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POSITIVE AND Z-OPERATORS ON CLOSED CONVEX CONES*

MICHAEL ORLITZKY'

Abstract. Let K be a closed convex cone with dual K* in a finite-dimensional real Hilbert space. A positive operator on
K is a linear operator L such that L (K) C K. Positive operators generalize the nonnegative matrices and are essential to the
Perron-Frobenius theory. It is said that L is a Z-operator on K if

(L(z),s) <0 for all (z,s) € K X K* such that (z,s) =0.

The Z-operators are generalizations of Z-matrices (whose off-diagonal elements are nonpositive) and they arise in dynamical
systems, economics, game theory, and elsewhere. In this paper, the positive and Z-operators are connected. This extends the
work of Schneider, Vidyasagar, and Tam on proper cones, and reveals some interesting similarities between the two families.
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1. Introduction. Positive operators arose from the study of integral operators and matrices with
nonnegative entries [1]. Perron showed that a matrix with positive entries has a simple eigenvalue equal
to its spectral radius and that some corresponding eigenvector has positive entries. Moreover, its other
eigenvalues are strictly less than the spectral radius in modulus. Frobenius partially extended Perron’s
result to nonnegative matrices, and the nonnegative matrices are positive operators in that setting.

Suppose that V' is an ordered vector space and that > 0 in V. In the theory of operators [1], x is
called a positive element of V. A positive operator is a linear operator that sends positive elements of V' to
positive elements. Every proper cone K orders [3] its ambient space by x > 0 <= z € K. With respect to
this ordering, we denote the set of positive operators by

7(K)={L:V =V | Lislinear and L (K) C K}.

The Perron-Frobenius theorem is thus a statement about positive operators on the cone K = R}, the
nonnegative orthant in R™. The Krein-Rutman theorem extends Perron-Frobenius to a compact positive
linear operator with positive spectral radius on a Banach space ordered by a closed convex pointed cone.

A Z-matrix is a real square matrix whose off-diagonal entries are nonpositive. Equivalently, a Z-matrix
has the form A\I — N where N is a nonnegative matrix (that is, a positive operator on R’} ). It is therefore
no surprise that the two theories are intertwined. Berman and Plemmons [4] cite an astounding number of
equivalent conditions for Z-matrices to be invertible M-matrices, connecting them to many different areas.

Generalizations of Z-matrices have started to appear [5, 6]. Our definition of a Z-operator is due to
Gowda and Tao [11]. If K* represents the dual of K, then L is a Z-operator on K and we write L € Z (K)
if (L (x),s) <0forallz e K and s € K* such that (x,s) = 0. This definition reduces to that of a Z-matrix
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when K = R”. These Z-operators emerge in dynamical systems [8, 11], complementarity problems [11],
game theory [9], economics, and everywhere that Z-matrices arise [4]. Kuzma et al. [15] recently resolved
an open problem that applies Z-operators to mathematical finance. In each of these cases, the cone K is
assumed to be proper: closed, convex, pointed, and solid.

Schneider and Vidyasagar [21] and Elsner [8] discovered a striking connection between the positive and
Z-operators on a proper cone. We eventually extend this result to any closed convex cone in finite dimensions.

THEOREM 1.1. If K is a proper cone in R™ and if A is a matriz in R"*", then A € Z (K) if and only
ife”t4 € 7 (K) for allt > 0.

The set of all Z-operators contains a subspace LL (K) = —Z (K) N Z (K) of Lyapunov-like operators.
Lyapunov-like operators are important because they can be used to solve the equation (x,s) =0 for z € K
and s € K* that appears as optimality conditions in convex optimization [19]. One motivation for studying
Z-operators is their connection to the Lyapunov-like operators. Implicit in the work of Schneider and
Vidyasagar is the following.

THEOREM 1.2. If K is a proper cone in R", then Z (K) = c]l(LL(K) — 7 (K)).

We will also generalize this result. Sometimes the closure is superfluous and Z (K) = LL (K) — 7 (K);
the problem solved by Kuzma et al. was of that type. By studying Z (K) and = (K), we hope to gain insight
into similar problems.

There is also a practical motivation for extending these results to closed convex cones. To compute
7 (K) or Z (K), we need a representation of the cone K that can be fed as input into an algorithm. There is
a natural way to represent a polyhedral convex cone since any finite set of vectors can be identified with the
cone it generates. As a result, existing algorithms tend to operate on polyhedral convex cones (which are
necessarily closed). No similar representation is known for proper polyhedral cones: given a set of vectors,
how can one determine if the cone it generates is proper? The best answer to that question currently involves
a verification step that we would like to avoid by showing that 7 (K) and Z (K') are meaningful for all closed
convex K. The concept of Lyapunov rank was extended to closed convex cones for similar reasons [16].

Theorems 3.5 and 4.4 provide generators of 7 (K)* and Z (K)*. When K is polyhedral, Algorithms 3.1
and 4.1 turn those theorems into a method for computing 7 (K) and Z (K) using exact rational arithmetic.
In subsection 2.4, we introduce an isometry that associates a proper cone to every closed convex cone.
However, that isometry will often involve irrational roots and thus inexact arithmetic. In other words, one
cannot simply apply the isometry and fall back on the known algorithms for proper cones. It is because they
avoid that issue that our new algorithms—implemented in the SageMath [28] system—are useful.

