†)A†] and C(B†∗A) = C(AB).

(c) K(1,4) = A†B†A and C(B†∗A) = C(AB).

(d) AB = AB(AB)∗B†∗A†∗ and C(B†∗A) = C(AB).

(e) ABA∗A = AB(AB)∗B†∗A, C(B†∗A) = C(AB), and R(AB) ⊆ R(A).

(f) C(B†∗A) = C(AB), R(AB) ⊆ R(A), and C
([

BA

ABA∗A

])
⊆ C

([
BB∗

AB(AB)∗

])
.

(g) C(AB) ⊆ C(B), R(AB) ⊆ R(A), and C
([

BA

ABA∗A

])
⊆ C

([
BB∗AB

AB(AB)∗AB

])
.

We now derive some necessary and su�cient conditions for the forward order law on commuting matrices.
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Corollary 3.5. Let A,B ∈ Cn×n such that AB = BA. Then the following statements are equivalent:

(a) (AB)† = A†B†.

(b) R(AB) ⊆ R(ABA∗A) and R((AB)∗B) ⊆ (N (B) ∩N (A∗))⊕ C(A).
(c) R ([BA, BB∗AB]) ⊆ R ([A∗A(AB)∗, (AB)∗AB(AB)∗]).

(d) C(AB) ⊆ C(BB∗AB) and C(A(AB)∗) ⊆ (N (A∗) ∩N (B))⊕ C(B∗).

(e) C
([

BA

ABA∗A

])
⊆ C

([
BB∗AB

AB(AB)∗AB

])
.

Proof. (a) ⇔ (b). This equivalence follows from the part (a) ⇔ (e) of Theorem 3.3 combined with

(3.2). Indeed, if AB = BA, then the equality in Theorem 3.3 (e) reduces to (AB)∗B(I − AA†)B∗ = 0

or, equivalently, R((AB)∗B) ⊆ N ((I − AA†)B), which according to Lemma 1.3 shows that R((AB)∗B) ⊆
(N (B) ∩N (A∗))⊕ C(A).

(a) ⇔ (c). This equivalence is immediate from the part (a) ⇔ (e) of Theorem 3.3.

(a) ⇔ (d) ⇔ (e). These equivalences follow by left-right symmetry from (a) ⇔ (e) ⇔ (g) of Theorem

3.4.

Corollary 3.6. Let A,B ∈ Cn×n such that A∗B = BA∗. Then the following statements are equivalent:

(a) (AB)† = A†B†.

(b) (AB)∗(BA−AB)(AB)∗ = 0, R(AB) ⊆ R(A), C(AB) ⊆ C(B), and R(BA) = R(A∗BA).
(c) AB((BA)∗ − (AB)∗)AB = 0, R(AB) ⊆ R(A), C(AB) ⊆ C(B), and C(BA) = C(BAB∗).

Proof. (a) ⇔ (b). This equivalence follows from the part (a) ⇔ (e) of Theorem 3.3. Since A∗B = BA∗

and A∗ = A∗AA†, the equality (AB)∗BB∗ = (AB)∗ABA†B∗ in Theorem 3.3 (e) reduces to

(B∗BA∗A− (AB)∗AB)A†B∗ = 0,

which on account of the identity C(A†B∗) = C((AB)∗) is equivalent to

(AB)∗(BA−AB)(AB)∗ = 0.

Moreover, we also have B∗A = AB∗, which leads to R(ABA∗A) = R(A∗BA). Hence, by (3.2) the require-

ment C(A†B∗) = C((AB)∗) can be replaced by R(AB) ⊆ R(A) and R(BA) = R(A∗BA).

(a) ⇔ (c). This equivalence follows by left-right symmetry from the part (a) ⇔ (e) of Theorem 3.4.

We note that if AB = BA and A∗B = BA∗, then all conditions in part (b) and (c) of Corollaries 3.5

and 3.6 are ful�lled and, thus, (AB)† = A†B† = B†A† and both the forward order law and reverse order

law hold. In particular if A∗ = A and AB = BA this follows.

