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ON THE LARGEST DISTANCE (SIGNLESS LAPLACIAN) EIGENVALUE

OF NON-TRANSMISSION-REGULAR GRAPHS∗

SHUTING LIU† , JINLONG SHU† , AND JIE XUE†

Abstract. Let G = (V (G), E(G)) be a connected graph with n vertices and m edges. Let D(G) be the distance matrix

and λ1(D) be the distance spectral radius of G, respectively. The transmission Tr(vi) of vi ∈ V (G) is the sum of distances from

vi to all other vertices of G, i.e., the row sum Di of D(G) indexed by vertex vi. Let Tr(G) be the n× n diagonal matrix whose

(i, i)-entry is equal to Tr(vi). The distance signless Laplacian matrix of G is defined as DQ(G) = Tr(G)+D(G) and its spectral

radius is denoted by ρ1(DQ). A connected graph G is t-transmission-regular if Tr(vi) = t for every vertex vi ∈ V (G); otherwise,

G is non-transmission-regular. Suppose D1 is the maximum row sum of D(G). In this paper, D1 − λ1(D) and 2D1 − ρ1(DQ)

are estimated in different ways for a k-connected non-transmission-regular graph. These obtained results are compared, and it

is conjectured that D1 − λ1(D) > 1
n+1

. Moreover, it is shown that the conjecture holds for trees.

Key words. Distance (signless Laplacian) spectral radius, Maximum row sum, Connectivity, Non-transmission-regular
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1. Introduction. Unless stated otherwise, we follow [2] for the terminology and notation and consider

finite connected simple graphs throughout this article. Let G = (V (G), E(G)) be a connected graph with n

vertices and m edges. The vertex degree of vi ∈ V (G), denoted by d(vi), is the number of edges incident

with vi. We use N(vi) or NG(vi) to denote the neighbor set of vertex vi ∈ V (G). The distance between

the vertices vi and vj is the length of a shortest path between them, and is denoted by d(vi, vj) (or dij).

The diameter of G, denoted by diam(G) or d, is the maximum distance between any pair of vertices of G.

The (vertex) connectivity κ(G) of G is the minimum number of vertices whose removal from G results in a

disconnected or trivial graph. A graph G is k-connected if κ(G) ≥ k.

The distance matrix of G is the n×n matrix D(G) = (d(vi, vj)), where vi, vj ∈ V (G). The spectrum of

distance matrix, arose from a data communication problem studied in [7] by Graham and Pollack in 1971,

has been studied extensively (see [1, 9, 10, 11, 12, 13, 22]). The eigenvalues, eigenvectors and spectrum of

D(G) are the D-eigenvalues, D-eigenvectors and D-spectrum of G, respectively. The distance matrix D(G)

is symmetric, so all of its eigenvalues are real, say λi(D), i = 1, 2, . . . , n. Then the distance eigenvalues

have an ordering λ1(D) ≥ λ2(D) ≥ · · · ≥ λn(D). The largest eigenvalue of the distance matrix is called the

distance spectral radius, denoted by λ1(D). The unique unit positive eigenvector corresponding to λ1(D)

is called the principal eigenvector of D(G).

For vi ∈ V (G), the transmission of vi in G, denoted by Tr(vi), is the sum of distances from vi to all

other vertices of G, i.e., the row sum Di(G) of D(G) indexed by vertex vi, i.e.,

Tr(vi) =
∑

vj∈V (G)

d(vi, vj).
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For convenience, we suppose Tr(v1) = D1(G) ≥ · · · ≥ Dn(G) = Tr(vn). A connected graph G is t-

transmission-regular if Tr(vi) = t for every vertex vi ∈ V (G); otherwise, G is non-transmission-regular.

The Wiener index ([8]) of G, denoted by W (G), is given by W (G) = 1
2

∑n
i=1Di(G).

Let Tr(G) be the n×n diagonal matrix with its (i, i)-entry equal to Tr(vi). The distance signless Lapla-

cian matrix of G is defined by Aouchiche and Hansen in [1] as DQ(G) = Tr(G) +D(G). The largest eigen-

value of the distance signless Laplacian matrix is called the distance signless Laplacian spectral radius,

and is denoted by ρ1(DQ). The unique unit positive eigenvector corresponding to ρ1(DQ) is called the

principal eigenvector of ρ1(DQ).