2. Preliminaries. Throughout this section, V' will be a finite-dimensional real Hilbert space. Here and
from now on, the term “Euclidean space” will be used for such a space.

2.1. Standard definitions. Let W be another Euclidean space. The set of all linear operators from
V to W forms a vector space which we denote by B (V,W). We abbreviate B(V,V) by B(V). If L €
B (V,W) is invertible and preserves inner products, then L is an isometry. Any L € B(V,W) has an adjoint
L* € B(W,V) such that (L (z),y) = (z,L* (y)) for all z € V and y € W. The identity operator on V is
idy € B(V). Given two elements x and s in V, we define s ® = to be the operator y — (x,y)s on V. For
subsets S and X of V, we will write S® X = {s®z | s € S,2 € X}. The adjoint of s®@ z is  ® s, and
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s® L* (z) = (s ® x) L is the composition of the operators s ® x and L € B (V).

Define the trace on B (V) to be the sum-of-eigenvalues operator trace (L) := 3\ c,(r) A- Then (L1, L2) :=
trace (L1 o L3) is our inner product on linear operator spaces. Later we use the fact that trace (s ® z) =
trace (z ® s) = (z, s). The topological closure of a set X is cl (X).

If W is a subspace of V', then the orthogonal complement of W is another subspace of V' defined by
Wt ={yeV | (x,y)=0forall x € W}, and V has direct sum decomposition V. =W & W. If £, F,G,
and H are sets of linear operators whose domains and codomains are such that it makes sense to do so, then
we will use the shorthand notation

;- {l
G H|  ||La Lo

to denote a set of block-form operators.

Ly € 5,L12 e F
Ly €G, Ly eH

The real n-space R™ is equipped with the usual inner product, standard basis (e1,es,...,e,), and
nonnegative orthant R” := {x € R™ | z; > 0 for all i}. The real identity matrix of the appropriate size is
denoted by I.

2.2. Cone definitions.

DEFINITION 2.1. A nonempty subset K of V is a cone if A\K C K for all A > 0. A closed convex cone
is a cone that is closed and convex as a subset of V.

DEFINITION 2.2. The conic hull of a nonempty subset X of V is a convex cone,

cone (X) := {Z 0T,

i=1

z, € X, o >0, mGN}.

DEFINITION 2.3. If cone (G) = K, then G generates K and the elements of G are generators of K. If a
finite set generates K, then K is polyhedral.

Clasically, a polyhedral cone is defined to be the finite intersection of homogeneous half-spaces. However,
Theorem 1.3 in Ziegler [29] or Theorem 19.1 in Rockafellar [17] shows that the two definitions are equivalent.
For cones, the two implications in that equivalence are known as the theorems of Minkowski and Weyl,
and can also be found as Theorem 2.8.6 and Theorem 2.8.8 in Stoer and Witzgall [24]. As a result of the
equivalence, all polyhedral cones are closed [2].

DEFINITION 2.4. The dimension of K C V is dim (K) := dim (span (K)). A convex cone K in V is solid
if it has nonempty interior in V', or, equivalently, if dim (K) = dim (V). The lineality space of a convex cone
K is linspace (K) := —K N K. Its lineality is lin (K) := dim (linspace (K)), and K is pointed if lin (K) = 0.
A pointed, solid, and closed convex cone is proper.

If S and X are linearly-independent subsets of V', then S ® X is linearly-independent in B (V'), and it
follows that dim (S ® X) = dim (S) dim (X) [18]. Proper cones have a convenient set of generators that are,
in a sense, minimal.

DEFINITION 2.5. An element z in the convex cone K is an extreme vector of K if it is not a positive
linear combination of two linearly-independent vectors in K. The set of all unit-norm extreme vectors of K
is Ext (K).
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Extreme vectors are mainly used with proper cones. If K is closed and pointed, then K = cone (Ext (K))
by a version of the Krein-Milman theorem.

DEFINITION 2.6. If K is a subset of V', then the dual cone K* of K is given by

K ={yeV|{(z,y) >0 forall z € K}.

The following dual relationships are well-known and will be used freely. They may be found in Ben-
Israel’s [2] Theorem 1.3, Theorem 1.5, and Corollary 1.6.

e The dual K* is a closed convex cone for any subset K C V.
e If K is a convex cone, then (K*)" = cl (K).
e A subset K C V is a closed convex cone in V if and only if (K*)" = K.

Rockafellar’s Corollary 19.2.2 relates duality to polyhedrality [17].

PrOPOSITION 2.7. If K is a polyhedral convexr cone, then K* is polyhedral. A closed convex cone K is
polyhedral if and only if its dual K* is polyhedral.

Duals are defined in terms of the inner product, so they are preserved under isometry: ¢ (K)" = ¢ (K*)
for every isometry 1. Likewise, the dual of a cartesian product (K; x K») is the cartesian product of duals
K{ x K3. The following proposition combines Ben-Israel’s Theorem 1.3 and Corollary 1.7 [2].

PROPOSITION 2.8. If K,J are closed convex cones, then (K +J)" = K* N J* and cl(K* + J*) =
(KNJ)".

