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A MODIFIED NEWTON METHOD FOR A MATRIX POLYNOMIAL

EQUATION ARISING IN STOCHASTIC PROBLEM∗

SANG-HYUP SEO† , JONG-HYEON SEO‡ , AND HYUN-MIN KIM†

Abstract. The Newton iteration is considered for a matrix polynomial equation which arises in stochastic problem. In this

paper, it is shown that the elementwise minimal nonnegative solution of the matrix polynomial equation can be obtained using

Newton’s method if the equation satisfies the sufficient condition, and the convergence rate of the iteration is quadratic if the

solution is simple. Moreover, it is shown that the convergence rate is at least linear if the solution is non-simple, but a modified

Newton method whose iteration number is less than the pure Newton iteration number can be applied. Finally, numerical

experiments are given to compare the effectiveness of the modified Newton method and the standard Newton method.
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1. Introduction. We consider a matrix polynomial equation(MPE) with n-degree defined by

(1.1) P (X) =

n∑
k=0

AkX
k = AnX

n +An−1X
n−1 + · · ·+A1X +A0 = 0,

where the coefficient matrices Ak’s are m ×m matrices. Then, the unknown matrix X must be an m ×m
matrix.

The MPE (1.1) often occurs in the theory of differential equations, system theory, network theory,

stochastic theory, quasi-birth-and-death and other areas [1–4,7, 14,21–23].

Davis [5, 6], and Higham and Kim [15,16] studied the Newton method for a quadratic matrix equation.

Guo and Laub [11] considered a nonsymmetric algebraic Riccati equation, and they proposed iteration

algorithms which converge to the minimal positive solution. In [8], Guo provided a sufficient condition for

the existence of nonnegative solutions of nonsymmetric algebraic Riccati equations. Kim [20] showed that

the minimal positive solutions also can be found by the Newton method with the zero initial matrices in

some different types of quadratic equations. Hautphenne, Latouche, and Remiche [12] studied the Newton

method for the Markovian binary tree.

Seo and Kim [26,27] studied the Newton iteration for a quadratic matrix equation and a matrix polyno-

mial equation. Specially, in [26], they provided a relaxed Newton method whose convergence is faster than

the pure one. Guo and Lancaster [10] analyzed and provided a modification about Newton’s method for

algebraic Riccati equations. They showed that the modification of Newton’s method is better than the pure

one if the minimal nonnegative solution is non-simple.
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Assumption 1.1. For the MPE (1.1), the following hold:

1) The coefficient matrices Ak’s are nonnegative except A1.

2) −A1 is a nonsingular M -matrix.

3) A0, A1, and
∑n

k=2Ak are irreducible.

The goal of this paper is to propose a modified Newton method of the MPE (1.1) which satisfies

Assumption 1.1. This MPE is useful for stochastic theory, quasi-birth-and-death area, and so on. The

modified Newton method is better than the pure Newton’s method if the elementwise minimal positive

solution is non-simple. The idea of the modified Newton method is from the modification of Newton’s

method for algebraic Riccati equtions of [10]. In [10], Guo and Lancaster showed that ‖Yi+1 − S‖ < cε for

the modified iteration Yi+1, the solution S, a constant c > 0, and small ε > 0. On the other hand, we

show that the modified Newton iteration Yi+1 for the MPE is closer to the solution S than the pure Newton

iteration Xi+1.

We start with some basic definitions.

Definition 1.2. Let a matrix A ∈ Rm×m. A is an Z-matrix if all its off-diagonal elements are nonpos-

itive.

It is clear that any Z-matrix A can be written as sI − B with B ≥ 0 and s ∈ R. Then M -matrix can

be defined as follows.

Definition 1.3. A matrix A ∈ Rm×m is an M -matrix if A = rI − B for some nonnegative matrix

B with r ≥ ρ(B) where ρ is the spectral radius; it is a singular M -matrix if r = ρ(B) and a nonsingular

M -matrix if r > ρ(B).

The following result is well known and can be found in [9] and [25] for example.

Theorem 1.4. For a Z-matrix A, the following are equivalent:

1. A is a nonsingular M -matrix.

2. A−1 is nonnegative.

3. Av > 0 for some vector v > 0.

4. All eigenvalues of A have positive real parts.

Definition 1.5. A positive solution S1 of the matrix equation P (X) = 0 is the elementwise minimal

positive solution and a positive solution S2 of P (X) = 0 is the elementwise maximal positive solution if, for

any positive solution S of P (X),

(1.2) S1 ≤ S ≤ S2.

