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BOUNDED LINEAR OPERATORS THAT PRESERVE THE WEAK
SUPERMAJORIZATION ON /}(I)*, WHEN [ IS AN INFINITE SET*

MARTIN LJUBENOVIC! AND DRAGAN S. DJORDJEVICH

Abstract. Linear preservers of weak supermajorization which is defined on positive functions contained in the discrete
Lebesgue space £1(I) are characterized. Two different classes of operators that preserve the weak supermajorization are formed.
It is shown that every linear preserver may be decomposed as sum of two operators from the above classes, and conversely,
the sum of two operators which satisfy an additional condition is a linear preserver. Necessary and sufficient conditions under
which a bounded linear operator is a linear preserver of the weak supermajorization are given. It is concluded that positive

linear preservers of the weak supermajorization coincide with preservers of weak majorization and standard majorization on
().
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1. Introduction. In recent years, the investigation in the field of the majorization theory is oriented
toward the generalization of some well-known results in the matrix theory using the extension of the most
useful majorization relations [33]. Applications of the infinite-dimensional majorization for generalization
the Schur-Horn theorem are studied in [2, 5, 18, 28, 32]. We suggest the following papers [3, 4, 14, 19, 20, 31]
for majorization theory in von Neumann and Jordan algebras. The best collection of existing results in the
finite-dimensional majorization theory and its applications is the book [29], by Marshall, Olkin and Arnold.

In the finite-dimensional case, for two vectors x,y € R", vector x is weakly supermajorized by y, if

k k
(1.1) dal =3yl (k=12,...,n),
i=1 i=1
where x{ < m; < ... < 2] is the increasing rearrangement of components of a vector x. We denote it by

x < y. If additionally,
n n
>_al =l
i=1 i=1

then x is majorized by y, and denote it x < y.

We recall that a square matrix with non-negative real entries is called doubly stochastic, if each of its
row sums and each of its column sums are equal 1. More general, n x n matrix D = (d;;) with non-negative
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real entries is called doubly superstochastic, if there is a doubly stochastic matrix D = (d;;) such that

(1.2) dij > dij

for each 7 and j. This implies that each of its row sums and each of its column sums are grater than or
equal to 1. We note that the converse is not true, that is there are matrices which satisfy the last rows and
columns conditions but there is no doubly stochastic matrix such that (1.2) holds.

There is several “alternative” definitions of majorization relations in finite dimensions (see [29, Theorems
I.1.A.3-5]). We give the most operative equivalents for the standard majorization and weak supermajoriza-
tion using doubly stochastic and superstochastic matrix, respectively. Hardy, Litlewood and Polya [16]
provide that x < y if and only if there is a doubly stochastic matrix D such that

(1.3) x = Dy.

For positive vectors z,y € (R™)T, relation & <“* y holds if and only if there is a doubly superstochastic
matrix D such that

(1.4) z = Dy.

The extension of the standard majorization relation by doubly stochastic operators on ¢P(I) is introduced
in [6] based on definition (1.3), (see also [7, 10, 12, 21]). Precisely, a positive bounded linear operator
A lP(I) — ¢P(I) is called doubly stochastic if

(1.5) (Vjel) > Aej(i)=1 and (viel) » Ae(i)=1.
iel jeI

The set of all doubly stochastic operators we will denote by DS(¢P(I)). The function f € ¢P(I) is majorized
by g € ¢P(I) if there is D € DS(¢?(I)) such that

g=Df.

The notion of the weak supermajorization on ¢P(I)* which represents a generalization of the weak
supermajorization on R™ using the alternative definition (1.4) for positive functions, is introduced in [25]
using doubly superstochastic operators on ¢P(I). Let A = {a;; : i,j € I} be a family of real numbers, where
I is an arbitrary non-empty set. First of all, in the work [25] it has been shown that the conditions

(1.6) My = supz la;j| < oo,
Jeler

(1.7) My :=sup»_|ai;| < oo
i€l jer

are sufficient for the family A to be considered as bounded linear operator A on ¢P(I) for every p € [1, c0].
The operator A is defined as standard matrix operator by

(1.8) Af =3 aif) | e

iel \jeI
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COROLLARY 1.1. [25, Corollary 3.1] Let A = {a;; : i,j € I} be a family of real numbers. If this family
satisfies conditions (1.6) and (1.7), then this family may be considered as a bounded linear operator A on
¢P(I) defined by (1.8), for every p € [1,00].

Using the last corollary we may identify above families and appropriate operators defined by (1.8), so
we use the same letter A for both of them in order to simplify notation. Within this class of operators which
satisfy conditions (1.6) and (1.7), in accordance with finite dimensional case, notions of row, column and
doubly superstochastic are extended.

DEFINITION 1.2. [25, Definition 3.1] Let A = {a;; : 4,5 € I} be a family of positive real numbers, which
satisfies (1.6) and (1.7), where I is an arbitrary non-empty set. The family A is called

e row superstochastic, if Zjel a;; > 1, Vi € I;
e column superstochastic, if ), a;; > 1,Vj € I;
o doubly superstochastic, if there is A € DS(¢P(I)) such that a;; > (Ae;,e;), Vi, j € I.

In the sequel, in many situations stochastic families will be called stochastic operators, when we consider
these families as matrix operators defined by (1.8). The set of all doubly superstochastic families (operators)
on ¢P(I), p € [1,00) are denoted by DSPS(¢P(I)).