Finally, we will need Rockafellar’s Theorem 14.6 for the duality between pointed and solid cones [17].

PROPOSITION 2.9. If K is a closed convex cone, then linspace (K) = span (K*)*.

2.3. Classes of linear operators. Our main results concern a few classes of linear operators. They
are all sensibly defined on any subset K C V', but in practice, K will be a closed convex cone.

DEFINITION 2.10. An operator L € B (V) is a positive operator on K C V' if L (K) C K. The set of all
such operators is denoted by 7 (K).

The prototypical positive operators are nonnegative matrices [4] on K = R’. If K is a closed convex
cone, then we have an alternative characterization:

Len(K) < (L(x),s) >0 forall (z,s) e K x K*.

The requisite property of a Z-operator is similar, but need only hold on pairs of orthogonal vectors in K x K*.

DEFINITION 2.11. The complementarity set of K is
C(K)={(z,s) e K x K" | (z,s) =0}.
DEFINITION 2.12. An operator L € B(V) is a Z-operator on K C V if
(L (z),s) <0 forall (z,s) € C(K).

By Z (K) we denote the set of all Z-operators on K.
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When K = R"}, the complementarity set C (Ri) contains all pairs of distinct standard basis vectors. The
requirement on Z (Ri) gives rise to matrices whose off-diagonal elements are nonpositive—the Z-matrices.
The set Z (K) is a closed convex cone and it contains the subspace of Lyapunov-like operators.

DEFINITION 2.13. An operator L € B (V) is Lyapunov-like on K C V if

(L (x),s) =0 forall (z,s) € C(K).
By LL (K) we denote the set of all Lyapunov-like operators on K.

The set LL (K) is a vector space and LL (K) = linspace (Z (K)). Finding Lyapunov-like operators is an
interesting problem. The search began with Rudolf et al. [19] and has been continued by others [10, 12, 16].

2.4. Decomposing improper cones. Any closed convex cone is isometric to a cartesian product of a
proper cone, a subspace, and a trivial cone. The following is well-known and appears, for example, as Stoer
and Witzgall’s Theorem 2.10.5 [24].

ProposiTiON 2.14. If K is a convexr cone in a Fuclidean space, then K has an orthogonal direct sum
decomposition into two convex cones,

K = K N linspace (K)™ @ linspace (K).
Its first factor K N linspace (K)J‘ is pointed.

Observe that any convex cone K is solid in the ambient space span (K), and that K N linspace (K )J‘ is
pointed by Proposition 2.14. If K, represents the cone K N linspace (K)L living in the subspace span (K) N
linspace (K )L, then K, is both solid and pointed. Now, the ambient space V' is an orthogonal direct sum,

V = linspace (K) & span (K) N linspace (K)© & span (K)".

From this and Proposition 2.14 we deduce the existence of a useful isometry of V.

LEMMA 2.15. If K is a closed convex cone in a Euclidean space V' and if K, = K Nlinspace (K)L, then
there is an isometry ¢ such that

@V =V x Vo x Vs,

¢ (K) = linspace (K) x K, x {0}
where

V1 = linspace (K)

V5 = span (K) N linspace (K) ™,

Vs = span (K)*
and K, is a proper cone in Vo. An operator L € B(¢ (V) will thus have the block form L = [L;;| where
Lij € B(V;,V;). We abbreviate this as

B(Vi,Vi) B(Va,Vi) B(Vs, V1)
Le |B(W,Va) B(Va,Va) B(Vs,Va)
B<V13V3) B(‘/Q,VB) B(V37‘[3))
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This isometry will often reduce our problems to the case of a proper cone, where existing results apply.

PROPOSITION 2.16. If K is a closed convex cone in V and if ¢ and K, are as in Lemma 2.15, then K
is polyhedral if and only if K, is polyhedral.
Proof. By properties of isometry, we have that K is polyhedral if and only if ¢ (K) is polyhedral. The

other two factors linspace (K) and {0} in ¢ (K) are polyhedral; therefore polyhedrality of ¢ (K) depends
entirely on that of K. 0

To reason about the positive and Z-operators in the product space we need the following two easy results.

PROPOSITION 2.17. If K is a closed convex cone in' V' and if 1 is an isometry of V, then Z (¢ (K)) =
YZ (K)p~t and 7 (¢ (K)) = ¢ (K) ™. As a result, 7 (¢ (K)) and Z (¢ (K)) are isometric to 7 (K) and
Z (K), respectively.

PROPOSITION 2.18. If X and S are subsets of V and if ¢ is an isometry of V, then ¢ (S @ X)¢p~! =
P (S) @ ¢ (X) is isometric to S ® X.

3. Positive operators. Observe that the positive operators on a closed convex cone K themselves
form a closed convex cone. The three criteria—that 7 (K) is closed, convex, and a cone—are easy to verify
and depend on the same properties of K.

PROPOSITION 3.1. If K is a closed convex cone, then so is w (K).

If K is proper, then both 7 (K) and its dual are proper [21]. To determine if some linear operator
belongs to m (K), it suffices to check positivity on a generating set of K. This can be seen by expanding
any element of K in terms of its generators and using the linearity of the operator. However, checking the
generators will almost always be impractical if K is not polyhedral.