Similarly, if nonnegative solutions S1 and S2 satisfy (1.2) for any nonnegative solution S, S1 is called the

elementwise minimal nonnegative solution and S2 is called the elementwise maximal nonnegative solution.

Definition 1.6. [18, Definitions 4.2.1 and 4.2.9] The Kronecker product of A = [aij ] ∈ Cm×n and

B = [bij ] ∈ Cp×q is denoted by A⊗B and is defined to be the block matrix

A⊗B =

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 ∈ Cmp×nq.
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The vec operator vec : Cm×n → Cmn is defined by

vec(A) =
[
aT
1 aT

2 · · · aT
n

]T
,

where aT
i =

[
a1i a2i · · · ani

]
.

Lemma 1.7. [18, Lemma 4.3.1] Let A ∈ Cm×n, B ∈ Cp×q, and C ∈ Cm×q be given and let X ∈ Cn×p

be unknown. The matrix equation

(1.3) AXB = C

is equivalent to the system of qm equations in np unknowns given by

(1.4) (BT ⊗A)vec(X) = vec(C),

that is, vec(AXB) = (BT ⊗A)vec(X).

Definition 1.8. Let a matrix function F : Cm×n → Cm×n be given, and let a matrix equation

(1.5) F (X) = 0

be given. Then, a solution S ∈ Cm×n of (1.5) is called simple if the Fréchet derivative of F at S is nonsingular.

To reach our goal, in Section 2, we study the minimal nonnegative solution S of (1.1) and the Fréchet

derivative of P in (1.1) at S, and we show the convergence of the Newton iteration for (1.1). We give an

analysis about Newton’s method for the non-simple minimal nonnegative solution S, in Section 3. In Section

4, we propose a modified Newton method which is better for finding the minimal nonnegative solution S.

Finally, we give some numerical experiments, in Section 5.

For convenience, the notation || · || is used instead of the Frobenius norm || · ||F and N0 is used as N∪{0}
because the Frobenius norm and N0 are used very frequently in this paper.

2. Convergence of Newton’s method for an MPE. In this section, we introduce a sufficient

condition of the existence of the minimal nonnegative solution of the MPE (1.1) with Assumption 1.1, and

give some analysis for Newton’s method.

Theorem 2.1. [24, Theorem 2.1] Let the MPE (1.1) with 1) and 2) in Assumption 1.1 be given. Then,

there exists the minimal nonnegative solution if

(2.6) B = −
n∑

k=0

Ak is a nonsingular or singular irreducible M -matrix.

The Fréchet derivative of the matrix polynomial equation (1.1) at X in the direction H is given by

(2.7) P ′X(H) =

n∑
k=1

k−1∑
l=0

AkX
lHXk−l−1.

The second Fréchet derivative of the quadratic matrix equation (1.1) at X is given by

(2.8) P ′′X(K,H) =

n∑
k=2

k−2∑
l=0

l∑
j=0

Ak

(
X lHXjKXn−l−j−2 +X lKXjHXn−l−j−2) .
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For the equation (1.1), each step of the Newton iteration with given X0 can be written as

(2.9) Xi+1 = Xi − P ′−1Xi
(P (Xi))

if P ′Xi
is invertible for all i ∈ N0.

(2.9) can be separated into two parts as

(2.10)

{
P ′Xi

(Hi) = −P (Xi),

Xi+1 = Xi +Hi,
i = 1, 2, . . .

The general approach for solving (2.10) is to solve the m2 × m2 linear system derived by Lemma 1.7

such as

P ′Xi
vec(Hi) = vec(−P (Xi)),

where

(2.11) P ′X =

n∑
k=1

k−1∑
l=0

(Xk−l−1)T ⊗AkX
l.

Theorem 2.2. Suppose that the MPE (1.1) satisfies Assumption 1.1 and (2.6). Then, the Newton

sequence {Xi} with X0 = 0 is well defined, is monotone nondecreasing, and converges to the elementwise

minimal positive solution S. Furthermore, −P ′Xi
is a nonsingular irreducible M -matrix for i ∈ N, and −P ′S

is an irreducible M -matrix.

