Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 34, pp. 514-525, October 2018,

“olen

PERTURBATION RESULTS AND THE FORWARD ORDER LAW FOR THE
MOORE-PENROSE INVERSE OF A PRODUCT"*

NIEVES CASTRO-GONZALEZ' AND ROBERT E. HARTWIGH

Abstract. New expressions are given for the Moore-Penrose inverse of a product AB of two complex matrices. Furthermore,
an expression for (AB)T — BT AT for the case where A or B is of full rank is provided. Necessary and sufficient conditions for
the forward order law for the Moore-Penrose inverse of a product to hold are established. The perturbation results presented in
this paper are applied to characterize some mixed-typed reverse order laws for the Moore-Penrose inverse, as well as the reverse
order law.
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1. Introduction. In numerous applications, such as in the celebrated Karmarkar algorithm [12], one
has to find the Moore-Penrose inverse of a matrix product AB, denoted by (AB)T. Traditionally the problem
of updating (AB)' has been attacked by considering AB as a string of rank-one perturbations of A. This is
rather cumbersome and poses difficulty in trying to express the final answer in terms of the original matrices
A and B. Our goal in this work is to present two formulas for (AB)' and to show that it allow us to explore
the forward order law and mixed-type reverse order laws.

Throughout this paper, C"™*"™ is the vector space of m x n complex matrices and we shall respectively
denote column space (range), row space, and null space of a matrix A by C(A), R(A), and N(A). The
Moore-Penrose inverse of A is the unique matrix satisfying the four Penrose equations

(1) AXA=A, (2) XAX =X, (3) (AX)" = AX, (4) (XA)" = XA,

and will be denoted by AT. It always exists for complex matrices. For convenience we shorten Moore-Penrose
to “M-P”. Any solution to the equation (1) is called either a {1}-inverse or g-inverse of A. The symbol A{1}
will stand for the set of all g-inverses of A. Any solution to the ith,..., jth equations of the four Penrose
equations is called an {i,. .., j}-inverse, denoted by Al-3)  The group inverse of a square matrix A, is the
unique matrix, whenever it exists, satisfying the equations

AXA=A, XAX =X, AX = XA,

and will be denoted by Af. If A = A*, then the group inverse exists and A* = Af. We shall assume
familiarity with the basic results on the generalized inverses as given in [3].
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The problem of determining an expression for the Moore-Penrose inverse of a matrix product AB has
been first attacked by Cline [4], who established a formula which allows one to reduce the problem to a type
of matrix product where one of the factors is an orthogonal projector.

LeEmMMA 1.1 ([4]). Let A € C™*" and B € C"*P. Then (AB)" = K'R', where R = ABB' and
K = ATAB.

The reverse order law (ROL) is concerned with the problem of when BAT is the M-P inverse of AB.
A solution to this problem has been first given by Greville [9], who showed the following necessary and
sufficient conditions for the ROL:

(1.1) (AB)' = BTA" & C(A*AB) CC(B) and R(ABB*) C R(A).

These conditions were later expressed by Arghiriade [1] in the single condition that A*ABB* is EP, i.e.,
(1.2) (AB)' = BTAT & C(A*ABB*) = C(BB*A* A).

Since then, the problem of the reverse order law for the M-P inverse has been widely studied and several
other equivalent conditions have been established for the product of two and more matrices or for operators
[7, 8,11, 17, 19].

The ROL for g-inverses has been investigated in [2, 16, 21], for {1,2}-inverses in [5, 15, 20] and for
{1, 3, 4}-inverses in [6, 14].

A formulation of the forward order law (FOL) for g-inverses of the product of two matrices deals with
the problem of when A{1}B{1} C (AB){1}. This law has been studied in [10] and for multiple matrix
products in [22]. In the present work, we shall consider the problem of when (AB)" = ATBT and we solve
it by giving, among others conditions, a set of necessary and sufficient conditions for this forward order law
to hold in terms of the matrices A and B.

The paper is organized as follows. In Section 2, we give two alternative formulas to Cline’s formula for
the M-P of the product of two matrices shown in Lemma 1.1. These formulas lead to another expression for
(AB)T involving the M-P inverse of the product of two orthogonal projectors. In addition, an expression for
(AB)t — BT A for the case where A or B is of full rank is provided.