It is easy to see that the adjacency spectral radius, denoted by µ1(A), of a regular graph is the maximum

degree ∆ with (1, 1, . . . , 1)T as a corresponding eigenvector. ∆ − µ1(A) has been considered as a measure

of irregularity for a graph G ([6], p. 242). Some estimates on ∆− µ1(A) for a connected irregular graph G

have been obtained in many papers. Next we will list some of these known estimates on ∆− µ1(A). Let G

be a k-connected irregular graph with n vertices, m edges, diameter d, maximum degree ∆ and minimum

degree δ. In [21], Stevanović first derived

(1.1) ∆− µ1(A) >
1

2n(n∆− 1)∆2
.

Later, Zhang [23] showed that

(1.2) ∆− µ1(A) >
∆ + δ − 2

√
∆δ

nd∆
≥

2∆− 1− 2
√

∆(∆− 1)

n(n− 1)∆
,

and improved Stevanović’s bound in (1.1). Liu, Shen and Wang in [16] obtained the following bound:

(1.3) ∆− µ1(A) ≥ ∆ + 1

n(3n+ 2∆− 4)
.

Later, bound (1.3) was improved by Liu and Li in [15] as follows:

(1.4) ∆− µ1(A) >
∆ + 1

n(3n+ ∆− 8)
.

Furthermore, Liu, Huang and You in [14] established the following bound which improves (1.4), i.e.,

∆− µ1(A) >
∆ + 1

n(3n+ ∆− 3δ − 5)
.

Cioabă, Gregory and Nikiforov in [5] showed that

∆− µ1(A) >
n∆− 2m

n(d(n∆− 2m) + 1)
≥ 1

n(d+ 1)
,

which improves bounds (1.1) and (1.2). Moreover, the authors in [5] conjectured that

(1.5) ∆− µ1(A) >
1

nd
.

Later, Cioabă [4] confirmed the conjecture. In [19], Shi pointed out that there is no much room to im-

prove bound (1.5) with an example. However, considering degree parameters, he established another strong

inequality as follows:

(1.6) ∆− µ1(A) >

[
(n− δ)d+

1

∆− d
−
(
d

2

)]−1
,
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where d is the average degree of G. Taking connectivity parameter into account, Chen and Hou [3] gave the

following bound, which sometimes improves (1.5) and (1.6):

(1.7) ∆− µ1(A) >
(n∆− 2m)k2

(n∆− 2m)[n2 − 2(n− k)] + nk2
.

Let q1(Q) be the signless Laplacian spectral radius of G. It is known that q1(Q) ≤ 2∆ and equality

holds if and only if G is a regular graph. Let G be a k-connected irregular graph with n vertices, m edges,

diameter d, maximum degree ∆. Ning et al. in [18] proved that

(1.8) 2∆− q1(Q) >
1

n(d− 1
4 )
.

In [20], Wai Chee Shiu et al. established a lower bound on 2∆− q1(Q) similar to (1.7), i.e.,

(1.9) 2∆− q1(Q) >
2(n∆− 2m)k2

2(n∆− 2m)(n2 − (∆− k + 2)(n− k)) + nk2
.

The authors in [20] also indicated that when k ≥
√
n, the bound in (1.9) is better than the bound in (1.8)

and with the same arguments they improved the bound in (1.8), which were given in their remarks.

2. Main results. Motivated by these known estimates on ∆−µ1(A) and 2∆−q1(Q) and some methods

used in estimating them, we pose and consider the following two natural questions:

How small can D1(G)− λ1(D) be when G is non-transmission-regular?

How small can 2D1(G)− ρ1(DQ) be when G is non-transmission-regular?

Meanwhile, we give some estimates on them in different ways and compare these obtained results in this

paper.

Let x = (x1, x2, . . . , xn)T be the principal eigenvector of D(G). Suppose that u, v are two vertices

satisfying xu = max1≤i≤n{xi} and xv = min1≤i≤n{xi}, respectively. Suppose u = 0, 1, . . . , s = v are

consecutive vertices of a shortest path Puv from u to v in G and the length of Puv is s. Then we have the

following theorems. Indicate that the proofs of those will be given in Section 3.