When A or B is invertible we may give several characterizations for the FOL to hold.

Theorem 3.7. Let A,B ∈ Cn×n. If A is invertible, then the following statements are equivalent:

(a) (AB)† = A−1B†.

(b) AB∗ = B†(AB)B∗ and C(AB) = C(B).

(c) (BA)(AB)∗ = AB(AB)∗, C(AB) = C(B), and C(AB∗) = C(B∗).
(d) A−1B = BA−1B†B, C(AB) = C(B), and C(AB∗) = C(B∗).
(e) BB†A−1B = BA−1B†B, C(AB) = C(B), and C(AB∗) = C(B∗).
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Proof. (a) ⇔(b). If A is invertible then C(B†∗A) = C(B) and the equality AB = AB(AB)∗B†∗A∗−1

is equivalent to BA∗ = B(AB)∗B†∗, or, AB∗ = B†(AB)B∗. Consequently, this equivalence follows by

Theorem 3.4, equivalence between (a) and (d).

(b) ⇔ (c). The requirement that the �rst equality in (b) holds is equivalent to

(3.8) B†BAB∗ = B†(AB)B∗ and (I −B†B)AB∗ = 0.

If we assume that C(AB) = C(B), then the �rst equality in (3.8) is equivalent to BAB∗ = ABB∗.Multiplying

this with A∗ on the right, yields (BA)(AB)∗ = (AB)(AB)∗ as desired. On account of part (a) of Lemma

1.2, the second condition in (3.8) is equivalent to C(AB∗) ⊆ C(B∗). This concludes the proof that (b)⇔ (c).

(c) ⇔ (d). The �rst equality in (c) reduces to BAB∗ = ABB∗, which is equivalent to (A−1B −
BA−1)AB∗ = 0. The latter is equivalent to A−1B − BA−1BB† = 0 under the assumption that C(AB∗) =
C(B∗).

(d) ⇔ (e). The �rst equality in (d) is equivalent to BB†A−1B = BA−1B†B under the assumption that

C(AB) = C(B) or, equivalently, C(B) = C(A−1B). This completes the proof.

By symmetry, we have the analog of Theorem 3.7 in the case that B is invertible.

It can be pointed out that the part (a) ⇔ (e) in Theorems 3.3 or 3.4 leads to quite interesting charac-

terization when either A or B belongs to the class of orthogonal projectors. If both A and B are orthogonal

projectors, by the part (a)⇔ (d) in Theorems 3.3, it follows that (AB)† = AB if and only if C(AB) = C(BA),
because the �rst equality in (d) takes the form BA = (BA)2B and it is redundant under the requirement

that C(AB) = C(BA). According with Arghiriade's result shown in (1.2), (AB)† = AB if and only if the

reverse order law (AB)† = BA holds.

4. Reverse order laws. From our perturbation results we readily obtain a variety of necessary and

su�cient conditions for several reverse order laws to hold.

We start by examining the two cases where (AB)† = B†R† and (AB)† = K†A†.

Corollary 4.1. Let A ∈ Cm×n, B ∈ Cn×p, and R = ABB†. Then

(AB)† = B†R† ⇔ R(AB∗†) ⊆ R(AB)⇔ R(AB) ⊆ R(ABB∗B).

Proof. From Theorem 2.4 (a) ⇔ (b), we see that (AB)† = B†R† if and only if C(BB†R†) ⊆ C(BB∗A∗),
which can be reduced to C(BB†A∗) ⊆ C(BB∗A∗), or equivalently to R(AB) ⊆ R(ABB∗B). On the other

hand, if we replace the range condition by the row space condition in (2.8) get that (AB)† = B†R† if and

only if R((B†R†)∗B†B) ⊆ R(AB), which reduces to R(RB∗†) ⊆ R(AB), i.e., R(AB∗†) ⊆ R(AB).

Corollary 4.2. Let A ∈ Cm×n, B ∈ Cn×p, and K = A†AB. Then

(AB)† = K†A† ⇔ C(A∗†B) ⊆ C(AB)⇔ C(AB) ⊆ C(AA∗AB)).