These perturbation formulas for (AB)! are utilized to derive necessary and sufficient conditions for
(AB)' to be equal any of the convenient choices, say Y, such as Y = ATBY, BTRT KTAT or BT Af. In Section
3, several characterizations are established for the forward order law for the M-P inverse, (AB)! = ATBT,
to hold. In Section 4, it is shown that the perturbation results presented in Section 2 can be utilized to
examine some mixed-typed reverse order laws for the M-P inverse, as well as the reverse order law.

We shall need the following results.
LEMMA 1.2. Let X, Y € C™*" and let F' and G be two idempotent matrices of orders m and n, respec-
tively. Then, the following hold:
(i) [ —-F) X=Y < FY=0andC(X -Y) C C(F).
(ii)) X(I-G)=Y ©«YG=0and R(X —-Y) C R(G).

Proof. Part (i). Pre-multiplying (I — F)X =Y by F, yields F'Y = 0. Pre-multiplying (I — F)X =Y
by I — F, leads to (I — F)(X —Y) = 0, which is equivalent to C(X —Y) C N (I — F) = C(F). Likewise, the
converse holds.
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Part (ii) follows from part (i) applied to (I — G*)X* =Y™. ad

LeMMA 1.3. ([13, Proposition 4]). Let A € C™*" and let F' € C™"*" be idempotent. Then

N(AF) = (N (A) N C(F)) & N (F).

2. Perturbation formulas for the Moore-Penrose inverse of a product. In this section, two
formulas are derived for (AB)', which show that (AB)" = BTR" + o and (AB)" = KTAT + 6, where the
expressions of ¢ and 6 involve the matrices Bf, RT and Af, KT, respectively. Furthermore, a formula is estab-
lished for (AB)! that involves the Moore-Penrose of the product of two orthogonal projectors, (ATABBT)T,
in which there is certain symmetry like in the Cline’s formula shown in Lemma 1.1.

We are now ready for our main theorem.

THEOREM 2.1. Let A € C™*™ and B € C"*P.

(a) If R = ABB?, then
(2.1) (AB)' = (I —e")B'R" = B'(I — ¢'B")R" = B (I — UTe* BRI,
(2.2) AB(AB)' = RR" and (AB)'AB = B'B — &',

where ¢ = BT (I — RTR) and U = RTR + ¢*¢.
(b) If K = AYAB, then
(2.3) (AB)" = KTAT(I — 676) = KT(I — AT6T) AT = KT(I — AT5*VT) AT,
(2.4) AB(AB)' = AAT — 66 and (AB)'AB = K'K,
where § = (I — KK A" and V = KK + 65*.

Proof. Part (a). Let X = (I —ec")BTRT. We shall prove that X satisfies the four Penrose equations of
(AB)T. We begin by observing that R = B(AB)T, which can be easily checked. Also note that ABe = 0,
and hence, that (3): ABX = AB(I —ee")B'R! = RR' = AB(AB)T, which is Hermitian. It is now clear
that (1): ABXAB = AB and (2): XABX = (I —ech)B'RIRR' = X. Lastly,

XAB = (I —e")B'RTAB = (I —e")(BTRTR)B = (I —ec')(BT —¢)B = (I — ec")B'B.

Next we observe that BfBe = ¢, and thus, BfBecT = eef. This gives (4): XAB = BB — ecf, which is
Hermitian, completing the proof of the first identity in (2.1) and the proof of (2.2).

To show the equivalence of the second and third expressions in (2.1), we note that (I — RTR)et = &f,
and hence, eef Bt = BY(I — RTR)e' Bt = Bfef Bf. Next we observe that U = RTR + (¢*¢) is Hermitian, and
since RTRe* = 0 and eRTR = 0, we have

(2.5) Ul =U# = RTR + (¢*¢)T.

As such Ue*BTRT =1 (RTR + (¢*¢)")e*BTRT = ' BTRT, which establishes the equivalence of the last two
equalities in (2.1).