Theorem 2.1. Let G be a connected non-transmission-regular graph with n vertices, Wiener index W,

and maximum row sum D1 of D(G). Then we have the following statements.

(1) If s = 1, then D1 − λ1(D) > nD1−2W
(nD1−2W+1)n .

(2) If s ≥ 2 is even, then D1 − λ1(D) > 5(nD1−2W )
[2(nD1−2W )+5]n .

(3) If s ≥ 3 is odd, then D1 − λ1(D) > 4(nD1−2W )
(nD1−2W+4)n .

Theorem 2.2. Let G be a connected non-transmission-regular graph with n vertices, Wiener index W,

and maximum row sum D1 of D(G). Then

(2.10) D1 − λ1(D) >
nD1 − 2W

(nD1 − 2W + 1)n
.

Furthermore,

(2.11) D1 − λ1(D) >
1

2n
.
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Particularly, if n | 2W , then

(2.12) D1 − λ1(D) >
1

n+ 1
.

By Theorem 2.2, we get D1 − λ1(D) > 1
2n ≥

1
dn . Thus, we have the following result that is similar to

Cioabă’s [4] about the adjacency spectral radius and the maximum degree.

Corollary 2.3. If G is a connected non-transmission-regular graph with n vertices and diameter d,

then

D1 − λ1(D) >
1

dn
.

Let Kn1,...,nk
denote the complete k-partite graph. Let G = K1,2,...,2 with n = 2k − 1 and D1 = n. By

a simple calculation, we have λ1(D(G)) = k − 1 +
√
k2 − 1. Then

D1 − λ1(D) = k −
√
k2 − 1 =

1

k +
√
k2 − 1

<
1

2k − 1
=

1

n
.

On the other hand, we have D1 − λ1(D) > 1
n+1 . Combining with Theorem 2.2, it is natural to conjecture

the following.

Conjecture 2.4. Let G be a connected non-transmission-regular graph with n vertices. Then

D1 − λ1(D) >
1

n+ 1
.

We will show that the conjecture holds for trees.

Theorem 2.5. Let T be a tree with n ≥ 3 vertices and maximum row sum D1 of distance matrix D.

Then we have

D1 − λ1(D) >
1

n+ 1
.

Taking connectivity parameter and Wiener index of G into account, we have the following theorem.

Theorem 2.6. Let G be a k-connected non-transmission-regular graph with n vertices and Wiener index

W . Then

(2.13) D1 − λ1(D) >
(nD1 − 2W )k2

(nD1 − 2W )(n2 − 3n+ k + 2) + nk2
.

Similar to the estimates on D1 − λ1(D), we give the results on 2D1 − ρ1(DQ) as follows.

Let x = (x1, x2, . . . , xn)T be the principal eigenvector corresponding to ρ1(DQ). and u, v be two vertices

such that xu = max1≤i≤n{xi} and xv = min1≤i≤n{xi}, respectively. Suppose u = 0, 1, . . . , s = v are

consecutive vertices of a shortest path Puv from u to v in G and the length of Puv is s. Then we present the

following theorems. Indicate that the proofs of those will be given in Section 3.

Theorem 2.7. Let G be a connected non-transmission-regular graph with n vertices, maximum row sum

D1 of D(G), and Wiener index W. Then the following hold:

(1) If s = 1, then 2D1 − ρ1(DQ) > 2(nD1−2W )
[2(nD1−2W )+1]n .



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 34, pp. 459-471, September 2018.

463 On the Largest Distance (Signless Laplacian) Eigenvalue of Non-Transmission-Regular Graphs

(2) If s ≥ 2 is even, then 2D1 − ρ1(DQ) > 10(nD1−2W )
[4(nD1−2W )+5]n .

(3) If s ≥ 3 is odd, then 2D1 − ρ1(DQ) > 4(nD1−2W )
(nD1−2W+2)n .

Theorem 2.8. Let G be a connected non-transmission-regular graph with n vertices, maximum row sum

D1 of D(G), and Wiener index W. Then

(2.14) 2D1 − ρ1(DQ) >
2(nD1 − 2W )

[2(nD1 − 2W ) + 1]n
.

Furthermore,

2D1 − ρ1(DQ) >
2

3n
.

Particularly, if n | 2W , then

2D1 − ρ1(DQ) >
2

2n+ 1
.