It is easy to see that every doubly superstochastic operator is both row and column superstochastic.
However, the converse does not necessarily hold in general. In fact, the row and column superstochastic
operator A = {a;; : i,j € N} defined by

O O glwulw O
O O O uvgw
O O uln O alw
O = O O O
_ o O O O

is not doubly superstochastic.

DEFINITION 1.3. [25, Definition 4.1] For two positive functions f, g € ¢P(I)F, f is weakly supermajorized
by g, if there exists a doubly superstochastic operator D € DSPS(¢P(I)), such that f = Dg, and denote it

by f <%?g.

Linear preservers, as operators which provide that for two elements in some relation their images are
also in a relation, has been studied by many mathematicians. For a survey of linear preserver problems
see [15, 26, 27]. Also, preservers represent very interesting topic in the majorization theory for the finite-
dimensional case [1, 17, 30, 34] as well as various infinite-dimensional cases such as majorizations on discrete
Lebesgue spaces (P (1), £>°(I), cg, ¢, ete. See for for details [6, 7, 8, 9, 11, 13, 23, 24].

The paper is organized as follows. Section 2 contains notations and some published results. At the
beginning of Section 3, we provide by Theorem 3.4 that the bounded linear operator

Ty = APy,

kely
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which is defined by the one-to-one operator

Py, (f) == Zf(i)eﬂk(i)7
iel
represents a preserver of weak supermajorization, where the set Iy is at most a countable subset of an
infinite set I, sequence (\)ier, is in £1(Ip)", and every 6 belongs to a countable family © of one-to-one
maps 0 : I — I with mutually disjoint ranges 0, (I). The set of all such operators we will denote by
Aws(¢'(I)"). On the other hand, Example 3.6 gives that there is another one class of operators which
preserve weak supermajorization relation on ¢*(I)*, denoted by B#(¢'(I)"). These operators are defined
by
Bu(f):=hY_ f(i), VfelI),
iel

for some h € ¢*(I)T. Example 3.7 shows that an arbitrary chosen sum of two operators from two above
defined classes AS(¢'(1)") and Bpy(¢'(I)*) in not a linear preserver of the weak supermajorization in
general. Theorem 3.8 gives sufficient conditions

(1.9) Af(io) = Bf(iy) =0, Viy €I, Vig € I, Vf € £1(I)T,

that the sum of two operators T' = A + B represents a weak supermajorization preserver, when I is an
infinite set, where A € A%(¢'(1)*) and B € BL#(¢*(I)*). The aim of the rest of the paper is to prove the
opposite, that is, every weak supermajorization preserver T' on ¢!(I)* may be uniquely decomposed as sum
of two operators T = A + B which satisfies (1.9), where A € A%5(¢(*(I)*) and B € By (¢*(I)"). In order to
provide the last result presented in Theorem 3.14, we characterize “rows” and “columns” of linear preservers.
can not contain two distinct strictly positive

)

Namely, Lemma 3.10 shows that an arbitrary chosen “row’
elements, so we conclude that ether the “row” contains exactly one nonzero element or all elements in this
“row” are mutually equal, by Lemma 3.11. Theorem 3.12 presents the necessary and sufficient conditions
under which an operator belongs in first class of preservers A%5(¢*(I)*). As consequence of all provided
results, Theorem 3.15 gives the necessary and sufficient conditions under which a bounded linear operator
on ¢1(I) is a weak supermajorization preserver.

Corollary 3.16 shows that positive linear preservers of all three the most common majorization relations:
standard majorization on ¢!(I), weak majorization and weak supermajorization on positive cone ¢!(I)T, are
the same, when I is an infinite set. On the other hand, this corollary is the infinite-dimensional version of
[17, Theorem 2.1], provided by Hasani and Vali.

2. Notations and preliminaries. Let I be an arbitrary non-empty set. The function f: I — R is
summable if there exists a real number ¢ with the following property: Given ¢ > 0, we can find a finite set
Jo C I such that

- fU)|<e
jeJ

whenever J is a finite set and Jy C J. Then o is called the sum of f and we denote it by o = > f(4).
i€l

We denote by ¢1(I) the Banach space of all functions f : I — R such that || f||; := >_ |f(i)| < co. Each
i€l

f= Z fi)ei.

iel

function f € ¢*(I) has a representation
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Functions e; : I — R are defined by Kronecker delta, i.e., e;(j) = d;5, ¢,j € 1.

For each g € ¢°°(I), where ¢>°(I) is the Banach space with supremum norm, the rule f — (f, g) :=

> f(i)g(i) defines a bounded linear functional on ¢*(I). This map (,-) : £1(I) x £>°(I) — R is called the
iel
dual pairing.

Weak supermajorization relation is defined on the cone of positive functions which we denote by

oIt ={felrI): fi)>0,viel}.

Sometimes we will analyze two sets I}) and I;' as subsets of I defined by
I :={iel: f(i) =0},
If={iel: f(i) >0},
for any f € £1(I).

Let A : ¢*(I) — ¢*(I) be a bounded linear operator, where I is a non-empty set. The operator A is
called:

e positive, if Ag € £*(I)*, for each g € £1(I)T;
e a permutation, if there exists a bijection ¢ : I — I for which Ae; = eg(;), for each j € I.

The sets of all permutations on ¢*(I) is denoted by P(¢1(I)), respectively.