Proof. According to the proof of [24, Theorem 2.1], the elementwise minimal nonnegative solution S of

(1.1) is the limit of the monotone nondecreasing sequence {XG
i }∞i=0 which is defined byX

G
i+1 = G(XG

i ),

XG
0 = 0,

where

G(X) = −A−11

(
n∑

k=2

AkX
k +A0

)
.

Since XG
1 = −A−11 A0 > 0, the solution S is also positive. Thus, S ∈ {Y ∈ Rm×m|Y > 0, F (Y ) ≤ 0}.

From [26, Theorem 2.9], the Newton sequence {Xi} with X0 = 0 is well-defined, monotone nondecreasing,

and converges to the elementwise minimal positive solution S. Moreover,

−P ′Xi
= −

n∑
k=1

k−1∑
l=0

(Xk−l−1
i )T ⊗AkX

l
i

is a nonsingular M -matrix for each i ∈ N0.

Now, it is sufficient to show that −P ′Xi
is irreducible for i ∈ N. Since X1 = −A−11 A0 > 0 and Ap ≥ 0

for all p ≥ 2,

n∑
k=2

k−1∑
l=0

(Xk−l−1
i )T ⊗AkX

l
i ≥

n∑
k=2

(Xk−1
i )T ⊗Ak ≥ 0.
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From that Xi > 0, we obtain that
∑n

k=2(Xk−1
i )T ⊗ Ak is irreducible if and only if

∑n
k=2 1m×m ⊗ Ak =

1m×m ⊗ (
∑n

k=2Ak) is irreducible. Since
∑n

k=2Ak is irreducible,

n∑
k=2

k−1∑
l=0

(Xk−l−1
i )T ⊗AkX

l
i

is an irreducible nonnegative matrix. Therefore,

−P ′Xi
= −Im ⊗A1 −

n∑
k=2

k−1∑
l=0

(Xk−l−1
i )T ⊗AkX

l
i

is also irreducible.

The next theorem follows directly from Theorem 2.2 and the well known local quadratic convergence of

Newton’s method.

Theorem 2.3. If the matrix −P ′S in Theorem 2.2 is nonsingular, then for X0 = 0, the Newton sequence

{Xi} converges to S, quadratically.

3. Analysis for the singular M-matrix −P ′S. According to Theorem 2.3, the Newton iteration (2.9)

converges quadratically if −P ′S is nonsingular. In this section, we will see the convergence rate of (2.9) when

−P ′S is a singular M -matrix. If P ′S is not invertible, then P ′S has a null space N = Ker(P ′S) and closed range

M = Im(P ′S). Suppose that the direct sum N ⊕M = Rm×m. Then, we can define PN to be the projection

onto N parallel to M and PM = I − PN . For a nonzero matrix N0 ∈ N , define the map BN0
: N → N

given by

(3.12) BN0(N) = PNP
′′
S (N0, N).

In fact, BN0
is a linear map. The main result of this section is an application of the following theorem which

shows the local convergence and the convergence rate of Newton’s method under some conditions.

Theorem 3.1. (cf. [10, Theorem 1.5], [19, Theorem 1.1]) Let BN0
in (3.12) be invertible for some nonzero

N0 ∈ N , N = span{N0} ⊕ N1 for some subspace N1, and let

(3.13) W (ρ, θ, η) =

{
X

∣∣∣∣ 0 < ‖X − S‖ < ρ, ‖PM(X − S)‖ ≤ θ‖PN (X − S)‖,
‖(PN −P0)(X − S)‖ ≤ η‖PN (X − S)‖

}
,

where P0 is the projection onto span{N0} parallel to N1⊕M. If X0 ∈W (ρ0, θ0, η0) for ρ0, θ0, η0 sufficiently

small, then the Newton sequence {Xi} is well defined and ‖P ′−1Xi
‖ ≤ c‖Xi − S‖−1 for all i ≥ 1 and some

constant c > 0. Moreover,

lim
i→∞

‖Xi+1 − S‖
‖Xi − S‖

=
1

2
, lim

i→∞

‖PM(Xi − S)‖
‖PN (Xi − S)‖2

= 0.