Theorem 2.9. Let G be a k-connected non-transmission-regular graph with n vertices and Wiener index

W . Then

(2.15) 2D1 − ρ1(DQ) >
2(nD1 − 2W )k2

2(nD1 − 2W )(n2 − 3n+ k + 2) + nk2
.

For convenience, we use the symbol Bound (1) � Bound (2) to assert that Bound (1) is better than

Bound (2). We use the symbol Bound (1) � Bound (2) to assert that Bound (1) is good as or better than

Bound (2).

Theorem 2.10. Let G be a connected non-transmission-regular graph of order n with connectivity κ and

Wiener index W . Let k = κ in Bounds (2.13) and (2.15).

(1) If 1 ≤ κ ≤ 1+
√

4n(n2−3n+2)+1

2n , then Bound (2.10) � Bound (2.13) and Bound (2.14) � Bound (2.15);

(2) If
1+
√

4n(n2−3n+2)+1

2n < κ < n−1, then Bound (2.13) � Bound (2.10) and Bound (2.15) � Bound

(2.14).

3. Proofs. A reformulation of inequalities from the theory of nonnegative matrices ([17], Chapter 2)

yields the lemma as follows.

Lemma 3.1. [17] If A is a nonnegative irreducible n × n matrix with largest eigenvalue λ1(A) and row

sums S1, S2, . . . , Sn, then

min
1≤i≤n

{Si} ≤ λ1(A) ≤ max
1≤i≤n

{Si}.

Moreover, one of the equalities holds if and only if the row sums of A are all equal.

The following simple observation, due to Shi [19], will be used frequently in the subsequent proofs.

Lemma 3.2. [19] If a, b > 0, then a(x−y)2+by2 ≥ abx2/(a+b) with equality if and only if y = ax/(a+b).

The following easily proven result will be used frequently. We state it as our lemma.
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Lemma 3.3. Let x = (x1, . . . , xn)T ∈ Rn with ‖x‖2 = 1. Then for any connected graph G,

λ1(D) ≥ 2
∑
i>j

dijxixj

with equality if and only if x is an eigenvector corresponding to λ1(D). And

ρ1(DQ) ≥
∑
i>j

dij(xi + xj)
2

with equality if and only if x is an eigenvector corresponding to ρ1(DQ).

Proof of Theorem 2.1. Let x = (x1, x2, . . . , xn)T be the principal eigenvector corresponding to λ1(D).

Obviously,
∑n
i=1 x

2
i = 1. Suppose that u, v are two vertices of G satisfying xu = max1≤i≤n{xi} and

xv = min1≤i≤n{xi}. Since G is non-transmission-regular, we get xu >
1√
n
> xv. Moreover, by Lemma 3.3,

we have

(3.16)

D1 − λ1(D) = D1 − 2
∑
i>j dijxixj

=
∑
i(D1 −Di)x

2
i +

∑
i>j(xi − xj)2dij

≥ (nD1 − 2W )x2v +
∑
i>j(xi − xj)2dij .

Suppose u = 0, 1, . . . , s = v are consecutive vertices of a shortest path Puv from u to v in G and the

length of Puv is s.

Case 1. s = 1. By Lemma 3.2 and inequality (3.16), we obtain

D1 − λ1(D) ≥ (nD1 − 2W )x2v +
∑
i>j

(xi − xj)2dij

≥ (nD1 − 2W )x2v + (xu − xv)2duv

≥ nD1 − 2W

nD1 − 2W + 1
x2u

>
nD1 − 2W

(nD1 − 2W + 1)n
,

which proves statement (1).

Case 2. s ≥ 2. For the shortest path Puv, let i (1 ≤ i ≤ s−1) be a vertex of Puv. By the Cauchy-Schwarz

inequality, we get

(3.17)
(xi − x0)2d0i + (xi − xs)2dis ≥ min{i, s− i}[(xi − x0)2 + (xs − xi)2]

≥ 1
2 min{i, s− i}(xs − x0)2.

Suppose f(t) = (nD1−2W )t
(8(nD1−2W )+t)n . Then f(t) is a monotonically increasing function on t > 0.