Weak supermajorization relation <** on ¢!(I)* may be considered as partial order [25, Corollary 4.5],
if we identify all function which are different up to the permutation. The last result is provided using the
next very important theorem:.

THEOREM 2.1. [25, Theorem 4.4] For f,g € (*(I)*, the following conditions are equivalent:

i) f<Y* g and g <™* f.
ii) There exists a permutation P € P(¢1(I)) such that f = Pg.
LEMMA 2.2. [24, Lemma 3.1] Let u = {u;} € R” and let {u;; |i € Iy, j =1,...,n} be a family of real
numbers, where Iy is at most a countable set. If

n n
(2.10) ZO(jUj S Z QU |Z elp,,
=1 =1

for all @ = (a1, ag,...,ay) with a; > 0 for each j = 1,...,n, then there exists k € Iy such that u; = uy;,
foreachj=1,... n.

3. Linear preservers of weak supermajorization on ¢!(I)*. Firstly, we give the definition of the
linear preserver of the weak supermajorization on ¢!(I)*.

DEFINITION 3.1. A bounded linear operator 1" : ¢}(I) — ¢1(I) is called linear preserver of the weak
supermajorization on ¢1(I)T, if T preserves the weak supermajorization relation, that is, Tf <** Tyg,
whenever f <%$ g, where f,g € £*(I)T. The set of all linear preservers of the weak supermajorization on
(Y (I)* is denoted by MLs(£1(I)T).

r
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The first result gives basic properties of linear preservers of weak supermajorization.

LEMMA 3.2. Let A € R,\ > 0. Then

i) f < g implies f <V g, for every f,g € £*(I)7F;
i) NK € Mus((H(I)*), for each K € My (0 (I)*);

iii) K1Ko € MES(LH(I)Y), for each Ky, Ky € MY (01(I)7T);
w) if K € MES(CN (1)), then Ke;(i) >0, Vi,j e I.

T

Proof. Statement i) is straightforward.

Let K € MYs(0*(I)*) and let A € R, A > 0. Then f <“* g implies Kf <“* Kg, ie., there is
D € DSPS(¢*(I)) such that Kf = DKg. Since AK f = ADKg = D(AKg), we get

(AK)f <" (AK)g,

so AK € MYs(¢(I)*). Further, relation f <" g implies Ky f <** Kog, which implies Ky K> f <% K1 Kag,
thus KKy € MES(LH(I)T).

To prove iv), we suppose contrary that there is at least one pair ig, jo € I such that for the preserver K

we have (Kej,,e;,) < 0. Since ej, <“* e), does not imply Kej, < Key because Kej, & ¢*(I)*, hence we
get that K is not a linear preserver which is impossible. Thus, iv) holds. ]

In the sequel, will consider the bounded linear operator Py : £1(I) — ¢1(I) defined by

(3.11) Po(f) = f(h)eogs):
jel
for every f =" f(j)ej € £1(I), where 6 : I — I is a one-to-one function. If @ is surjection, it is easy to see
jel
that P is a permutation. Clearly, | P|| = 1.

Our first result shows that for a doubly superstochastic operator @ on ¢! (I) and for a family of operators
Py defined by (3.11), which are determined by one-to-one functions  with mutually disjoint images, there
is at least one doubly superstochastic operator D such that DPy = PyQ, for every 6. Using this result, we
will find the sufficient conditions that an arbitrary bounded linear operator on ¢!(I) is a preserver of weak
supermajorization, when I is an infinite set. In the second part of this paper, we provide that they are
actually necessary and sufficient conditions.

THEOREM 3.3. Let Q € DSPS(¢*(I)). Suppose that
(3.12) ©:={0;: 1 5TI|jely, 6:()N6;I)=0, i+#j}

is a family of one-to-one maps on I with mutually disjoint images, where Iy is at most a countable set.
Then, there is at least one D € DSPS({'(I)) such that PyQ = DPy, V0 € ©.
Proof. Let D = {d;;| i,j € I} be a family defined by
(Qeo-13jy,€9-1(3)), 1,J € O(I), for some 0 € O,
(3.13) dij = b, i,J & Upeo 0(1) and j = i,
0, otherwise,

where b > 1 is arbitrary chosen.
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The family D satisfies conditions (1.6) and (1.7). More precisely, if j € (1) is arbitrary chosen, for some
0 € O, then using definition (3.13), we get

Soldijl= > ldigl+ Y ldil

i€l 1€0(I) 1€I\O(I)
= Z (Qeg-1(35), ea-13iy) < SUPZ |qi5] < o0,
ico(I) Jeler

because operator @ satisfies conditions (1.6) and (1.7). If j € I'\ Upee 0(I) then », ; |dij| = b > 1, thus it
follows that

supz |dij| < o0.

Jel e7

Similarly, we may conclude that

Supz |dij| < oo.

i€l jel

Thus, the family D may be considered as bounded linear operator on ¢P(I) for each p € [1, o0], defined by
(1.8), by Corollary 1.1. Using (3.13) we obtain that

Y odij=1, Viel
jel

and
Y dij>1, Vjel

el

Thus, D is row and column superstochastic, by Definition 1.2.