To analyze convergence of Newton’s method when −P ′S is singular, we will show that (1.1) satisfies the

conditions of Theorem 3.1. From this point, for convenience, we let X̃i = Xi − S.

Lemma 3.2. Suppose the matrix polynomial equation (1.1) satisfies Assumption 1.1. If the matrix −P ′S
is a singular M -matrix, then 0 is a simple eigenvalue of −P ′S, N ⊕M = Rm×m, N is one-dimensional and

the map BN0
is invertible for some nonzero N0 ∈ N .
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Proof. Since S is positive and Ak’s are irreducible, −P ′S is irreducible. Then, by Perron-Frobenius

Theorem [17, Theorem 8.4.4], 0 is a simple eigenvalue of P ′S with a positive eigenvector. Thus, we can find

n2 linearly independent vectors χ1, χ2, . . . , χn2 such that χ1 > 0 and

(3.14) X−1P ′SX =

[
0 0

0 D

]
, where X =

 χ1 χ2 · · · χn2


and D is an (n2 − 1) × (n2 − 1) nonsingular matrix. By the same way, we also have a positive vector

ψ such that ψTP ′S = 0. Now, P ′S(N) = 0 if and only if P ′Svec(N) = 0. From (3.14), P ′Svec(N) = 0 if

and only if vec(N) ∈ span(χ1), in which case we write N = avec−1(χ1) for some nonzero a ∈ R. Thus,

N = span(vec−1(χ1)). Similarly, M = span(vec−1(χ2), . . . , vec−1(χn2)). Therefore, N is one-dimensional

and Rm×m = N ⊕M.

To prove the map BN0 is invertible for a nonzero matrix N0 ∈ N , we only need to show that

PN (P ′′S (N0, N)) 6= 0,

for all nonzero N ∈ N because BN0
is linear and N is one-dimensional. Since vec−1(χ1) > 0 and S > 0, we

have

P ′′S (N0, N) =

n∑
k=2

k−2∑
l=0

l∑
j=0

Ak

(
SlN0S

jNSn−l−j−2 + SlNSjN0S
n−l−j−2)

= 2ab

n∑
k=2

k−2∑
l=0

l∑
j=0

Ak

(
Slvec−1(χ1)Sjvec−1(χ1)Sn−l−j−2) 6= 0,

where N = avec−1(χ1) and N0 = bvec−1(χ1). Moreover, P ′′S (N0, N) is either positive or negative.

On the other hand,

vec (P ′′S (N0, N)) = k1χ1 + k2χ2 + · · ·+ kn2χn2

for some real numbers k1, k2, . . . , kn2 . By Fundamental theorem of linear algebra in [28] and Lemma 6.3.10

in [17], we have

(3.15) ψT vec (P ′′S (N0, N)) = k1ψ
Tχ1.

Since P ′′S (N0, N) is either positive or negative and ψ is positive, the left side of (3.15) is also either positive

or negative. So, k1 cannot be zero. Therefore,

PN (P ′′S (N0, N)) = k1vec−1(χ1) 6= 0.

Lemma 3.3. Let S be the minimal positive solution of (1.1) with Assumption 1.1, and let {Xi}∞i=0 be a

Newton sequence in (2.9). Then,

‖P (Xi)‖ ≤ a‖X̃i‖2 + b‖X̃i‖‖X̃i−1‖+ c‖X̃i−1‖2

for some positive real numbers a, b, c.

Proof. From Taylor’s Theorem and putting S = Xi−1 − X̃i−1, we have

(3.16) P (Xi) = P (S) + P ′S(Xi − S) +O(‖Xi − S‖2),
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and

0 = P (S) = P (Xi−1 − X̃i−1) = P (Xi−1)− P ′Xi−1
(X̃i−1) +O(‖X̃i−1‖2),

which is equivalent to

(3.17) − P (Xi−1) + P ′Xi−1
(X̃i−1) = O(‖X̃i−1‖2).

From (2.10), we have

(3.18) 0 = P ′Xi−1
(Xi −Xi−1) + P (Xi−1),

and clearly,

(3.19) Xi −Xi−1 = X̃i − X̃i−1.