Part (b) follows by left-right symmetry. d

Of particular use is the full-rank case since then we recover an expression for (AB)T — BT AT.
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COROLLARY 2.2. Let A € C™*™ and B € C"*P. Then the following hold:
(a) If BBt = I, then
(AB)' = (I —ec")BTAT = BI(I — U~ '¢*BT) AT,
AB(AB)' = AA" and (AB)'AB = B'B — ecf,
where e = BT (I — ATA) and U = ATA + ¢*¢.
(b) If ATA =1, then
(AB)" = BYAT(I — 667) = BT (I — ATs* V1) AT,
AB(AB)Y = AA" — 66 and (AB)'AB = B'B,
where § = (I — BBV AT and V = BB + §6*.

Proof. Part (a). If BBT = I then U will be invertible. Indeed, if Q@ = B then [ATA+ (I — ATA)Q*Q(I —
ATA)x =0 = ATAx = 0 and (I — ATA)Q*Q(I — ATA)x = 0. The latter says that Q(I — ATA)x = 0, and
since QTQ = I, we arrive at (I — ATA)x = 0, forcing x = 0. In particular, the expression (2.5) takes the
form

Ut =ATA+[(I - ATAQ QI — ATA)]T.
Thus, (a) holds by referring to part (a) of Theorem 2.1.

Part (b) follows by left-right symmetry. O

Combining parts (a) and (b) of Theorem leads to the following formula for (AB)T.
COROLLARY 2.3. Let A € C™*" and B € C"**. Then

(AB)" = (I — ec")BTJTAY(I — o0),

where J = AYABB', e = BY(I — J1J), and o = (I — JJ1) Al

Proof. By the first identity in (2.1) of Theorem 2.1, (AB)' = (I — ce")B'R', where R = ABB' and
e = BT (I — R'R). Now, we write R = AC, where C = BBT. Then by first identity in (2.3), we obtain

(2.6) Rl = JTAY(I — o70),

where J = ATAC and o = (I-JJ)AT. Moreover, Rt R = J.J, and therefore e = B (I-R'R) = BT (I-J'J),
which completes the proof. ]

The perturbation formulas can be used to explore the necessary and sufficient conditions needed for
(AB) to be equal to Y, where Y denotes any of the convenient choices of expressions for the M-P of the
product AB. This will be our task in the next section, but here we derive a general characterization result.

THEOREM 2.4. Let A€ C™*", B € C"** R = ABB', and K = AYAB. The following statements are
equivalent:

(a) Y = (AB)".

(b) C(BY) C C(BB*A*) and C(B'RT —Y) C C (B'(I - R'R)).
(¢c) R(YA) C R(B*A*A) and R(KTAT —Y) C R ((I — KKT)AT).
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Proof. (a) & (b). Let Y = (AB)'. Then by Theorem 2.1, first identity in (2.1), Y = (I — ee") BRI,
which according to part (i) of Lemma 1.2 is equivalent to

(2.7) (i) €Y =0 and (ii) C(BTR" —Y) CC(e),

where ¢ = BY(I — RTR). Now (2.7)-(i) reduces to (I — RTR)B*'Y = 0 or C(B*'Y) C C(R*) = C(BB'A*).
This in turn is equivalent to C(B*B*'Y) C C(B*A*), i.e

(2.8) (i) < C(BY)C C(BB*A*) or R(Y*B'B) C R(AB),
and thus, completing the proof of (a) < (b).

(a) < (c). Likewise by the first identity in (2.3), Y = KTAY(I — §76), which according to part (ii) of
Lemma 1.2 is equivalent to

(2.9) (1) Y& =0 and (i) R(KTAT —Y) C R(6),

where § = (I — KKT)AT. Now (2.9)-(i), reduces to YA*I(I — KKT) =0 or R(YA*T) C R(K*) =
R(B*ATA). This in turn is equivalent to R(Y A*TA*) C R(B*A*), i.e
(2.10) (i) & R(YA) CR(B*A*A) or C(AATY*) C C(AB).

This concludes the proof that (a) < (c). ad

3. Forward order laws. In this section, we investigate the forward order law (FOL) (AB)" = ATBT.
It is clear that both matrices must necessarily be square of the same size. For two invertible matrices the
answer is precisely when AB = BA. In general the conditions are considerably more difficult since they
must involve a generalization of commutativity. Our next aim is to apply the perturbation result to obtain
a characterization in terms of A and B for the FOL of Moore-Penrose inverse to hold.