Subcase 2.1. s ≥ 2 is even. Based on inequality (3.17), we have

(3.18)

∑
i>j(xi − xj)2dij ≥ [2× 1

2 (1 + 2 + · · ·+ s
2 )− s

2 ×
1
2 + s](xs − x0)2

= [ s2 ( s2 + 1)/2− s
4 + s](xs − x0)2

= s2+8s
8 (xu − xv)2.
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Using Lemma 3.2 and the monotonicity of the function f(t), and combining (3.16) and (3.18), we have

D1 − λ1(D) ≥ (nD1 − 2W )x2v +
∑
i>j

(xi − xj)2dij

≥ (nD1 − 2W )x2v +
s2 + 8s

8
(xu − xv)2

>
(nD1 − 2W )(s2 + 8s)

[8(nD1 − 2W ) + (s2 + 8s)]n

≥ 20(nD1 − 2W )

[8(nD1 − 2W ) + 20]n

=
5(nD1 − 2W )

[2(nD1 − 2W ) + 5]n
,

which proves statement (2).

Subcase 2.2. s ≥ 3 is odd. Based on inequality (3.17), we find

(3.19)

∑
i>j(xi − xj)2dij ≥ [2× 1

2 (1 + 2 + · · ·+ b s2c) + s](xs − x0)2

= (
b s2 c(b

s
2 c+1)

2 + s)(xs − x0)2

= s2+8s−1
8 (xu − xv)2.

By Lemma 3.2 and the monotonicity of the function f(t), from inequalities (3.16) and (3.19) we obtain

D1 − λ1(D) ≥ (nD1 − 2W )x2v +
∑
i>j

(xi − xj)2dij

>
(nD1 − 2W )(s2 + 8s− 1)

[8(nD1 − 2W ) + (s2 + 8s− 1)]n

≥ 32(nD1 − 2W )

[8(nD1 − 2W ) + 32]n

=
4(nD1 − 2W )

(nD1 − 2W + 4)n
,

which proves statement (3).

Proof of Theorem 2.2. Let G be a connected non-transmission-regular graph with n vertices and max-

imum row sum D1 of D(G). Note that the non-transmission regularity of G implies that nD1 > 2W . So

nD1 − 2W ≥ 1 follows. Suppose f1(nD1 − 2W ) = nD1−2W
(nD1−2W+1)n , f2(nD1 − 2W ) = 5(nD1−2W )

[2(nD1−2W )+5]n , and

f3(nD1−2W ) = 4(nD1−2W )
(nD1−2W+4)n . Since fi(nD1−2W ), where i = 1, 2, 3, are monotonically increasing functions

on nD1 − 2W , by Theorem 2.1, we get

D1 − λ1(D) > min

{
nD1 − 2W

(nD1 − 2W + 1)n
,

5(nD1 − 2W )

[2(nD1 − 2W ) + 5]n
,

4(nD1 − 2W )

(nD1 − 2W + 4)n

}
=

nD1 − 2W

(nD1 − 2W + 1)n

≥ 1

2n
,

completing the proofs of inequalities (2.10) and (2.11).
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Now we prove inequality (2.12). If n | 2W , combining with the non-transmission regularity of G, then

we have nD1 − 2W ≥ n . Since f1(nD1 − 2W ) = nD1−2W
(nD1−2W+1)n is a monotonically increasing function on

nD1 − 2W , inequality (2.10) implies that

D1 − λ1(D) >
nD1 − 2W

(nD1 − 2W + 1)n

≥ 1

n+ 1
.

Proof of Theorem 2.5. Let T be a tree with n ≥ 3 vertices, diameter d, Wiener index W and maximum

row sum D1 of D(T ). We consider two cases in the following based on the diameter d of the tree T .

Case 1. d = 2. Then T ∼= K1,n−1. By a simple calculation, we have λ1(D(K1,n−1)) = n−2+
√
n2 − 3n+ 3

and D1(K1,n−1) = 2n− 3. Then

D1 − λ1(D) = 2n− 3− (n− 2 +
√
n2 − 3n+ 3)

= n− 1−
√
n2 − 3n+ 3

=
n− 2

n− 1 +
√
n2 − 3n+ 3

>
1

n+ 1
.

Case 2. d ≥ 3. If T ∼= P4, by a calculation, we have D1(P4)− λ1(D(P4)) ≈ 6− 5.16 > 0.2. Next we will

prove that the result holds for T 6∼= P4.