If we subtract (3.18) from (3.16) and substitute (3.17), we obtain

P (Xi) = P (S) + P ′S(X̃i)− P (Xi−1)− P ′Xi−1
(X̃i − X̃i−1) +O(‖X̃i‖2)

= P ′S(X̃i)− P ′Xi−1
(X̃i) +O(‖X̃i‖2) +O(‖X̃i−1‖2).

Putting S = Xi−1 − X̃i−1 in the previous equality,

P (Xi) =

n∑
k=1

k−1∑
l=0

Ak(Xi−1 − X̃i−1)lX̃i(Xi−1 − X̃i−1)k−l−1

− P ′Xi−1
(X̃i) +O(‖X̃i‖2) +O(‖X̃i−1‖2)

=

n∑
k=1

k−1∑
l=0

AkX
l
i−1X̃iX

k−l−1
i−1 +O(‖X̃i‖‖X̃i−1‖)

− P ′Xi−1
(X̃i) +O(‖X̃i‖2) +O(‖X̃i−1‖2)

= P ′Xi−1
(X̃i) +O(‖X̃i‖‖X̃i−1‖)− P ′Xi−1

(X̃i) +O(‖X̃i‖2) +O(‖X̃i−1‖2)

= O(‖X̃i−1‖2) +O(‖X̃i‖‖X̃i−1‖) +O(‖X̃i‖2).

Since ‖ · ‖ is a multiplicative matrix norm on Rm×m, we have required result.

Lemma 3.4. For any fixed θ > 0, let

Q = {i ∈ N ∪ {0}|‖PM(X̃i)‖ > θ‖PN (X̃i)‖}

where {Xi} is the Newton sequence in Theorem 2.2. Then, there exist an integer i0 and a constant c > 0

such that ‖X̃i‖ ≤ c‖X̃i−1‖2 for all i ≥ i0 in Q.

Proof. Using Taylor’s Theorem and the fact that P ′S

(
PN (X̃i)

)
= 0,

(3.20) P (Xi) = P (S) + P ′S(X̃i) +O(‖X̃i‖2) = P ′S

(
PM(X̃i)

)
+O(‖X̃i‖2).

Since P ′S |M :M→M is invertible,
∥∥∥P ′S (PM(X̃i)

)∥∥∥ ≥ c1‖PM(X̃i)‖ for some constant c1 > 0. For i ∈ Q,

we have

‖X̃i‖ ≤
∥∥∥PM(X̃i)

∥∥∥+
∥∥∥PN (X̃i)

∥∥∥ ≤ (θ−1 + 1)
∥∥∥PM(X̃i)

∥∥∥ .
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Thus, by (3.20),

(3.21) ‖P (Xi)‖ ≥ c1‖PM(X̃i)‖ − c2‖X̃i‖2 ≥ c1(θ−1 + 1)−1‖X̃i‖ − c2‖X̃i‖2.

On the other hand, from Lemma 3.3, we have

‖P (Xi)‖ ≤ c3‖X̃i‖2 + c4‖X̃i−1‖‖X̃i‖+ c5‖X̃i−1‖2.

From (3.21) and the fact that Xi 6= S for any i, we have

c1(θ−1 + 1)−1 − c2‖X̃i‖ ≤ c3‖X̃i‖+ c4‖X̃i−1‖+ c5
‖X̃i−1‖2

‖X̃i‖
.

Since X̃i converges to 0 by Theorem 2.2, we can find an i0 such that ‖X̃i‖ ≤ c‖X̃i−1‖2 for all i ≥ i0.

Corollary 3.5. Assume that, for given θ > 0, ‖PM(X̃i)‖ > θ‖PN (X̃i)‖ for all i large enough. Then

Xi → S quadratically.

When P ′S is singular practically the Newton sequence converges linearly, according to the corollary we

conclude that the error will generally be dominated by its N component [10]. From Lemmas 3.2 and 3.4 we

have the following main theorem.

Theorem 3.6. If −P ′S is a singular M -matrix and the convergence rate of the Newton sequence {Xi}
in Theorem 2.2 is not quadratic, then ‖P ′−1Xi

‖ ≤ c‖X̃i‖−1 for all i ≥ 1 and some constant c > 0. Moreover,

lim
i→∞

‖X̃i+1‖
‖X̃i‖

=
1

2
, lim

i→∞

‖PM(X̃i)‖
‖PN (X̃i)‖2

= 0.