PROPOSITION 3.2. If K = cone (G) in a Euclidean space V and if L € B(V), then L € w(K) if and
only if L (G) C K.

Tam [27] found a simple expression for the generators of the dual of 7 (K) when K is proper. He uses
the fact that cone (K* ® K) is closed to prove that

(3.1) 7 (K)" = cone (K* ® K) if K is proper.

These generators also work when K is merely closed and convex. Tam’s argument is based on the following
equivalence, the conditions of which follow directly from the definitions and a property of the trace.

PROPOSITION 3.3. If K is a closed convex cone in a Euclidean space V and if L € B(V), then the
following are equivalent:

Len(K).

L(z)€e K forallz e K.

(L(x),s) >0 forallz € K and s € K*.
(L,s®x) >0 forallz € K and s € K*.

It follows that 7 (K) is the dual of cone (K* ® K), and thus, that 7 (K)* = cl(cone (K* ® K)). Tam
shows that cone (K* ® K) is closed for proper K, and the formula (3.1) follows. We will take the same
approach. Note that any L € cone (K* ® K) can be written L = > s; ® x; for (z;,s;) € K x K* without
scalar factors, since they can be absorbed into s; ® x;.
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LEMMA 3.4. If K is a closed convex cone in a Fuclidean space V', then the set cone (K* ® K) is closed.

Proof. Closedness is preserved under isometry, so let ¢ and K, be as in Lemma 2.15. Then ¢ (K)* =
¢ (K*) = {0} x K x span (K)l, and Proposition 2.18 says that instead of K* ® K, we can without loss of
generality consider

{0} {oy {0}
(K" ®¢(K)= K,oVi K;®K, {0} .
VzelVr V3K, {0}

It it straightforward to verify that when all of the sets involved contain zero, the cone () operation acts
componentwise. Thus,

{0} {0} {0}
cone (¢ (K*) ® ¢ (K)) = |cone (K; @ Vi) cone (K; ® K,) {0}] .
cone (Vs®Vy) cone(Vz® K,) {0}

Notice, for example, that

cone (K; ® V1) = cone (K; ® iVl) = span (K; ® V1) ,
which (by a dimension argument) equals its ambient space B (V1, V»). Using that same reasoning, we obtain
{0} {0} {0}

cone (¢ (K*) ® ¢ (K)) = |B(V1,Va2) cone (K} ® K,) {0}| .
B(V1,V3) B(V2,Vs) {0}

Since K, is proper, we can cite Tam’s result for proper cones to conclude that cone (K; ® Kp) = (K,)" is
closed. The other sets are obviously closed. 0

THEOREM 3.5. If K is a closed convex cone in a Euclidean space, then m (K)* = cone (K* ® K).
Proof. Deduce from Proposition 3.3 that 7 (K)" = cl (cone (K* ® K)), and then apply Lemma 3.4. O

This result was known for proper cones, so we look elsewhere for examples.

EXAMPLE 3.6. If K = cone ({e1, tes}) is the right half-space in V = R?, then K* = cone ({e;}) and
Theorem 3.5 gives

7 (K)" = cone ({e1e] , ere] }) .

In this simple polyhedral case, we can use the definition of dual cone and the fact that = (K) = (7 (K )*)*
to directly compute

™ (K) = cone ({616{, +egel, :I:egeg}) )
This result is verified using Proposition 3.2.

COROLLARY 3.7. If K is a closed convex cone in a Fuclidean space V and if ¢ and K, are as in
Lemma 2.15, then

B(Vi,Vi) B(V2,Vi) B(V3, Vi)
T (¢ (K)) = {0} m(Kp)  B(V3,V2)
{0} {0} B(V3,V3)
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Proof. The proof of Lemma 3.4 gives us a block-form representation of cone (¢ (K*) ® ¢ (K)) which by
Theorem 3.5 is equal to 7 (¢ (K))". Take duals to obtain the desired representation of 7 (¢ (K)). 0

We can now extend another result of Tam.

THEOREM 3.8. If K is a closed convex cone in a Euclidean space V', then w (K) is polyhedral if and only
if K is polyhedral.

Proof. Let K, be as in Lemma 2.15. Proposition 2.16 shows that K is polyhedral if and only if K, is
polyhedral. A result of Tam [27] shows that K, is polyhedral if and only if 7 (K,) is polyhedral. Combining
the two, we deduce that K is polyhedral if and only if 7 (K},) is polyhedral.

Corollary 3.7 and Proposition 2.17 provide the remaining equivalence, that = (K),) is polyhedral if and
only if 7 (K) is. This is easily deduced in a manner similar to Proposition 2.16, since all components of
7 (¢ (K)) other than 7 (K),) are (polyhedral) vector spaces or {0}. |

LEMMA 3.9. Let K be a closed convex cone in a Euclidean space V, and let n = dim (V'), m = dim (K),
and £ =lin (K). Then,

dim (7 (K)) =n* —£(m —£) —m(n —m).
Proof. Note that dim (span (K) N linspace (K )L) = dim (K) —lin (K) = m — £. The result then follows
from Corollary 3.7 and the fact that = (K,) is proper. 0

EXAMPLE 3.10. If K = {0} in V, then m = ¢ = 0, and dim (7 (K)) = n? which agrees with the obvious
fact that = (K) = B (V).