First we give two auxiliary results.

LEMMA 3.1. Let A, B € C"*"™. Then the following statements are equivalent:

(i) (AB)t = ATBI.
(ii) (BA)* = A*A(AB)'BB*, R(AB) C R(A), and C(AB) C C(B).

Proof. (i) = (ii). Suppose (AB)" = A'Bf. Then
A*B* = A*AAY(B'BB*) = A*A(AB)'BB*.

Also C((A C((AB)T) C C(A") C C(A*), and thus, R(AB) € R(A). Likewise R ((AB)*) =
R ((AB)T ) - R(BT) = R(B*), and thus, (AB) C C(B).

(ii) = (i). The equality A*B* = A*A(AB)'BB* is equivalent to
(3.1) ATBY = ATA(AB)'BBT.
Next, from C(AB) C C(B) we see that BBTAB = AB and so (AB)*BB' = (AB)* or (AB)'BB' = (AB)'.
Likewise R(AB) C R(A) ensures that (AB)" = ATA(AB)'. Substituting these in (3.1) reduces to the FOL.O
LEMMA 3.2. Let A, B € C"*"™. Then, the following hold:
R(BA™) = R(AB) & R(AB) C R(A) and R(BA)=R(ABA*A).
C(B™A) = C(AB) < C(AB) CC(B) and C(BA)=C(BB*AB).
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Proof. The first necessary condition in (3.2) is clear. Post-multiplying the matrices involved in R(BAT™)
= R(AB) by A*A, we conclude the second part of the necessity. Conversely, post-multiplying the matrices
involved in R(ABA*A) = R(BA) by ATA™ we obtain R(ABA*AATA™) = R(BAATA™) or, equivalently,
R(ABATA) = R(BA™). Now, the assumption R(AB) C R(A) yields R(AB) = R(BA™).

The equivalence (3.3) is settled in a similar way. d

THEOREM 3.3. Let A, B € C**" and R = ABB'. Then the following conditions are equivalent:

(a) (AB)t = ATBt.

(b) C (BY(R" — BATB")) C C[B'(I — R'R)] and R(BA™) = R(AB).

(¢c) RY3) = BATB and R(BA™) = R(AB).

(d) (AB)* = (AB)*ABA'B' and R(BA™) = R(AB).

(e) (AB)*BB* = (AB)*ABA'B*, C(AB) CC(B), and R(BA™) = R(AB).

(f) C(AB) C C(B), R(BA™) = R(AB), and R ([BA, BB*AB]) C R([A*A, (AB)*AB]).

(9) C(AB) C C(B), R(AB)C R(A), and R([BA, BB*AB]) C R ([A*A(AB)*, (AB)*AB(AB)")).

Proof. (a) = (b). Set Y = ATBT in Theorem 2.4 (a) < (b). This gives (AB)! =Y if and only if

—~~

(3.4) C(BA'B") CC(BB*A*) and C(B'R'-A'B)CC(B'(I-R'R)).

From the latter it follows that (I — BYB)(BTRt — ATB") = 0, which reduces to (I — B'B)ATB" = 0. Then
we can write BIRT — ATBT = BY(RT — BATBY) and first condition in (b) follows. Since (I — BTB)ATBT =0,
then first condition in (3.4) reduces to C(ATBT) C C(B*A*) or R(BA™) C R(AB).

(b) = (c). Let X = BATBT. We will check that X is a {1,3}-inverse of R. From the first requirement
in (b) it follows that R(R' — BA'B') = 0 and, hence, RR" = ABA'B' = RX. Therefore RX is Hermitian.
Now RXR = RR'R = R.

(¢) = (d). By Theorem 2.1, first identity in (2.2), we have (AB)(AB)" = RR. On account of the
expression Rf = RYRR(M3) | we have (AB)(AB)" = RRt = RR(13). Substituting R = BATB' into
latter equality leads to the condition (AB)(AB)" = ABATBT. Pre-multiplying by (AB)* we get (AB)* =
(AB)*ABA'B', which is the desired result.

(d) = (e). First equality in (e) follows post-multiplying the equality (AB)* = (AB)*ABA'B' by BB*.