Proof. From Theorem 2.4 (a) ⇔ (c), we see that (AB)† = K†A† if and only if C(A∗†K∗†) ⊆ C(AB),

which reduces to C(A∗†B) ⊆ C(AB). On the other hand, if we replace the range condition by the row space

condition in (2.10) we get that (AB)† = K†A† if and only if R(K†A†A) ⊆ R(B∗A∗A), which reduces to

R(B∗A†A) ⊆ R(B∗A∗A), i.e., C(AB) ⊆ C(AA∗AB).
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In [18], Tian studied when the expression for (AB)† is

(4.1) (AB)† = B†A† −B†((I −BB†)(I −A†A))†A†.

Necessary and su�cient conditions for this equality to hold were established in Theorems 1 and 8 in

[18]. It has been showed the equivalence between (4.1) and the mixed type reverse order law (AB)† =

B†(A†ABB†)†A†. A characterization to this law is proved here. Our proof is based on the perturbation

formula given in Corollary 2.3, while the proof given in [18] involves block matrix decompositions and rank

formulas.

Corollary 4.3. Let A ∈ Cm×n and B ∈ Cn×p, and J = A†ABB†. Then

(AB)† = B†J†A⇔ C(AB) ⊆ C(AA∗AB) and R(AB) ⊆ R(ABB∗B).

Proof. By Corollary 2.3, (AB)† = B†J†A if and only if

εε†B†J†A†(I − σ†σ) +B†J†A†σ†σ = 0,

which in turn is equivalent to

(i) B†J†A†σ†σ = 0, (ii) εε†B†J†A†(I − σ†σ) = 0.

Since BB†J† = J†, it follows that (i) is equivalent to B∗A†σ∗ = 0 or B∗A†A†∗(I−JJ†) = 0. By Lemma 1.2,

the last condition holds if and only if R(B∗A†A†∗) ⊆ R(J∗) = R(BB†A†A) = R(B∗A†A). Then (i) holds if

and only if R(B∗A†) ⊆ R(B∗A∗), which is equivalent to R(B∗A∗) ⊆ R(B∗A∗AA∗) or C(AB) ⊆ C(AA∗AB).

Now, in view of (2.6) we have that (ii) is equivalent to ε∗B†R† = 0 or (I − J†J)B†∗B†A∗ = 0. By

Lemma 1.2, this holds if and only if C(B†∗B†A∗) ⊆ C(J) = C(BB†A†A) = C(BB†A∗), which is equivalent

to C(B∗A∗) ⊆ C(B∗BB∗A∗) or R(AB) ⊆ R(ABB∗B).

The next well known result will be needed in the proof of Theorem 4.5.

Lemma 4.4. Let F and G be two orthogonal projectors of a same order. Then

(GF )† = FG⇔ GF = FG⇔ GFG = FG⇔ (GF )2 = GF.

Now we derive the perturbation conditions under which the reverse order law (AB)† = B†A† holds.

Theorem 4.5. Let A ∈ Cm×n, B ∈ Cn×p, R = ABB†, and K = A†AB. The following statements are

equivalent:

(a) (AB)† = B†A†.

(b) C(BB†A∗) = C(BB∗A∗) and C
(
R† −BB†A†

)
⊆ C

(
(I −R†R)BB†

)
.

(c) R† = BB†A† and C(BB†A∗) = C(BB∗A∗).
(d) C(A†AB) = C(A∗AB) and R(K† −B†A†A) ⊆ R

(
(I −KK†)A†A

)
.

(e) K† = B†A†A and C(A†AB) = C(A∗AB).

(f) (A†ABB†)† = BB†A†A and C(A†ABB†) ⊆ C(A∗AB) ∩ C(BB∗A∗).
(g) A†ABB† = BB†A†A and C(A†ABB†) ⊆ C(A∗AB) ∩ C(BB∗A∗).