EXAMPLE 3.11. If K is proper, then in Lemma 3.9, we have m = n and £ = 0. Thus, dim (7 (K)) = n?
and 7 (K) is solid.

EXAMPLE 3.12. Example 3.6 has n =m =2 and ¢ = 1 giving dim (7 (K)) = 3.

LeEmMA 3.13. If K is a closed convex cone in a Fuclidean space V , then
lin (7 (K)) = dim (V)? — dim (K) dim (K*) .

Proof. From Theorem 3.5, it follows that 7 (K)* = cone (K* ® K) whose dimension is dim (K') dim (K*).
Therefore, by Proposition 2.9, we have

lin (7 (K)) = dim (V)? — dim (7 (K)*) = dim (V)? — dim (K) dim (K*). O
EXAMPLE 3.14. If K = {0} in V, then dim (K) = 0, and lin (7 (K)) = dim (V)” in agreement with the
fact that = (K) = B (V).

ExXAMPLE 3.15. If K is proper, then dim (K) = dim (K*) = dim (V). Lemma 3.13 gives lin (7 (K)) = 0,
showing that 7 (K) is pointed.

EXAMPLE 3.16. In Example 3.6, we have lin (7 (K)) =4—-2-1=2.

These examples reaffirm that 7 (K) is proper whenever K is proper [20]. In the general setting where
K may not be proper, Lemma 3.13 gives us a converse.

THEOREM 3.17. If K is a closed convex cone in a Fuclidean space, then w(K) is proper if and only if
K is proper.
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When K is polyhedral, Theorem 3.5 allows us to compute a generating set of 7 (K). Algorithms to
compute the dual generators of a polyhedral cone are known, and the inverse operations vec () and mat ()
are isometries.

Algorithm 3.1 Compute generators of 7 (K)

Input: A polyhedral convex cone K
Output: A generating set of 7 (K)
function pI(K)
GG1 + a finite set of generators for K
G2 + dual (Gy) > a finite set of generators for K*
G+ GGy
return mat (dual (vec (G)))
end function

4. Z-operators. We now move on to the Z-operators of Definition 2.12. Every Z-operator is the
negation of some cross-positive operator—the class originally introduced by Schneider and Vidyasagar [21].
Elsner [8] and Tam [25] answered some early open questions about cross-positive operators. More work was
done later by Gritzmann, Klee and Tam [13, 26]. Recently, Kuzma et al. [15] used cross-positive operators
to answer an open question posed by Damm [7].

Many of the results hereafter would appear more natural (that is, without a minus sign) if stated
in terms of cross-positive operators. However, the Z-operators—by way of Z-matrices—have historically
received more attention, so we present our results in those terms. As before, we begin by pointing out that
the set of all Z-operators on K forms a closed convex cone. Verification of the three criteria is straightforward.

PROPOSITION 4.1. Z (K) is a closed convex cone for any set K.

If the ambient space V is nontrivial, then Z (K) contains the nontrivial subspace span ({idy }) and is
never proper in contrast with Theorem 3.17. It does however suffice to verify the Z-operator property on
generating sets. This simplifies things greatly when K is polyhedral.

PROPOSITION 4.2. If K = cone (Gy) is closed in a Euclidean space and if K* = cone (Gs), then L €
Z (K) if and only if

(4.1) (L(x),s) <0 forall (x,s) € C(K)N (G x G2).

Proof. Clearly, if L € Z(K), then L satisfies (4.1). So suppose that L satisfies (4.1) and let (x,s) €
C (K). Since G; generates K and G generates K*, we can write z = ) oyx; and s = Y 7,5;. By expanding
(x,s) = 0 and noting that (z;,s;) > 0, we see that each (z;,s;) € C' (K). Linearity gives (L (z),s) <0. 0O

As before, we want to find a generating set of Z (K)* and use it to prove some results about Z (K).
Recall from section 3 that cone (K* ® K) = 7 (K)* for any closed convex cone K. We will take that fact for
granted in this section. A similar set will generate Z (K)”. The following characterization is due to Bit-Shun
Tam, and will simplify our remaining work.

LemMA 4.3. If K is a closed convex cone in a Euclidean space V', then

cone({s®@z | (z,s) € C(K)}) = (K)* Nspan ({idy })".
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Proof. If L =" s; ® x; with (x;,s;) € C(K), then L € n (K)" by Theorem 3.5. Furthermore we have
(L,idy) = > (x; ® s4,idy), where each term satisfies (r; ® s;,idy) = (x;,s;) = 0. As a result we have
L € span ({idy ).

On the other hand, if L € 7 (K)" N span ({idv})L7 then Theorem 3.5 lets us write L = > s; ® x; for
(x4,8:) € K x K*, and (L,idy) = 0 expands to Y (x;,s;) = 0. Since each (z;,s;) is nonnegative, they all
must be zero. Thus, L is a conic combination of s; ® z; terms with (x;, s;) € C (K). d

THEOREM 4.4. If K = cone (G1) is closed in a Euclidean space and if K* = cone (Gg), then Z (K)* =
cone (G) where G is the generating set

G={-s®z|(z,5) € CK)N (G x Ga)}.