(e) = (a). We will show that the conditions (ii) in Lemma 3.1 are satisfied. From R(BA"™) = R(AB)
it follows that R(AB) C R(A) and

A'B* = (AB)(AB)A'B* = (AB)"(AB)™(AB)*ABA' B*

(35) :(AB)T(AB)T*(AB)*BB*:(AB)TBB*,

where the third equality follows from the assumption (AB)*BB* = (AB)*ABA'B*. Then A*B* =
A*A(AB)'BB*.

(e) = (f). It remains to prove that R ([BA, BB*AB]) C R([A*A, (AB)*AB]). Since R(AB) C R(A),
the equality (AB)*BB* = (AB)*ABA'B* can be written as

(3.6) [~(AB)*AB(A*A)t AT A] {( Agng*} =0.
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Let T € C"*?" denote the matrix T = [—(AB)*AB(A*A)T ATA]. It can be easily verified that T~ =

[ A(T) A} is an inner inverse of T and

1 0

[=1"T= {(AB)*AB(A*A)T I—ATA]

On account of N (T (I - T T) and ATA(AB)* = (AB)*, if the condition (3.6) is fulfilled then

([ Ty e[ 1) A Aot o [ (2T 1)
A)

¢ ([apas]

) which shows the inclusion R ([BA, BB*AB]) C R ([A*A, (AB)*AB]).

(f) = (g). From the third condition in (f) it follows that for any x € C™ there exists u € C" such
A*A
that [ BB*] [(AB) AB] u. Hence, (BA)*x = A*Au or ATB*x = A" Au. Now, the requirement

R(BA™) = R(AB) implies that ABATA = AB and there exists z € C" such that ATB*x = (AB)*z
Consequently,

5 (anyper]*= ap)as] 47

which shows that R ((BA, BB*AB]) C R ([A*A(AB)*, (AB)*AB(AB)*)).

(g) = (e). From the third condition in (g) it follows that for any x € C™ there exists z € C" such that
(3.7) holds. Furthermore, under the assumption R(AB) C R(A), we obtain

A*A

((AB)"BB* — (AB)"ABA'B") x = [(AB)*AB(A*A)!  ATA] [(AB)*AB

} (AB)*z =0,

showing that (AB)*BB* = (AB)*ABATB*. In view of (3.2), it remains to show that R(BA) = R(ABA*A)
is fulfilled. But (3.7) clearly implies that R(BA) C R(ABA*A), which, on account of rank equality, concludes
the proof. O

The following equivalences follow by left-right symmetry.
THEOREM 3.4. Let A, B € C"*" and K = AYAB. Then the following statements are equivalent:
(a) (AB)" = ATBT,
(b) R[(K' — ATBTA)AT) C R[(I — KKT)AT] and C(B™*A) = C(AB).
(c) K& = ATBYA and C(B™A) = C(AB).
(d) AB = AB(AB)*B™A™ and C(B™A) = C(AB).
(e) ABA*A = AB(AB)*B™ A, C(B™A)=C(AB), and R(A R(A).

(f) C(B™A) = C(AB), R(AB) € R(A), and C ([ABA* D ([ABBZ?) D

(9) C(AB) CC(B), R(AB)C R(A), and C ([Agjm]) cc ([ABB(iB?iBD.

We now derive some necessary and sufficient conditions for the forward order law on commuting matrices.
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COROLLARY 3.5. Let A, B € C"*"™ such that AB = BA. Then the following statements are equivalent:
(a) (AB)" = ATBT.
(b) R(AB) C R(ABA*A) and R((AB)*B) CN(B)NN(A*)) e C(A).
(¢) R([BA, BB*AB|) C R ([A"A(AB)", (AB)*AB(AB)"]).
(d) C(AB) CC(BB*AB) and C(A(AB)*) C (N(A*)NN(B)) & C(B*).

C
(e) C ([Aﬁj*AD =¢ ([ABB?LAB )

Proof. (a) < (b). This equivalence follows from the part (a) < (e) of Theorem 3.3 combined with
(3.2). Indeed, if AB = BA, then the equality in Theorem 3.3 (e) reduces to (AB)*B(I — AAT)B* = 0
or, equivalently, R((AB)*B) C N((I — AAT)B), which according to Lemma 1.3 shows that R((AB)*B) C
N(B)NN(A*)) & C(A).