We claim that D is a doubly superstochastic. We have to show that there is a doubly stochastic operator
D € DS(¢(I)) such that d;; > (Dej,e;), Vi,j € I. Since Q € DSPS(¢*(I)), hence there is an operator

Q € DS(M(I)) with (Qe;, e;) > (Qej,e;), Vi, j € 1.
Similarly as above, we define a family D= {67” | i,7 € I} to be
<@€971(j),€971(i)>, 1,7 € 0(1), for some 6 € O,

(3'14) dij = 1, i,] & Uae@ 6(1) and j =1,
0, otherwise,

Obviously, using Corollary 1.1, we get that the family D defines a doubly stochastic operator on £(I) defined
by (1.8), because it is easy to see that

(Viel) » dj=1 and (Vjel) Y dyj=1
Jjel el

Next, if 4,5 € 0(I) for some 6 € ©, then by above definitions (3.13) and (3.14) we have

dij = (Qeg-1(5), €0-1(3i)) = <©€9—1(j)769—1(i)> = dij,

and
dis =b>1=dy,
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when i & Jpeg 0(I). Thus, D € DSPS(¢*(I)).

We will show that PyQQ = DPy, V6 € ©. Choose an arbitrary function 8 € ©. We get

ng(ej) 69(] Z d; o)+ Z d; 0()€
leo(I) 1go(I)

Using the definition of the operator D, we have that dj g(;) = 0, when [ ¢ 6(I), so we conclude that

(3.15) DP@ ej Z dl 0()HEl = Z <Q€j769*1(l)>el = Zer (i)eg( )

1€6(I) 1e6(I) icl

Further, using Q(e;) = > Qe;(i)e;, we obtain
i€l

(3.16) PyQ(e;) ZQeJ )Py (e;) ZQe] i)eq(i

i€l el

Combining (3.15) and (3.16), we get DPy(e;) = PyQ(e;), Vj € I. Then

DPy(f) =DPy | > f(i)es | = | D FG)DPo(ey)

Jjel Jel

D FH)PR(ey) | = PQ(f),

Jjel

for arbitrary choosen function f = 3 f(j)e; € £1(1). O
JjeI
If f <% g, that is f = Qg, for some Q € DSPS(('(I)), then we get Pyf = PyQg = DPyg, for some
D € DSPS({'(I)), by Theorem 3.3. It follows that Pyf <" Pyg. Thus, Py € Mws(¢'(I)*). In particular,
it follows that P(¢*(I)) C Mus(£H(I)*).
THEOREM 3.4. Let Iy be at most countable subset of an infinite set I. Suppose that © is a family of
one-to-one maps on I with disjoint images, defined by (3.12). If X € £*(Iy)™, then

(3.17) T =Y APy, € MU (LH(I)T).
j€lo
Proof. Let T = % X; Py, be a linear operator on ¢!(I). Firstly we show that 7" is bounded. Since the

j€ly
family © is contains only functions with disjoint images, we get

ITFI =" @) = 171 D2 2 = IMIA-

j€lp i€l j€lo

We conclude that T is a bounded linear operator on ¢*(I) with norm || T'|| = ||A||. Suppose that f <¥* g
It follows that f = Qg for some Q € DSPS(¢*(I)). There is an operator D € DSPS(¢*(I)) such that
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PyQ = DPy, for each 6 € ©, by Theorem 3.3. Now, using linearity and continuity of operator D, we obtain

Tf= MNPy, (f)=Y_ XPs,(Qg) = X\DPs (g)

j€lo j€lo j€loy
(3.18) — 0 nBy(0) | = D(Tg).
Jj€lo

which implies that T'f <*° Tg. a

EXAMPLE 3.5. Let 1 < m € N and let © := {61,605, ...,0,,} be a family of one-to-one maps 6,, : N — N,
defined by
0., (k) =mF+n, VkeN, n=1,2,...,m.

m
We define the operator T := #Pgn. Using the definition of the family ©, we can represent 7" in the
n=1

following way:

T
_ f) f) f(2) f(2) f3) f3)
Tf= |00, F (1), g T 0 0 f(2), o T 0,0, f(3), T T
m-times m-times m2—2m m-times md—m?—m m-times

times times

We get that T € M@ (¢*(N)T), by Theorem 3.4. Moreover, we conclude that 7" is bounded

1771 = 3 I f < S A < 171 5 = 17
n=1 n=1

n=1k=1

for every f € (1(I).

Previously, we showed that operators defined by (3.17) are linear preservers of weak supermajorization
on £'(I)*, by Theorem 3.4. The set of all such operators we will denote by A%#(¢'(I)*). However, we can
find linear preservers of weak supermajorization relation which do not have form (3.17), that is, which are
not, contained in A% (¢'(I)7).

EXAMPLE 3.6. We define an operator By, to be

(3.19) Bu(f):==hY_ f(i), Vfel(I).
i€l
where h € (1(I)T is arbitrary fixed. Obviously, By, is a bounded linear operator with norm || By|| = ||A||.

Suppose that f <%$ g, where f,g € ¢}(I)*, that is, f = Dg, for some D € DSPS(¢*(I)). Using the
definition of operator D, we have that there is an operator D € DS(¢*(I)) such that De;(i) > De;(i), so
changing the order of summation, we get

£ =" FG@) =" 9(i)Dey(i)

iel iel jel

(3.20) > 3N 90()De; (i) =" g(i) Y Dej(i) = llgll.

icl jeI jel icl
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Thus, Br(f) = k|| f]| > hllg|ll = Bn(g). Let a = % > 1. Let Q := aZ € DSPS(¢*(I)), where Z stands for

the identity operator. Since

@Bn(g9) = llgllQh = allglh = [Ifllh = Bu(f),
hence By (f) <"* Bi(g), that is, By € My (¢1(I)7T).