Proof. (a) ⇔ (b). Set Y = B†A† in Theorem 2.4 (a)⇔(b). This gives

C(BB†A∗) ⊆ C(BB∗A∗) or R(AB) ⊆ R(ABB∗),
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in addition to C
(
B†(R† −A†)

)
⊆ C

(
B†(I −R†R)

)
. The latter is equivalent to

C
(
BB†(R† −A†)

)
⊆ C

(
BB†(I −R†R)

)
,

in which we use the fact that BB†R† = R†, and we then arrive at C
(
R† −BB†A†

)
⊆ C

(
(I −R†R)BB†

)
.

On account of rank equality we may say that C(BB†A∗) = C(BB∗A∗).

(b) ⇔ (c). From C
(
R† −BB†A†

)
⊆ C

(
(I −R†R)BB†

)
it follows that R(R† − BB†A†) = 0. On the

other hand, we also obtain (I − R†R)(R† − BB†A†) = (I − R†R)BB†A† = 0 because C(R∗) = C(BB†A∗).
Therefore, R† = BB†A†. The converse part is clear.

(a) ⇔ (d) ⇔ (e). These equivalences follow by symmetry.

(a) ⇒ (f). From Corollary 2.3 it follows that (AB)† = B†A† if and only if

(4.2) B†A† = (I − εε†)B†J†A†(I − σ†σ),

where J = A†ABB†, ε = B†(I − J†J), and σ = (I − JJ†)A†. Pre-multiplying (4.2) by A†AB and post-

multiplying it by ABB† we obtain J2 = J . Now, Lemma 4.4 asserts that J† = BB†A†A and, thus, the �rst

identity in (f) holds.

On the other hand, from the equivalence of (a) and (b) it follows that C(BB†A∗) = C(BB∗A∗) or, equiva-
lently, C(BB†A†A) = C(BB∗A∗), while the equivalence of (a) and (d) implies that C(A†AB) = C(A∗AB) or,

equivalently, C(A†ABB†) = C(A∗AB). We now recall Lemma 4.4, which tells us that BB†A†A = A†ABB†,

to conclude C(A†ABB†) ⊆ C(A∗AB) ∩ C(BB∗A∗).

(f) ⇒ (g). This implication is clear.

(g) ⇒ (a). We will prove that the Arghiriade requirement for the FOL shown in (1.2) holds. From (g)

it follows that C(A†AB) = C(BB†A∗) ⊆ C(A∗AB) ∩ C(BB∗A∗). On account of rank equality we conclude

C(A∗AB) = C(BB∗A∗) or, equivalently, C(A∗ABB∗) = C(BB∗A∗A).

When we have the product AF where F is an orthogonal projector we obtain the following useful result.

Lemma 4.6. If F is an orthogonal projector, then the following are equivalent:

(i) (AF )† = FA†. (ia) [A(I − F )]† = (I − F )A†.
(ii) A†AF = FA†A and C(A†AF ) ⊆ C(A∗AF ).
(iii) A†AF = FA†A and AFA† is Hermitian.

(iv) A∗AF = FA∗A. (iva) A∗A(I − F ) = (I − F )A∗A.

In which case, AFA† = AA† − δ†δ with δ = (I − F )A†.

Proof. By Theorem 4.5, equivalence between (a) and (g), it follows that (i) ⇔ (ii). The equivalence

between (ii) and (iii) is clear.

(ii)⇔ (iv). If C(A†AF ) ⊆ C(A∗AF ) then C
(
(A∗A)†F

)
⊆ C(A†AF ). If A†A and F commute then A†AF

is idempotent and (A∗A)†F = (A†AF )(A∗A)†F = FA†A(A∗A)†F = F (A∗A)†F = F (A∗A)†. It thus follows

that A∗A and F also commute, which prove the necessity. Conversely, pre-multiplying the equality (iv) by

(A∗A)† we obtain A†AF = (A∗A)†FA∗A. Hence, C(A†AF ) ⊆ C(A∗AF ) and also we get A†AF = FA†A

because (A∗A)†F = F (A∗A)†.

Finally, by Theorem 2.1 (2.4), it follows that AFA† = AF (AF )† = A†A − δ†δ, where δ = (I −
A†AF (A†AF )†)†A = (I − F )A†.
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