(a) & (c). This equivalence is immediate from the part (a) < (e) of Theorem 3.3.

(a) & (d) & (e). These equivalences follow by left-right symmetry from (a) < (e) < (g) of Theorem
3.4. 0

COROLLARY 3.6. Let A, B € C"*™ such that A*B = BA*. Then the following statements are equivalent:
(a) (AB)" = ATBT,

)
(b) (AB)*(BA — AB)(AB)* = 0, R(AB) C R(A), C(AB) C C(B), and R(BA) = R(A*BA).
(¢) AB((BA)* — (AB)*)AB = 0, R(AB) C R(A), C(AB) C C(B), and C(BA) = C(BAB*).

Proof. (a) < (b). This equivalence follows from the part (a) < (e) of Theorem 3.3. Since A*B = BA*
and A* = A*AAT, the equality (AB)*BB* = (AB)*ABATB* in Theorem 3.3 (e) reduces to
(B*BA*A — (AB)*AB)A'B* =0,
which on account of the identity C(AfB*) = C((AB)*) is equivalent to
(AB)*(BA— AB)(AB)* =
Moreover, we also have B*A = AB*, which leads to R(ABA*A) = R(A*BA). Hence, by (3.2) the require-
ment C(ATB*) = C((AB)*) can be replaced by R(AB) C R(A) and R(BA) = R(A*BA).

(a) < (c). This equivalence follows by left-right symmetry from the part (a) < (e) of Theorem 3.4. O

We note that if AB = BA and A*B = BA*, then all conditions in part (b) and (c) of Corollaries 3.5
and 3.6 are fulfilled and, thus, (AB) = ATBT = BYAT and both the forward order law and reverse order
law hold. In particular if A* = A and AB = BA this follows.

When A or B is invertible we may give several characterizations for the FOL to hold.

THEOREM 3.7. Let A, B € C™"*"™. If A is invertible, then the following statements are equivalent:

(a) (AB)t = A-1B1,

(b) AB* = BY(AB)B* and C(AB) = C(B).

(¢c) (BA)(AB)* = AB(AB)*, C(AB) = C(B), and C(AB*) = C(B*).
(d) A='B = BA'B'B, C(AB) = C(B), and C(AB*) = C(B*).

(e) BBTA~™'B = BA™'B'B, C(AB) = C(B), and C(AB*) = C(B*).
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Proof. (a) <(b). If A is invertible then C(B™A) = C(B) and the equality AB = AB(AB)*B*A*~!
is equivalent to BA* = B(AB)*B'™, or, AB* = BT(AB)B*. Consequently, this equivalence follows by
Theorem 3.4, equivalence between (a) and (d).

(b) < (c). The requirement that the first equality in (b) holds is equivalent to
(3.8) B'BAB* = BY(AB)B* and (I — B'B)AB* =0.

If we assume that C(AB) = C(B), then the first equality in (3.8) is equivalent to BAB* = ABB*. Multiplying
this with A* on the right, yields (BA)(AB)* = (AB)(AB)* as desired. On account of part (a) of Lemma
1.2, the second condition in (3.8) is equivalent to C(AB*) C C(B*). This concludes the proof that (b) < (c).

(c) & (d). The first equality in (c) reduces to BAB* = ABB*, which is equivalent to (A~'B —
BA~YAB* = 0. The latter is equivalent to A~'B — BA"!BBT = 0 under the assumption that C(AB*) =
c(B).

(d) < (e). The first equality in (d) is equivalent to BBTA~™'B = BA~! BB under the assumption that
C(AB) = C(B) or, equivalently, C(B) = C(A~!B). This completes the proof. 0

By symmetry, we have the analog of Theorem 3.7 in the case that B is invertible.

It can be pointed out that the part (a) < (e) in Theorems 3.3 or 3.4 leads to quite interesting charac-
terization when either A or B belongs to the class of orthogonal projectors. If both A and B are orthogonal
projectors, by the part (a) < (d) in Theorems 3.3, it follows that (AB)" = AB if and only if C(AB) = C(BA),
because the first equality in (d) takes the form BA = (BA)?B and it is redundant under the requirement
that C(AB) = C(BA). According with Arghiriade’s result shown in (1.2), (AB)" = AB if and only if the
reverse order law (AB)" = BA holds.