Let D1 ≥ D2 ≥ · · · ≥ Dn be the row sums of D(T ), we have

(3.20) nD1 − 2W =

n∑
i=1

(D1 −Di).

We use Dvi to denote the row sum of D(T ) indexed by the vertex vi. Suppose that Pv0vd = v0v1 . . . vd−1vd
is a diametrical path of T . Without loss of generality, we assume Dv0 ≥ Dvd . Obviously, v0 is a pendant

vertex of T . We obtain that

(3.21) Dv0 −Dv1 = n− 2.

Since G 6∼= K1,n−1, we have d(v1) ≤ n − 2. If d(v1) = n − 2, then d(T ) = 3. Furthermore, T 6∼= P4 implies

that Dv0 < Dv3 , a contradiction to the assumption. Therefore, d(v1) ≤ n− 3. Then we have

(3.22)

Dv0 −Dv2 ≥ 2[n− (d(v1) + 1)]

≥ 2[n− (n− 3 + 1)]

= 4.

Combining (3.20), (3.21) and (3.22), we deduce that nD1 − 2W ≥ n− 2 + 4 > n. Furthermore, by Theorem

2.2 and the monotonicity of the function f(nD1 − 2W ) = nD1−2W
(nD1−2W+1)n on nD1 − 2W , we obtain

D1 − λ1(D) >
nD1 − 2W

(nD1 − 2W + 1)n
>

1

n+ 1
.
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Proof of Theorem 2.6. Let x = (x1, x2, . . . , xn)T be the principal eigenvector corresponding to λ1(D).

Obviously,
∑n
i=1 x

2
i = 1. Let u, v be two vertices of G such that xu = max1≤i≤n{xi} and xv = min1≤i≤n{xi},

respectively. Since G is non-transmission-regular, we have xu >
1√
n
> xv. Furthermore, we get

(3.23) D1 − λ1(D) ≥ (nD1 − 2W )x2v +
∑
i>j

(xi − xj)2dij .

Since G is k-connected, by Menger’s Theorem ([2]), there are at least k internally vertex-disjoint paths

connecting u and v. We choose k paths and denote them by P1, P2, . . . , Pk. Note that
∑k
t=1 |V (Pt) − 2| ≤

n− 2. Following the argument in [3], by the Cauchy-Schwarz inequality, we have

(3.24)

∑
i>j(xi − xj)2dij ≥

∑k
t=1

∑
ij∈E(Pt)

(xi − xj)2 · 1
≥

∑k
t=1

1
|V (Pt)|−1 (

∑
ij∈E(Pt)

(xi − xj))2

=
∑k
t=1

1
|V (Pt)|−1 (xu − xv)2

≥ k2∑k
t=1(|V (Pt)|−1)

(xu − xv)2

≥ k2

n+k−2 (xu − xv)2.

Combining (3.23) and (3.24), from Lemma 3.2 we obtain

(3.25)
D1 − λ1(D) ≥ (nD1 − 2W )x2v + k2

n+k−2 (xu − xv)2

≥ (nD1−2W )k2

(nD1−2W )(n+k−2)+k2x
2
u.

Let

C =
(nD1 − 2W )k2

(nD1 − 2W )(n2 − 3n+ k + 2) + nk2
.

We can choose k vertices in NG(v) and denote them as {v1, v2, . . . , vk}, since k ≤ δ(G) ≤ d(v). If

x2v ≥ C/(nD1 − 2W ), by (3.23), we have D1 − λ1(D) > (nD1 − 2W )x2v ≥ C, and thus, (2.13) holds. If∑k
t=1 x

2
vt > C[1 + k/(nD1 − 2W )], then it follows from (3.23) and Lemma 3.2 that

D1 − λ1(D) ≥ (nD1 − 2W )x2v +

k∑
t=1

(xvt − xv)2

=

k∑
t=1

[
nD1 − 2W

k
x2v + (xvt − xv)2

]

≥
k∑
t=1

nD1 − 2W

nD1 − 2W + k
x2vt

> C.

Thus, (2.13) holds as well. Now it remains to consider the case that

x2v < C/(nD1 − 2W ) and

k∑
t=1

x2vt ≤ C[1 + k/(nD1 − 2W )].