The set of all linear preservers of weak supermajorization on ¢1(I)* introduced in (3.19) we will denote
by By (¢*(I)T). Obviously, Bus (£ (1)) is a convex cone and AXS(£1(1)*) (B (€' (I)™) contains only null

operator. Also, the sum of two operators from two different classes A% (¢'(I)") and By (¢*(I)*) is not a

linear preserver in general, which is presented in the next example.

EXAMPLE 3.7. Fix j,k € I such that j # k. Suppose that operator Be, is defined by (3.19). Thus,
“columns” Be,e,, r € I of the operator B,, are mutually equal and they are actually equal with function
ek, so we have B, (e;) = er. Let P € P(€'(I)) € A%5(£*(I)*) be a permutation which satisfies

P(ej) = €.
We will show that P + B, & Mws(¢'(I)*). Clearly, e; <“* e;. On the other hand,
(P+ Be,)(er) = e; + e,

where have to be i # k, and
(P + B, )(ej) = 2eg.

We claim that

(P + Be,)(€) = 2ex A" € + e, = (P + Be, ) (ex).
Suppose contrary that there is an operator D € DSPS(¢1(I)) such that D(e; + ex) = 2ej. It follows that
De; (k) + Dey (k) = 2. Since ex(t) = 0, for each t # k, hence we get
(3.21) De;(t) = Dey(t) =0, foreveryte I\ {k}.
Since the operator D is column superstochastic, it has to be

(3.22) De;(k) = Dey (k) = 1.

However, using (3.21) and (3.22) we conclude that there is no D € DS(£*(I)) such that Dej(i) > l~)ej(i),
Vi,j € I, so we have a contradiction, thus D & DSPS({'(I)), so P+ By, & Mus (¢ (I)™).

r

The next result gives sufficient conditions that the sum of two arbitrary chosen bounded linear operators
form two disjoint classes A%S(£'(1)") and BYs(£1(I)*) is a linear preserver of weak supermajorization on
)T

THEOREM 3.8. Let I be an infinite set. If A e Avs(¢"(I)") and B € By (¢ (I)") are chosen to be

(3.23) Af(ia) = Bf(iy) =0, iy € I, Vip € I, Vf € (D),

where I, Io C I, 1 NI, =0 and I UI, = I, then A+ B € M;f’ﬁ(ﬁl(l)"’).
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Proof. Choose an arbitrary operators A € A%*(¢'(I)") and B € B (¢*(I)1), such that (3.23) holds. It
follows that the operator A has the following form:

A=Y "\Py,

j€lo

where family © is presented in (3.12). Without lose of generality, we suppose that A\; > 0, Vj € Iy. Now,

Af(ia) =D f(i)Aeilia) =D f(i) Y A Pa,eiliz)

iel el VIS )
=3 F(0) D Neg,pyliz), Vf € (D).
i€l j€ly

Using theorem assumption Af(iz) = 0, we get that
eg, (i) (i2) = (€q; (i), €i,) =0, Vi€ l, Vj€ly, Viz € Iy,
S0

Ui |n=0.

j€lo

Suppose that f <*¢ g, for some f, g € ¢}(I)*. Tt follows that f = Qg, where Q € DSPS(¢*(I)). There is at
least one operator D € DSPS(¢*(I)) such that Py,Q = DPy,, Vj € Iy by Theorem 3.3, and AQ = DA, by
(3.18) . Actually, the operator D is not unique, which is obvious by its definition:

<Q69—1(]~),6371(i)>, 1,] € 9([), for some 6 € O,

dij = b, i,5 & Upeo 0(I) and j = i,
0, otherwise,
(see proof of Theorem 3.3). Using (3.20) and choosing b := H%” > 1, we get

BQg=Bf=hY_ f(j)=bh>_g(j) =bBg,

jeI jerl

for some h € (1(I)*. Also De; = be;, Vj € Iz, by definition of D, so using (3.23) we obtain
DBf =" Bf(j)De; = bBf

j€l2

for every f € 1(I)*. Now, we conclude
D(A+ B)g=DAg+ DBg = DAg+ bBg = AQg + BQg
=(A+B)Qg=(A+ B)f.
It follows that (A + B)f <“* (A+ B)g, thus A+ B € M&s(¢'(I)™). O
In the rest of the paper, our aim is to prove the opposite direction of the last theorem, that is, to

prove that every linear preserver of weak supermajorization on ¢!(I)* may be represent by the sum of two
operators from classes A € A%*(¢'(I)") and B € B&(£(I)"), which satisfies conditions (3.23). For this

o
purpose, we need the following results.
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LEMMA 3.9. Let T : (*(I) — ¢*(I) be a linear preserver of weak supermajorization on ¢*(I)*. Suppose
that J is a finite subset of I and let 6 : J — J be a bijection. For every u € I there exists v € I such that

(3.24) Tem(u) =Tesmmy(v), Ym e J.