Proof. We have L € Z (K) if and only if (=L (z),s) = (L,—s®z) > 0 for all (z,s) € C(K) by one
property of the trace. Thus,

LeZ(K) — Lecone({-s®z| (z,s) € C(K)})".

Infer that the cone(-) is closed from Lemma 4.3, and then take duals on both sides to obtain Z (K)* =
cone ({—s®@z | (z,s) € C(K)}).

It remains only to show that cone (G) = cone ({—s®z | (z,s) € C (K)}). One inclusion is obvious, so
let L =75 —s; ® x; where (x;,s;) € C (K). Expand each z; and s; in terms of G; and G2 to obtain a sum,

(4.2) L= Z aijvik (—tik ® yij), where agj, vir > 0, y;; € G1, and ti € Ga.
.5,k

Since (L,idy) = 0 from Lemma 4.3, the linearity of the inner product and the fact that each (y;;,¢x) > 0
together imply that all (y;;,t;x) = 0, or that each (y;;,ti) € C (K) N (G1 x G2). Thus, L € cone (G). |

The same result for proper cones follows from Lemma 2.2 in Gritzmann, Klee and Tam [13]. A few
examples demonstrate how Theorem 4.4 can be used to find Z (K)*. In simple polyhedral cases, we are able
to obtain Z (K) as well.

EXAMPLE 4.5. If K = R in V = R", then C (K) = {(e;, ¢;) | i # j}. Form G = {—ejel | i #j} to
find that Z (K)" = cone (G) is the set of matrices whose diagonal entries are zero and whose off-diagonal
entries are nonpositive. Its dual is the cone of Z-matrices.

EXAMPLE 4.6. If K is the half-space from Example 3.6, then Theorem 4.4 gives Z (K)* = Z (K)L =
span ({eleQT}). This result is verified by Proposition 4.2.

COROLLARY 4.7. If K is a closed conver cone in a Fuclidean space V and if ¢ and K, are as in
Lemma 2.15, then

B(Vi,Vi) B(Va,Vi) B(V3, V1)
Z (¢ (K)) = {0} Z(K,) B(V3,Va)
{0} {0} B(V3,V3)
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Proof. Apply Theorem 4.4, Lemma 4.3, and Corollary 3.7 to ¢ (K) in the space ¢ (V):

{0} {0} {0}
~Z (¢ (K))" = |B(V1,Vs) cone (K; ® Kp) {0} | N span ({id¢(v)})
B(V1,Vs) B (Va,Vs) {0}

1

Write span ({idy()}) in diagonal block form. The sets B (V;, V;) and {0} are unaffected by the intersection,
and cone (K; ® K,) N span ({idvz})L = —Z(K,)" by Lemma 4.3 and Theorem 4.4. Take duals and negate
both sides for the result. O

THEOREM 4.8. If K is a closed convex cone in a Fuclidean space, then

dim (Z (K)) = dim (7 (K)).

Proof. Compare Corollary 3.7 and Corollary 4.7 in view of Proposition 2.17. A priori dim (-Z (K,)) >
dim (7 (K,)), but 7 (K,) is full-dimensional by Theorem 3.17, so dim (Z (K,)) = dim (7 (K},)) follows. 0O

THEOREM 4.9. If K is a closed convex cone in a Fuclidean space V', then Z (K) is polyhedral if and only
if K is polyhedral.

Proof. If K is polyhedral, then both K and K* have finite generating sets by Proposition 2.7. Those gen-
erators combine via Theorem 4.4 to form a finite generating set of Z (K)", showing that Z (K) is polyhedral
(again by Proposition 2.7).

Let K, be as in Lemma 2.15 and recall that K is polyhedral if and only if K, is polyhedral by Propo-
sition 2.16. If K is nonpolyhedral, then Ext (K,) is infinite. To each x € Ext (K,) we can associate [21] a
nonzero s € Ext (K;) with (z,s) = 0. Tam proved [27] that the resulting s ® x belongs to Ext (7 (K,)"),
and since it also belongs to —Z (K,)" C 7 (K),)", we must have s ® x € Ext (Z (K,)"). Thus, Ext (Z (K,)")
is infinite and Z (K,) is nonpolyhedral by Proposition 2.7. Corollary 4.7 and Proposition 2.17 now show
that Z (K) is nonpolyhedral. o0

These results are corroborated by the polyhedral cones we have examined, all of which have polyhedral
cones of Z-operators and satisfy dim (Z (K)) = dim (7 (K)).

COROLLARY 4.10. If K is a closed convex cone in a Euclidean space, then Z (K) is polyhedral if and
only if m (K) is polyhedral.

There are no simple characterizations of Z (K) for nonpolyhedral K. One sees an example in the work
of Stern and Wolkowicz [23] who characterize the Z-operators on the Lorentz “ice cream” cone. We close
this section with an algorithm, based on Theorem 4.4, to compute Z (K) for polyhedral K.