4. A modified Newton method. Under the conditions in Theorem 3.6, the convergence rate of

the Newton sequence is 1/2. Furthermore, ‖PM(X̃i)‖/‖PN (X̃i)‖2 converges to 0, i.e., ‖PM(X̃i0)‖ <

ε‖PN (X̃i0)‖ holds for sufficiently small ε > 0 and large integer i0 to make ‖PN (X̃i0)‖ < 1. Intuitivley,

we understand that PM(X̃i0) is almost terminated, and {X̃i}∞i=i0
is located near a one-dimensional subspace

N . Then, we will give a modified Newton method which has faster convergence than the pure one.

Lemma 4.1. Let {Xi} be the Newton sequence in Theorem 2.2, and let the derivative P ′S be singular.

Suppose that there exists i0 ∈ N0 such that i ≥ i0 implies that

(4.22) ‖PM(X̃i)‖ < ε‖PN (X̃i)‖,

for 0 < ε ≤ 1. Then, PN (X̃i) is negative for i ≥ i0.

Proof. From the proof of Lemma 3.2, V1 := vec−1(χ1) is a positive basis for N . Let ci,1 be a scalar such

that PN (X̃i) = ci,1V1. Suppose that ci,1 ≥ 0. Then, PN (X̃i) ≥ 0. Since PN (X̃i) + PM(X̃i) = X̃i ≤ 0, we

obtain that 0 ≤ PN (X̃i) ≤ −PM(X̃i). Thus,

(4.23) ‖PN (X̃i)‖ ≤ ‖PM(X̃i)‖ < ε‖PN (X̃i)‖.

It means that ε > 1, i.e., it contradicts the hypothesis. Therefore, ci,1 < 0 and PN (X̃i) < 0.

Consider a polynomial f(x) = px3 + 2px2 + (9p + 1)x − 1 for p > 0. Since f(0) = −1 and f(1) = 12p,

f has a root in the interval (0, 1). From that f ′(x) = 3px2 + 4px+ 9p+ 1 > 0 for all x > 0, f is monotone

increasing in (0, 1), i.e., the root t of f in (0, 1) is unique. Hence, for x ∈ (0, t), it holds that

(4.24)
9x+ 2x2 + x3

1− x
<

1

p
.
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The previous inequality is useful to prove the following theorem.

Theorem 4.2. Let Yi+1 = Xi − 2P ′−1Xi
(P (Xi)), p = ‖PN ‖, and let ε ∈ (0, t) be given where t is the real

root of f(x) = px3 + 2px2 + (9p+ 1)x− 1 in (0, 1). Suppose that i ≥ i0 implies that

(4.25)

∣∣∣∣∣ ‖X̃i‖
‖X̃i+1‖

− 2

∣∣∣∣∣ < ε, ‖PM(X̃i)‖ < ε‖PN (X̃i)‖

for some i0 ∈ N0. Then, for i ≥ i0,

(4.26) ‖Yi+1 − S‖ < ‖X̃i+1‖.

Proof. From the definition of Yi+1, we get that

Yi+1 − S = Xi − 2P ′−1Xi
(P (Xi))− S

= 2
(
Xi − P ′−1Xi

(P (Xi))
)
−Xi − S

= 2Xi+1 −Xi − 2S + S

= 2X̃i+1 − X̃i.

So, we will show that ‖2X̃i+1 − X̃i‖ < ‖X̃i+1‖. From the hypothesis, we obtain that

(4.27) (1− ε)‖PN (X̃i)‖ < ‖X̃i‖ < (1 + ε)‖PN (X̃i)‖.

It yields two following inequalities,

(4.28)

2− ε < ‖X̃i‖
‖X̃i+1‖

<
(1 + ε)‖PN (X̃i)‖

(1− ε)‖PN (X̃i+1)‖
,

(1− ε)‖PN (X̃i)‖
(1 + ε)‖PN (X̃i+1)‖

<
‖X̃i‖
‖X̃i+1‖

< 2 + ε.

From the previous two inequalities, we get the inequality

(4.29)
(2− ε)(1− ε)

1 + ε
<
‖PN (X̃i)‖
‖PN (X̃i+1)‖

=
ci,1
ci+1,1

<
(2 + ε)(1 + ε)

1− ε
,

where ci,1 and ci+1,1 are scalars which are in the proof of Lemma 4.1, i.e., they are negative. It is obtained

that

(4.30)
−5ε+ ε2

1 + ε
(−ci+1,1) < 2ci+1,1 − ci,1 <

5ε+ ε2

1− ε
(−ci+1,1).