Proof. Let card(J) =n € N. Since T € M2%#(¢(I)*), hence

Z AmCm <7 Z ames(m) and Z Ames(m) <"* Z AmEm

meJ meJ meJ meJ
implies
Z amTe, <“° Z amTesm) and Z amTesqm) <"° Z amTenm,
meJ meJ meJ meJ
for every a = (am,,@my;---,@m,), where an,; > 0 for each m;. Now, using Theorem 2.1, we obtain that
functions h:= > anTen and hs := Y amTes(y) are different up to the permutation, that is,
meJ meJ
Z amTen(u) € { Z amTesm) (k) | k € Io} ,
meJ meJ

where [y := Ih+5 U{r}and r € I,?a. Since I}JL; is a countable set, hence using Lemma 2.2, we get that there is
a v € I such that (3.24) holds. 0

LEMMA 3.10. Let T : £*(I) — €*(I) be a linear preserver of weak supermagorization on ¢*(I)™, where I
is an infinite set. If there are two distinct k,l € I such that Teg(i) > 0 and Te;(i) > 0, for some i € I, then
Tek(z) = Tel(i).

Proof. Let k := Teg(i) > 0 and [:= Te;(i) > 0 and suppose contrary, k#1. Let
(3.25) K:={iel:Tey(i)=k},

L:=1{icl:Tep(i)=1}.

Clearly, K C I is a non-empty set. Since Te; € ()™, hence

(3.26) card(K) < Xy and card(L) < Ro.

Let ay,a2 > 0 and let m € I'\ {k,[} be arbitrary chosen. Clearly,
arer + ase; <Y% arer + aze,, and ajer + ase,, <% arer + asey.
Since T is a linear preserver of weak supermajorization, we get
a1Tey +asTe; <% a1Tey, + axTe,, and a1Ter + asTe,, <V a1Te; + axTe;.
Using Theorem 2.1, we obtain

a1Tep (1) + axTe (i) € {a1Ter(j) + axTen(5) | j € I}.

Since the above set is at most countable because Tey, Te,, € £*(I)*, hence using Lemma 2.2, we get
that there is j € I such that Tey(i) = Tex(j) = k and Te; (i) = Tep(j) = I. It follows that j € K. Since
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m € I is arbitrary chosen and card(I) > card(K), hence there is s € K and for this s there is a sequence
(myj)jen of distinct elements m; € I such that Te,,;(s) =1> 0, Vj € N.

We define the a family {®;};en where ®; := {mq,ma,...m;} for every j € N. Also, we form bijections
@i ©; U{k} — @; U{k} in the following way:

mj, =k,
oj(x) = ¢ k, T =m;

x, xeéj\{mj}.

Now, using Lemma 3.9 we can find s; € I such that

(3.27) Tem;(s5) = Tey, ) (s5) = Ter(s) = k,

(3.28) Ter(sj) = Tey,(m,)(55) = Tem,(s) =1

and

(3.29) Teu(sj) = Tey, () (5;) = Tea(s) =1, Vo€ d;\ {m;}.

Suppose that there are distinct a,b € N such that s, = s,. Without lose of generality, suppose that
a < b. Now, using above expression (3.27), since ¢4(k) = m, we get that

Tem, (sq) = k.
However, since b > a, hence m, € ®;, \ {msp} so using ¢p(my) = m, and (3.29), we get
Tem, (sp) = 1.
Using above facts and the assumption s, = s, we conclude
[=Tem,(sp) = Tem,(sq) =k,

which is contradiction with & #* [, so it has to be s, # sp, whenever a # b. Since sj € L, Vj € N by (3.28),
hence £ is an infinite set, which is a contradiction with (3.26). 0

Further, we prove that if there are two strictly positive elements in one “row” of linear preserver of weak
supermajorization on ¢!(I)T, when I is an infinite set, then all elements in this “row” are the same.

LEMMA 3.11. Let T : £*(I) — €*(I) be a linear preserver of weak supermagorization on £*(I)T, where I
is an infinite set. If there are two distinct k,l € T such that Tey(i) > 0 and Te;(i) > 0, for some i € I, then
the set {Te;(i) | j € I} is a singleton.

Proof. Firstly, it easy to see that if Te;(i) > 0, for some j € I, then Te;(i) = Tey(i) = Te(i), by
Lemma 3.10.

Suppose contrary that there is a m € I such that Te,, (i) = 0. Let

M :={j € I|Tex(j) = Teu(j) = k},
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where k := Tey(i) = Tei(i). Obviously, the set M is a finite nonempty set. We chose an arbitrary
n € I\ {k,l,m}, and define a bijection

k, x=k,
l, x=I,
On() = n, r=m
m, T=mn

Now, by Lemma 3.9, there is 4,, € I such that
Ten(in) = Tes, (m)(in) = Tem(i) =0,

Tey(in) = Tes, k) (in) = Tex(i) = k

and
Tel(in) = Teén(l) (Zn) = Tel(i) = k.

Now, it is easy to conclude that i, € M C I. Since card(M) < Ng, we get that there exists s € M and for
this s there is a sequence of distinct elements (m;);en such that Te,,,(s) = 0, Vj € N. Similarly as in the
proof of the last lemma, we define bijections

¢j : (I)j U {k,l} — (Dj U {k,l},

correspond to sets ®; := {mq,mg,...m;}, j € N, defined by

k, =k,
) x =mj,
(z)](x) T m] T = l,

z, x€®;\{m;}.
Again using Lemma 3.9 for each j € I, we can find s; € I such that

Te(s;) = Te¢j(k)(sj) =Tex(s) = k,

(3.30) Tem,;(sj) =Tey,q)(sj) = Tei(s) = k,

Tei(sj) =Teg,(m;)(8j) = Tem;(s) =0
and

(3.31) Tey(s;) =Tey,(2)(s;) = Tex(s) =0, Vae ®;\ {m;}.