Algorithm 4.1 Compute generators of Z (K)

Input: A polyhedral convex cone K
Output: A generating set of Z (K)
function Z(K)
G + a finite set of generators for K
G <+ dual (Gy) > a finite set of generators for K*
G+ {-s®@uz|zeGs€Gq, (x,s)=0}
return mat (dual (vec (G)))
end function




Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 34, pp. 444-458, September 2018.

455 Positive and Z-operators on Closed Convex Cones

4.1. Composing Lyapunov-like operators. This is a convenient place to explain the observed be-
havior of Lyapunov-like operators on polyhedral convex cones. Recall that L is Lyapunov-like on K and we
write L € LL (K) if and only if both +L € Z (K). From the following Theorem 2 of Gowda and Tao [12], it
is easy to deduce that the composition of two Lyapunov-like operators on a proper polyhedral cone is itself
Lyapunov-like.

THEOREM 4.11. If K is a proper polyhedral cone in a Euclidean space, then L € LL (K) if and only if
every x € Ext (K) is an eigenvector of L.

LEMMA 4.12. If K is a proper polyhedral cone in a Euclidean space V', then LL (K) is closed under
composition, which is commutative.

Proof. Theorem 4.11 shows that if L; and Ly belong to LL (K), then Lixz = A1 (z) x and Loz = Ay (2) =
for all x € Ext (K). As a result, L1 Lox = LoLyxz = Ao (z) A1 (z) x for all x € Ext (K). Apply Theorem 4.11
again to conclude that both L Ly and LaL; belong to LL (K). Thus, LL (K) is closed under composition.
Global commutativity follows from the fact that Ext (K) spans V. 0

One observes similar behavior when the cone in question is not proper. Lemma 4.12 has the following
partial extension to a general polyhedral cone.

THEOREM 4.13. If K is a polyhedral convex cone in a Euclidean space V', then LL (K) is closed under
composition.

Proof. Proposition 2.17 and Corollary 4.7 extend in a natural way to LL (K)—simply replace “Z”
by “LL” everywhere. Keeping the block-upper-triangular representation of LL (¢ (K)) in mind, and by
applying Lemma 4.12 to LL (K},), one readily shows that LL (¢ (X)) is closed under composition. It follows
that LL (K) = ¢ 'LL (¢ (K)) ¢ is also closed under composition. d

Note that in going from proper to closed and convex, we have lost commutativity. One easily finds
nonpolyhedral proper cones whose Lyapunov-like operators are not closed under composition. The Lyapunov-
like operators on the symmetric positive semidefinite cone [7] are the Lyapunov transformations L4 (X) =
AX + X AT, and they are not closed under composition. Nor is the conclusion of Theorem 4.13 exclusive to
polyhedral cones: most cones [13] have LL (K) = span ({idy }), trivially closed under composition.

5. The exponential connection. Finally we exhibit an explicit connection between positive and Z-
operators. As discovered by Schneider and Vidyasagar [21] and Elsner [8], it applies to proper cones. We
restate their theorem in slightly more general language.

THEOREM 5.1. If K is a proper cone in a Euclidean space V and if L € B(V), then L € Z (K) if and
only if et € 7 (K) for all t > 0.

This theorem has been used effectively. Elsner [8] equates exponentially-positive, resolvent-positive,
essentially-positive, cross-positive, and quasimonotone operators. Damm [7] shows that Lyapunov-like oper-
ators on the positive-semidefinite cone are the Lyapunov transformations from dynamical systems. Gowda,
Tao, and Orlitzky [12, 16] characterize the Lie algebra of the automorphism group of a closed convex cone.

LEMMA 5.2. If K is a subset of a Euclidean space V and if L € B (V) with et € 7 (K) for all t > 0,
then L € Z (K).

Proof. Let et € w(K) for all t > 0, and take any (z,s) € C (K). We show that (L (z),s) <0 and it
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follows that L € Z (K). Since e~ L' (z) € K,

~+ | =
~ | =

<[e_tL —idy] (z),s) = <e_tL (z),s) >0 for all t > 0.

Take the limit as ¢ — 0 to find (L (x), s) < 0. |

To prove the converse of Lemma 5.2, we will ultimately rely on Theorem 5.1 for proper cones. To do
that we will appeal to the decomposition in subsection 2.4.

THEOREM 5.3. If K is a closed convex cone in a Euclidean space V and if L € B(V), then L €
Z(K) < e ** ¢ (K) forallt>0.

Proof. One implication was already shown in Lemma 5.2. If we let ¢ and K, be as in Lemma 2.15, then
the converse of Lemma 5.2 holds for ¢ (K). To see why, suppose that L = [L;;] € Z (¢ (K)) has the block
form of Corollary 4.7. Then Loy € Z (K}), and from Theorem 5.1 we obtain e~ %22 € 7 (K,,) for all t > 0.
Now, by appealing to the block-upper-triangular form of L, exponentiate directly:

o) 1 eitLll A B
ST SEART N N
n=0"" 0 0 e thas

We are not interested in the precise form of A, B, and D. Apply Corollary 3.7 to conclude that e *f ¢

7 (¢ (K)) for all t > 0, and use Proposition 2.17 to eliminate ¢ from the result. |

A similar result appears in Hilgert, Hofmann, and Lawson [14]. The first two items of their Theorem
II1.1.9 state that L € Z (K) if and only if e 7' € 7 (K) for all ¢ > 0. However, the remaining items suggest
hidden assumptions, and its proof relies on another Theorem 1.5.27 where the cone is solid. Nevertheless,
their Theorem 1.5.17 seems to provide the machinery needed to prove the result.