Since
5ε+ ε2

1− ε
− 5ε− ε2

1 + ε
is positive for 0 < ε < 1,

(4.31) |2ci+1,1 − ci,1| <
5ε+ ε2

1− ε
|ci+1,1|.
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Therefore, we get the following inequality,

‖2X̃i+1 − X̃i‖ = ‖2PN (X̃i+1)−PN (X̃i) + 2PM(X̃i+1)−PM(X̃i)‖
≤ ‖2PN (X̃i+1)−PN (X̃i)‖+ ‖2PM(X̃i+1)‖+ ‖PM(X̃i)‖
< ‖2PN (X̃i+1)−PN (X̃i)‖+ 2ε‖PN (X̃i+1)‖+ ε‖PN (X̃i)‖
= |2ci+1,1 − ci,1|‖V1‖+ 2ε‖PN (X̃i+1)‖+ ε‖PN (X̃i)‖(4.32)

<
5ε+ ε2

1− ε
|ci+1,1|‖V1‖+ 2ε‖PN (X̃i+1)‖+

(2 + ε)(1 + ε)

1− ε
ε‖PN (X̃i+1)‖

=
5ε+ ε2

1− ε
‖PN (X̃i+1)‖+ 2ε‖PN (X̃i+1)‖+

(2 + ε)(1 + ε)

1− ε
ε‖PN (X̃i+1)‖

=
9ε+ 2ε2 + ε3

1− ε
‖PN (X̃i+1)‖

≤ 9ε+ 2ε2 + ε3

1− ε
p‖X̃i+1‖.

Since ε ∈ (0, t),
9ε+ 2ε2 + ε3

1− ε
<

1

p
holds,

(4.33) ‖Yi+1 − S‖ = ‖2X̃i+1 − X̃i‖ < ‖X̃i+1‖.

The theoretical result in Theorem 4.2 suggests a modified Newton method, as in [10] for algebraic Riccati

equations. The main ideas of the algorithm are that we choose Xi+1 as the next step of Xi if ‖P (Yi+1)‖ ≥ η
for given tolerance η and the iteration is terminated if ‖P (Xi+1)‖ < η or ‖P (Yi+1)‖ < η.

Algorithm 4.3. The Modified Newton Method for the Matrix Polynomial Equations for the given

tolerance η.

1. X0 ← 0;

2. Calculate H such that P ′X0
vec(H) = −vec(P (X0));

3. X0 ← X0 + 2H;

4. If ‖P (X0)‖ < η, then go to step 7;

5. X0 ← X0 −H;

6. If ‖P (X0)‖ ≥ η, then go to step 2;

7. S ← X0.

5. Numerical experiments. In this section, we compare the effectiveness of the modified Newton

method and the pure one for the MPE. The experiments are made with MATLAB R2016a. The tolerance of

the algorithm of Newton’s method is given by η = m×10−16 and we will stop the iteration if ‖P (Xi+1)‖ < η.

Example 5.1. This example is given to check Theorem 4.2, theoretically. So, we give the example whose

solution is easy to be found, and the calculations of the iterations in the experiments are computed up to

100 digits with vpa function. Let an MPE (1.1) with degree n = 6 be given with the following coefficients

(5.34)


Ak = akW, for k = 0, 2, 3, 4, 5,

A1 = a1W − Im,
A6 = W,
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where

(5.35) W =
1

6200(m− 1)
(1m×m − Im) and


a0 = 4096, a1 = 56,

a2 = 384, a3 = 1312,

a4 = 321, a5 = 30.

Then, Ak’s satisfy Assumption 1.1 and (2.6). Hence, the MPE has the minimal positive solution S.