Note that k ≤ n− 2 and
∑n
i=1 x

2
i = 1. Then

x2u ≥

(
1− x2v −

k∑
t=1

x2vt

)
/(n− k − 1) >

(
1− nD1 − 2W + k + 1

nD1 − 2W
C

)
/(n− k − 1).
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Combining with (3.25), we obtain

D1 − λ1(D) ≥ (nD1 − 2W )k2

(nD1 − 2W )(n+ k − 2) + k2
x2u

>
(nD1 − 2W )k2

[(nD1 − 2W )(n+ k − 2) + k2](n− k − 1)

(
1− nD1 − 2W + k + 1

nD1 − 2W
C

)
=

(nD1 − 2W )k2

(nD1 − 2W )(n2 − 3n+ k + 2) + nk2

= C.

Proof of Theorem 2.7. Let x = (x1, x2, . . . , xn)T be the principal eigenvector corresponding to ρ1(DQ)

of G. Immediately,
∑n
i=1 x

2
i = 1. We choose two vertices u, v ∈ V (G) so that xu = max1≤i≤n{xi} and xv =

min1≤i≤n{xi}, respectively. The non-transmission-regularity of G implies that xu >
1√
n
> xv. Furthermore,

by Lemma 3.3, we get

(3.26)

2D1 − ρ1(DQ) = 2D1 −
∑
i>j dij(xi + xj)

2

= 2
∑
iD1x

2
i − 2

∑
i>j(x

2
i + x2j )dij +

∑
i>j(xi − xj)2dij

≥ 2
∑
i(D1 −Di)x

2
v +

∑
i>j(xi − xj)2dij

= 2(nD1 − 2W )x2v +
∑
i>j(xi − xj)2dij .

Suppose u = 0, 1, . . . , s = v are consecutive vertices of a shortest path Puv between u and v in G and

the length of Puv is s.

Case 1. s = 1. By Lemma 3.2 and inequality (3.26), we find that

2D1 − ρ1(DQ) ≥ 2(nD1 − 2W )x2v +
∑
i>j

(xi − xj)2dij

≥ 2(nD1 − 2W )x2v + (xu − xv)2 × 1

≥ 2(nD1 − 2W )

2(nD1 − 2W ) + 1
x2u

>
2(nD1 − 2W )

[2(nD1 − 2W ) + 1]n
.

Thus, we complete the proof of statement (1).

Case 2. s ≥ 2. In this case, by the same argument for
∑
i>j(xi − xj)

2dij as Case 2 in the proof of

Theorem 2.1, we will prove statements (2) and (3).

Let f(t) = 2(nD1−2W )t
(16(nD1−2W )+t)n . Then f(t) is a monotonically increasing function on t > 0.

Subcase 2.1. s ≥ 2 is even. We have

(3.27)
∑
i>j

(xi − xj)2dij ≥
s2 + 8s

8
(xu − xv)2.
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Combining (3.26) and (3.27) and using Lemma 3.2 and the monotonicity of the function f(t), we obtain

2D1 − ρ1(DQ) ≥ 2(nD1 − 2W )x2v +
∑
i>j

(xi − xj)2dij

≥ 2(nD1 − 2W )x2v +
s2 + 8s

8
(xu − xv)2

>
2(nD1 − 2W )(s2 + 8s)

[16(nD1 − 2W ) + (s2 + 8s)]n

≥ 10(nD1 − 2W )

[4(nD1 − 2W ) + 5]n
,

which gives the required result in statement (2).

Subcase 2.2. s ≥ 3 is odd. Since∑
i>j

(xi − xj)2dij ≥
s2 + 8s− 1

8
(xu − xv)2,

by Lemma 3.2 and the monotonicity of the function f(t), from (3.26) we have

2D1 − ρ1(DQ) ≥ 2(nD1 − 2W )x2v +
∑
i>j

(xi − xj)2dij

≥ 2(nD1 − 2W )x2v +
s2 + 8s− 1

8
(xu − xv)2

>
2(nD1 − 2W )(s2 + 8s− 1)

[16(nD1 − 2W ) + (s2 + 8s− 1)]n

≥ 4(nD1 − 2W )

(nD1 − 2W + 2)n
,

which gives the required result in statement (3).