If we assume that there exist integers a < b such that s, = sp, then using bijection ¢,, we get
Tem, (sa) =k, by (3.30),
and using bijection ¢, we obtain
Tem, (sq¢) = Tem,(sp) =0, by (3.31),

which is contradiction with & > 0. Thus, s, # sp, whenever a # b. If we define set K as in (3.25), we get
that s; € KC, Vj € I, which implies that K is an infinite set, which is impossible by (3.26). 0
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In the next theorem, we present necessary and sufficient conditions under which T € A%*(¢'(I)7).

THEOREM 3.12. Let A : (*(I) — ¢1(I) be a bounded linear operator, where I is an infinite set. Then,
A€ A;;”ﬁ(él(f)*) if and only if Ae; <" Aej and Aey <"* Aej, Vk,j € I, and for each i € I there is at
most one j € I such that Ae;(i) > 0.

Proof. Firstly, suppose that operator A € A;f’ﬁ(ﬂl (I)™) is defined by (3.17). Since A is the super-
majorization preserver by Theorem 3.4, we get that e; <" e, and e, <"° e; implies Ae; < Ae; and
Aej, <"* Aej, Vk,j € I. Since the family © defined by (3.12) contains maps with disjoint images, hence if
s & Ujer, (0;(1)), then we get Py ei(s) = 0, Vj € Io, thus Ae(s) = 0, for every | € I. If s € ;4 (0;(1)),
then there is exactly one ordered pair (js, rs), where js € Ip and rs € I, such that 6;,(rs) = s, and 6,,(ro) # s
for each pair (jo,70) with (jo,70) # (Js,rs). Hence,

Ae,(s) = Z APy e (s)
j€lo
= Z )\jegj(T)(S) = )‘jse%s (T)(S) = 0,
j€lo

when r # r,. Thus, each “row” contains at most one non-zero element, so the second part is valid.

Let A : £'(I) — ¢'(I) be a bounded linear operator. If A := 0 then A € A%*(¢'(I)"), obviously. Let
A # 0. It follows that there is k,l € I such that Ae;(l) > 0 which implies that Ae; # 0 for every j, using
the theorem assumptions that “columns” of the operator A is mutually weakly supermajorized so they are
different up to the permutation by Theorem 2.1. More precisely, there exist permutations P; € P(¢'(I))
corresponding to bijections w; : I — I such that

PjAek = A€j,

for every j € I.
We define a family © of maps 6, j € Iy defined by 0; (i) = w;(j), Vi € I, that is,
@::{ajZI*)ILjEIo},
where Iy := Ijek, is at most a countable set. Clearly, 6; are one-to-one maps. To show that maps 6;
have mutually disjoint images 6;(I), assume that for some a,b € Iy, a # b there exist ju,j» € I such that
10 := 04(ja) = 0p(jp), s0 wj, (a) = wj, (b). Since a,b € IXew it is Aex(a) > 0 and Aex(b) > 0. Also,

Ae;j, (i) = <Aeja,ewja(a)> = (Ae;,, Pj eq) = <PJ;1Aeja,ea> = Aeg(a) > 0.

Similarly,

Aej, (ig) = Aex(b) >0,

which is a contradiction with theorem’s assumptions.

We claim that operator A has the form (3.17). If we set A; := Aey (i), Vi € Iy, and fixing g = > g(j)e; €
Jjel
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¢H(I)*, then we obtain

Ag =7 g(j)Ae; = g(j)PjAer

jeI i€l
= 9(5) (Z Aek(i)Pj€i>

jeI iely
(3.32) = 9() D New, iy =D 9(0) > A€o,y

jel i€lp JeI i€1g
Further,
(3.33) Py(9) = > 9()Poes =Y g9(i)ea, ),

jeI jel

by (3.11).

There exists a finite set Jy C Iy such that for each finite set ﬂ) D Jy, we have that

Z AjS€7

J€lo\Io

where € > 0 is arbitrarily chosen, so combining (3.32) and (3.33), we conclude

Ag =Y APy, (9) D o9l) D Nea

icly jel i€Io\Io

=3 gl

Jelie1o\I

=llgll > X <elgl,

iefo\ﬁ)
sowe get A= > \Py,.
i€ly
EXAMPLE 3.13. Let k € N\ {1} and let 61,0 : N — N be one-to-one functions defined by

01(j) = kj and 0x(j) = k', Vj €N,
for some k € N\ {1}, and suppose that F(f) := Py, (f) + Po, (f).
Now, Py, (ex) = eq, (k) = €2 and Py, (e2) = eg, (2) = €2, SO
F(ea)(k?) = (F(ea), ex2) = (ea +ep2, e32) = 1,

and
F(e)(K*) = (F(er), ex2) = (exz + egr, ep2) = L.

IL
AS

422

Suppose that i € N\ {2,k}. Now, 6;(e;) # k* and Ox(e;) # k%, so (F(e;),ex2) = 0, which implies that

F g Az)rs(el(l)+), by Theorem 3.12.
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w

The above example shows that A%#(¢'(I)T) is neither a vector space nor a convex cone, so the same

holds for Mws(¢'(1)*).