Let m = 3. Then, the minimal nonnegative solution

S =



2r + 1

3

1− r
3

1− r
3

1− r
3

2r + 1

3

1− r
3

1− r
3

1− r
3

2r + 1

3


,

where r ≈ −0.3287191 which is the nearest real root to 0 of the equation x6 + 30x5 + 321x4 + 1312x3 +

384x2 + 12456x+ 4096 = 0. Furthermore, −P ′S is a singular M -matrix. Therefore, we can calculate PN and

PM, easily. In this example, in fact, −P ′S is symmetric, so, PN and PM are orthogonal projections, i.e.,

p = ‖PN ‖ = 1. Thus, t ≈ 0.097985683 is the real root of x3 + 2x2 + 10x− 1.

If we calculate the Newton iteration {Xi}∞i=1 in (2.9) with X0 = 0 and {Yi}∞i=1 in Theorem 4.2, then

we obtain Figures 1, 2, 3 as results of
∣∣∣ ‖X̃i‖
‖X̃i+1‖

− 2
∣∣∣, ‖PN (X̃i)‖, ‖PM(X̃i)‖, ‖Xi − S‖, and ‖Yi − S‖. Figure

1 shows that
∣∣∣ ‖X̃i‖
‖X̃i+1‖

− 2
∣∣∣ < t if i ≥ 2. From Figure 2, we get that ‖PM(X̃i)‖ < t‖PN (X̃i)‖ when i ≥ 1.

Finally, we see that ‖Yi − S‖ < ‖Xi − S‖ for i ≥ 2 through Figure 3.

This experiment shows that, for given i, Yi is closer to the solution than Xi if it satisfies the conditions

of Theorem 4.2. Furthermore, we obtain that Yi’s for i ≥ 13 are closer to the solution than any Xi’s. It

means that we do not need to compute Xi for i ≥ 13 since Y13 is thought to be a “numerical” minimal

nonnegative solution which is close sufficiently to the “mathematical” minimal nonnegative solution.

Example 5.2. (cf. [13, Example 1]) In this example, we use Algorithm 4.3 for the following MPEs and

m = 8. Let MPEs

Q(X) = W0 + (W1 − Im)X +W2X
2 = 0,(5.36)

R(X) = W3 + (W4 − Im)X +W5X
2 = 0(5.37)

be given, where Wk is a random nonnegative matrix which has null diagonal entries and positive off-diagonal

entries such that Wk1m = 1
31m for k = 0, 1, 2, W31m = 1

21m, and Wk1m = 1
41m for k = 4, 5. Since

I −
2∑

k=0

Wk and I −
5∑

k=3

Wk are singular irreducible M -matrices and the coefficients satisfy Assumption 1.1,

(5.36) and (5.37) have the minimal positive solutions.

We run the pure Newton algorithm(PNA) and the modified Newton algorithm(MNA) 300 times with

X0 = 0, for (5.36) and (5.37) respectively. All of the 300 experiments are run with different coefficients.

Averages of the iteration numbers are given in Table 1.
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0 5 10 15 20 25 30
10 -10

10 -5

100

t--- k ~Xik
k ~Xi+1k

! 2
---

Figure 1. Checking which i satisfies

∣∣∣∣∣ ‖X̃i‖
‖X̃i+1‖

− 2

∣∣∣∣∣ < t.

0 5 10 15 20 25 30
10 -30

10 -25

10 -20

10 -15

10 -10

10 -5

100

tkPN ( ~Xi)k
kPM( ~Xi)k

Figure 2. Checking which i satisfies ‖PM(X̃i)‖ < t‖PN (X̃i)‖.

PNA MNA

Q(X) = 0 26 10.99

R(X) = 0 7 7
Table 1

Averages of the iteration numbers.

For (5.36), MNA finds the solution faster than PNA. But, for (5.37), the iteration numbers of MNA and

PNA are same. Figure 4 shows that the solution SQ of (5.36) is numerically non-simple and the solution SR
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0 5 10 15 20 25 30
10 -20

10 -15

10 -10

10 -5

100

105

kXi ! Sk
kYi ! Sk

Figure 3. Comparison with ‖Xi − S‖ and ‖Yi − S‖.

0 5 10 15 20 25
10-10

10-8

10-6

10-4

10-2

100
log(jjXi ! Ŝjj = jjŜjj)

R(X) = 0

Q(X) = 0

Figure 4. Relative errors of PNA iterations with the numerical solution ŜQ and ŜR from (5.36) and (5.37), respectively.

of (5.37) is simple. We can see from Table 1 that MNA is significantly more efficient than PNA for finding

non-simple solutions.
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