All of our previous examples corroborate Theorem 5.3. We provide an application to dynamical systems.

EXAMPLE 5.4. The system 2’ (t) = —L (z (t)) has solution z (t) = et (2 (0)). If L € Z (K) for some
closed convex cone K, then Theorem 5.3 shows that e % € 7 (K) for all ¢+ > 0. Therefore z (¢) remains in
K fort>0if z(0) € K.

Theorem 4 of Orlitzky [16] now follows as a corollary.

COROLLARY 5.5. If K is a closed convex cone in a Euclidean space, then LL (K) is the Lie algebra of
the automorphism group of K.

Proof. Apply Theorem 5.3 to both +L € Z (K). d

When K =V = R", this witnesses the well-known fact that the n x n real matrices are the Lie algebra
of the general linear group of degree n over R.

6. Decomposing Z-operators. Any L € Z (Rﬁ) is of the form L = Al — N where A € R and
N € 7 (R%) is a nonnegative matrix [4]. Schneider and Vidyasagar [21] show that a similar decomposition
exists for any proper polyhedral cone: if K is proper and polyhedral in V', then Z (K) = span ({idy }) —7 (K).
The authors leave open the question of when such a decomposition exists. The answer is “almost never” [13],
but we do always have Z (K) = cl (span ({idy }) — 7 (K)) if we take the closure [21].
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An M-matrix is a Z-matrix all of whose eigenvalues have nonnegative real parts. Early attempts to
generalize M-matrices to a proper cone K in V involved operators of the form span ({idy}) — 7 (K), and
operators having that form are called K -regular [22]. A K-regular matrix whose eigenvalues have nonnegative
real parts is called a K-general M-matriz. But recall that K-regularity is not necessarily equivalent to
membership in Z (K) when K is non-polyhedral [13]. Using the geometric notion of subtangentiality, Stern
and Tsatsomeros [22] remedy that situation by introducing K -extended M-matrices defined in terms of
the exponential positivity that (by Theorem 5.3, for example) characterizes Z (K). It is shown that every
K-extended M-matrix is the limit of K-general M-matrices.

From Definition 2.13 it should be obvious that span ({idy}) € LL (K) C Z (K) for any closed convex
cone K. It therefore makes sense to investigate when LL (K) — 7 (K) = Z (K). Damm [7] asks if this is
true for the cone of symmetric or Hermitian positive-semidefinite matrices (either real or complex). Kuzma
et al. [15] provide an answer, constructing a counterexample when the matrices are larger than 2 x 2. In
the process, the authors show that if K is the cone of squares in a simple Euclidean Jordan algebra V', then
Z(K)=LL(K) -« (K) if and only if the rank of V' is 2 or less.

Using Theorem 5.3, we can prove an analogue of the result obtained by Schneider and Vidyasagar.

THEOREM 6.1. If K is a closed convex cone in a Fuclidean space V', then

Z (K) = cl(span ({idy}) — 7 (K)).
Proof. We have span ({idy }) — « (K) C Z (K) from their definitions. Thus, ¢l (span ({idy }) — 7 (K)) C
cl(Z (K)) =Z (K) because Z (K) is closed.

If L € Z(K), then e7* € 7 (K) for all ¢ > 0 by Theorem 5.3. The function f (¢) = (idy —e~"%) /t
converges to L as t > 0 approaches zero, and f(t) € span ({idy}) — 7 (K) for all ¢ > 0. Thus, L €
cl (span ({idy }) — 7 (K)). O

To demonstrate the power of Theorem 6.1, we will use it to construct new proofs of Theorem 4.4,
Theorem 4.8, and half of Theorem 4.9.

COROLLARY 6.2. If K is a closed convex cone in a Euclidean space V, then

Z(K) =cone({-s®x | (z,5) € C(K)}).
Proof. Take duals in Theorem 6.1 and apply Proposition 2.8 to find Z (K)* = span ({idy })*n (=7 (K)").
Now consult Lemma 4.3. O

COROLLARY 6.3. If K is a closed convex cone in a Euclidean space V, then dim (Z (K)) = dim (7 (K)).

Proof. Use Theorem 6.1 to obtain dim (Z (K)) = dim (span ({idy}) — 7 (K)) which is defined to be
dim (span (span ({idy }) — 7 (K))). But idy € 7 (K), so

dim (Z (K)) = dim (span (7 (K))) = dim (7 (K)). O

COROLLARY 6.4. If K is a polyhedral convex cone in a Fuclidean space, then Z (K) is polyhedral.
Proof. If K is polyhedral, then 7 (K) is polyhedral. It therefore follows that span ({idy }) — 7 (K), being

the sum of two polyhedral cones, is both polyhedral and closed. Thus, Z (K) = cl (span ({idy }) — 7 (K)) =
span ({idy }) — 7 (K). 0
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The converse of Corollary 6.4 seems more elusive.
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