4. Reverse order laws. From our perturbation results we readily obtain a variety of necessary and
sufficient conditions for several reverse order laws to hold.

We start by examining the two cases where (AB)" = BR' and (AB)" = KTAT.
COROLLARY 4.1. Let A € C"™*", B € C"*?, and R = ABB'. Then

(AB)! = B'R" & R(AB*') C R(AB) & R(AB) C R(ABB*B).

Proof. From Theorem 2.4 (a) < (b), we see that (AB)" = BTRT if and only if C(BBTR') C C(BB*A*),
which can be reduced to C(BBTA*) C C(BB*A*), or equivalently to R(AB) C R(ABB*B). On the other
hand, if we replace the range condition by the row space condition in (2.8) get that (AB)! = BTRT if and
only if R((BTR")*BTB) C R(AB), which reduces to R(RB*') C R(AB), i.e., R(AB*T) C R(AB). |

COROLLARY 4.2. Let A€ C™*", B € C" P, and K = AYAB. Then
(AB)' = KTA" & C(A*'B) C C(AB) < C(AB) C C(AA*AB)).

Proof. From Theorem 2.4 (a) < (c), we see that (AB) = KTAT if and only if C(A*TK*T) C C(AB),
which reduces to C(A*TB) C C(AB). On the other hand, if we replace the range condition by the row space
condition in (2.10) we get that (AB)" = KTA" if and only if R(KTATA) C R(B*A*A), which reduces to
R(B*ATA) C R(B*A*A), i.e., C(AB) C C(AA*AB). 0
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In [18], Tian studied when the expression for (AB) is
(4.1) (AB)" = BYAT — BY((I — BB")(I — ATA))T A,

Necessary and sufficient conditions for this equality to hold were established in Theorems 1 and 8 in
[18]. Tt has been showed the equivalence between (4.1) and the mixed type reverse order law (AB)T =
Bf(ATABBT)TAt. A characterization to this law is proved here. Our proof is based on the perturbation
formula given in Corollary 2.3, while the proof given in [18] involves block matrix decompositions and rank
formulas.

COROLLARY 4.3. Let A € C™*" qnd B € C**?, and J = ATABBT. Then
(AB)' = BTJTA & C(AB) C C(AA*AB) and R(AB) C R(ABB*B).
Proof. By Corollary 2.3, (AB)" = B JT A if and only if
e BIJTAN(I — ofo) + BT JTAToTo = 0,
which in turn is equivalent to
(i) BTJTAToTo =0, (ii) e’ BTJTAN(I — oTo) = 0.

Since BBTJT = JT, it follows that (i) is equivalent to B*Afo* = 0 or B*ATA™ (I — JJ') = 0. By Lemma 1.2,
the last condition holds if and only if R(B*AtA™*) C R(J*) = R(BBTA'A) = R(B* AT A). Then (i) holds if
and only if R(B*A') C R(B*A*), which is equivalent to R(B*A*) C R(B*A*AA*) or C(AB) C C(AA*AB).

Now, in view of (2.6) we have that (ii) is equivalent to e*BYRT = 0 or (I — JTJ)B™B'A* = 0. By

Lemma 1.2, this holds if and only if C(B™*BTA*) C C(J) = C(BBTA'A) = C(BBTA*), which is equivalent
to C(B*A*) C C(B*BB*A*) or R(AB) C R(ABB*B). O

The next well known result will be needed in the proof of Theorem 4.5.

LEMMA 4.4. Let F and G be two orthogonal projectors of a same order. Then

(GF)' = FG & GF = FG & GFG = FG < (GF)? = GF.

Now we derive the perturbation conditions under which the reverse order law (AB)" = B A" holds.

THEOREM 4.5. Let A€ C™*", B € C"*P, R = ABB', and K = ATAB. The following statements are
equivalent:

(a) (AB)t = BT AT,

(b) C(BBTA*) = C(BB*A*) and C (R' — BBYAY) C C ((I — RTR)BB").
(¢) RT = BBTA" and C(BBTA*) = C(BB*A*).