Proof of Theorem 2.9. Let x = (x1, x2, . . . , xn)T be the principal eigenvector corresponding to ρ1(DQ)

of G. We choose two vertices u, v ∈ V (G) so that xu = max1≤i≤n{xi} and xv = min1≤i≤n{xi}, respectively.

Since G is non-transmission-regular, we obtain xu >
1√
n
> xv. Furthermore, we get

(3.28) 2D1 − ρ1(DQ) ≥ 2(nD1 − 2W )x2v +
∑
i>j

(xi − xj)2dij .

With the same argument for
∑
i>j(xi − xj)2dij as (3.24), we have

(3.29)
∑
i>j

(xi − xj)2dij ≥
k2

n+ k − 2
(xu − xv)2.

Using (3.28), (3.29) and Lemma 3.2, we obtain

(3.30)
2D1 − ρ1(DQ) ≥ 2(nD1 − 2W )x2v + k2

n+k−2 (xu − xv)2

≥ 2(nD1−2W )k2

2(nD1−2W )(n+k−2)+k2x
2
u.

Define

C =
2(nD1 − 2W )k2

2(nD1 − 2W )(n2 − 3n+ k + 2) + nk2
.
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We can choose k vertices in NG(v) and denote them as {v1, v2, . . . , vk}, since k ≤ δ(G) ≤ d(v). If

x2v ≥ C
2(nD1−2W ) , from (3.28) we obtain 2D1 − ρ1(DQ) > 2(nD1 − 2W )x2v ≥ C as desired. If

∑k
i=1 x

2
vt >

C[1 + k
2(nD1−2W ) ], then using (3.28) and Lemma 3.2 we find

2D1 − ρ1(DQ) ≥ 2(nD1 − 2W )x2v +

k∑
t=1

(xvt − xv)2

=

k∑
t=1

[
2(nD1 − 2W )

k
x2v + (xvt − xv)2

]

≥
k∑
t=1

2(nD1 − 2W )

2(nD1 − 2W ) + k
x2vt

> C.

Therefore, (2.15) holds as well. Now we focus on the remaining case that

x2v <
C

2(nD1 − 2W )
and

k∑
t=1

x2vt ≤ C
[
1 +

k

2(nD1 − 2W )

]
.

This implies that

x2u ≥

(
1− x2v −

k∑
t=1

x2vt

)
/(n− k − 1) >

(
1− 2(nD1 − 2W ) + k + 1

2(nD1 − 2W )
C

)
/(n− k − 1).

By (3.30), we get

2D1 − ρ1(DQ) ≥ 2(nD1 − 2W )k2

2(nD1 − 2W )(n+ k − 2) + k2
x2u

>
2(nD1 − 2W )k2

[2(nD1 − 2W )(n+ k − 2) + k2](n− k − 1)

(
1− 2(nD1 − 2W ) + k + 1

2(nD1 − 2W )
C

)
=

2(nD1 − 2W )k2

2(nD1 − 2W )(n2 − 3n+ k + 2) + nk2

= C.

Proof of Theorem 2.10. (1) Denote bound (2.10) in Theorem 2.2 and bound (2.13) in Theorem 2.6 as

the functions g1(κ) and g2(κ) respectively, i.e.,

g1(κ) =
nD1 − 2W

(nD1 − 2W + 1)n
=

nD1 − 2W

n(nD1 − 2W ) + n
;

g2(κ) =
(nD1 − 2W )κ2

(nD1 − 2W )(n2 − 3n+ κ+ 2) + nκ2
=

(nD1 − 2W )
n2−3n+κ+2

κ2 (nD1 − 2W ) + n
.

And we denote h1 = n, and h2 = n2−3n+κ+2
κ2 . Set h2 − h1 = n2−3n+κ+2

κ2 − n = n2−3n+κ+2−nκ2

κ2 . If 1 ≤ κ ≤
1+
√

4n(n2−3n+2)+1

2n , then h2 ≥ h1, and thus, Bound (2.10) � Bound (2.13). If
1+
√

4n(n2−3n+2)+1

2n < κ < n−1,

then h1 > h2, and thus, Bound (2.13) � Bound (2.10).
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(2) Similar to the comparison between Bound (2.10) and Bound (2.13), we can compare the bounds

(2.14) and (2.15) easily. So we omit the proof here.
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