(d) C(ATAB) = C(A*AB) and R(K' — BTATA) C R ((I - KKT)ATA).

(e) KT = BTATA and C(ATAB) = C(A*AB).

(f) (A'ABB")T = BBYATA and C(ATABB') C C(A*AB) N C(BB*A*).

(9) ATABBT = BBTATA and C(ATABBT) C C(A*AB) NC(BB*A*).

Proof. (a) < (b). Set Y = BYAT in Theorem 2.4 (a)«(b). This gives

C(BB'A*) CC(BB*A*) or R(AB) C R(ABB™),
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in addition to C (BT(RT — A")) C C (BT(I — R'R)). The latter is equivalent to
C(BB'(R' — A")) Cc¢(BB'(I - R'R)),

in which we use the fact that BBTRT = R, and we then arrive at C (RT — BBTA") C C ((I — R'R)BB").
On account of rank equality we may say that C(BBTA*) = C(BB*A*).

(b) < (c). From C (RT — BBTA") C C ((I — RTR)BB") it follows that R(R" — BBTAT) = 0. On the
other hand, we also obtain (I — RTR)(R" — BBTA") = (I — RTR)BBT A" = 0 because C(R*) = C(BB'A*).
Therefore, Rf = BBTA'. The converse part is clear.

(a) & (d) & (e). These equivalences follow by symmetry.

(a) = (f). From Corollary 2.3 it follows that (AB)" = BT A" if and only if
(4.2) BYAT = (I —ec"BJTAT(I — o70),

where J = ATABBT, ¢ = BI(I — J'J), and 0 = (I — JJ")A". Pre-multiplying (4.2) by ATAB and post-
multiplying it by ABBT we obtain J? = J. Now, Lemma 4.4 asserts that J' = BBTATA and, thus, the first
identity in (f) holds.

On the other hand, from the equivalence of (a) and (b) it follows that C(BBYA*) = C(BB* A*) or, equiva-
lently, C(BBTA'A) = C(BB* A*), while the equivalence of (a) and (d) implies that C(ATAB) = C(A*AB) or,
equivalently, C(ATABBT) = C(A* AB). We now recall Lemma 4.4, which tells us that BBTATA = ATABBT,
to conclude C(ATABBT) C C(A*AB) NC(BB*A*).

(f) = (g). This implication is clear.

(g) = (a). We will prove that the Arghiriade requirement for the FOL shown in (1.2) holds. From (g)
it follows that C(ATAB) = C(BBTA*) C C(A*AB) N C(BB*A*). On account of rank equality we conclude
C(A*AB) = C(BB*A*) or, equivalently, C(A*ABB*) = C(BB*A* A). 0

When we have the product AF where F' is an orthogonal projector we obtain the following useful result.

LeEmMMA 4.6. If F' is an orthogonal projector, then the following are equivalent:

(i) (AF)" = FAT. (ia) [A(I—F)t = (- F)Af.
(ii)) ATAF = FATA and C(ATAF) C C(A*AF).
(iii) ATAF = FATA and AFAT' is Hermitian.
() A*AF = FA*A. (iva) A*A(I-F)=(I—- F)A*A.

In which case, AFAT = AAT — 516 with § = (I — F)AT.

Proof. By Theorem 4.5, equivalence between (a) and (g), it follows that (i) < (ii). The equivalence
between (ii) and (iii) is clear.

(ii) < (iv). If C(ATAF) C C(A*AF) then C ((A*A)TF) C C(ATAF). If ATA and F commute then ATAF
is idempotent and (A*A)'F = (ATAF)(A*A)TF = FATA(A*A)'F = F(A*A)TF = F(A*A)T. Tt thus follows
that A*A and F also commute, which prove the necessity. Conversely, pre-multiplying the equality (iv) by
(A*A)T we obtain ATAF = (A*A)IFA*A. Hence, C(ATAF) C C(A*AF) and also we get ATAF = FATA
because (A*A) F = F(A*A).

Finally, by Theorem 2.1 (2.4), it follows that AFAT = AF(AF)! = ATA — 676, where § = (I —
ATAF(ATAFR))TA = (I — F)AT. 0
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