Now, we may prove the most important result in this paper that arbitrary chosen linear preserver of
weak supermajorization may be decomposed as sum of two unique operators defined by (3.17) and (3.19).

THEOREM 3.14. Let I be an infinite set. If T € Mus(€'(I)") then there are unique operators A €
Aws(01 (D)%) and B € BEs(£'(I)*) such that T = A+ B. Moreover, these operators A and B satisfy
condition (3.23).

Proof. Let T € Mu#(¢*(I)"). We define two sets I1, I C I such that I; contains each i € I such that
(Tej,e;) > 0 for at most one j € I and I := I\ I;. In the other words, using Lemma 3.11, we get that the
set I contains all k € I for which Te;j(k) =c> 0, Vj € I.

Now, we define operators A, B : £1(I) — ¢1(I) by

Af(i) = {TJ(; Woen

and

Bf(i) = {Té(i) z ‘ 2

The operators A and B are bounded linear operators and A + B = T, obviously.
Next, we will show that A € A%S(¢'(I)") and B € BYs (¢1(I)").
Suppose that Iy = (). It follows that there is no ¢ € I such that
Tej, (i) >0 and Tej,(i) >0,
and because for a preserver always holds
Aej <"% Aey, and Aey <"° Aej, Vi kel,
we obtain using Theorem 3.12 that A € A%*(¢'(I)*). Obviously, B =0 € By (¢*(I)*1).
Let Iy, 15 # (). Next, we define

I}em = {j € I;Eem :Tem(4) = max{Tey(r):re I;:em}}

k—1
1%, = {j € I:,'fem : Tem(j) = max {Tem(r) ‘T € I:,'fem\ U I}em}}

i=1
when k > 2. Fix m,n € I. Since T € ME(£*(I)*), hence Te,, <** Te, and Te,, <“* Te,,, so functions
Te,, and Te,, are different up to the permutation that is, there is a permutation P € P(¢*(I)) corresponding
to a bijection w : I — I with

(Tem,ei) = (Ten, ), Viel,

by Theorem 2.1. Since

card(If, )= card(If, ) and card(I}, )= card(I}, ), Vk€N,
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hence, it is easy to conclude that bijection w is determined by bijections

0 0 : 0
wo: Ip., — Ipe . if Ip, #0,
wi I, —— I, if IE, #£0, keN,

in the following way:

(i) e eor 0 ielf, .
" \woli), ielb

€m

Because for each i € Iy, Tep, (i) = Te, (i), hence
card([éiem \I2) = card([éien \Iz), Vk €N,
so we may define bijections
O I, \ I —> I, \ Iy, if If, \I2#0, k€N

by
Wi(i) = wy(d), Vielf, \IL.

We form a bijection

w:l—1
defined by
wE(i), 1€ Iéﬁem \ Iz,
W(i) = { wo(d), 1€ I%em,
i, 1€ Is.

IL
AS

424

It follows that the permutation Pe P(¢*(I)), which correspond to the bijection @ defined by Pe; = €3 (i)
Vi € I satisfies PAe,, = Ae,. It follows that Ae,, <“° Ae, and Ae, <"* Ae,,, Ym,n € I, so A €

Aws(¢1(I)") by Theorem 3.12.

To show that B € Bys(¢'(I)"), firstly we get

Be,,, = ZBem(i)ei = Z Be,(i)e; + Z Be,(i)e;

il = i€l
(3.34) = Z Bey(i)e; = ZBen(i)ei = Be,,
i€ly el

for fixed m,n € I. Using (3.34) and defining h := Be,. for some r € I, we obtain

(3.35) Bf =B Y fGe; | =h (> f0G) ],

jel jel

thus B € BES((1(I)*).

If I = (), then using statements (3.34) and (3.35), when I = I, we obtain that B = T € By (¢'(I)")

and A =0e A2 (LH(I)T).
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Assume that there is another one pair A;, By such that T' = A; + By, where A; € A%*(¢'(I)") and
B, € B;j’f(f%[)"‘). We get A — Ay = B; — B. For operators B and B; we know that Be,, = Be, and
Biey = Biey, Ym,n € I. On the other hand, using Theorem 3.12, since for each i € I, there is at most one
s € I such that Ae, (i) > 0, hence there is at least one j, € I such that Ae;, (i) = Ase;, (i) = 0. Using above
arguments, we get

0=(A—Ay)e;, (i) = (B — Bej, (i) = (Br — Be;(i), Vjel,
and thus, B = By and A = A;. 0

Now, it is clear why the sum of two operators B., and P, which satisfies P(e;) = ey, from Example 3.7,
is not a linear preserver of weak supermajorization. Precisely, for k € I, we have P(e;)(k) =1 = Be,e;(k),
which is not possible for preservers of weak supermajorization on £*(I)* by above theorem.

All results provided above are collected below.

THEOREM 3.15. Let T : (1(I) — (1(I) be a bounded linear operator, where I is an infinite set. The
following statements are equivalent:

i) T € Mus(£H(I)*).

r

i) There are operators A € ALS(('(I)%) and B € By (€' (1)") and disjoint sets Iy, I C I with I, ULy =

pT

I such that T = A+ B where A, B are chosen to be
Af(ia) = Bf(iy) =0, Vi, € I, Vig € I, Yf € £}(I)".
it1) There is an at most a countable set Iy C I and there is a family
O:=1{0;,: T 5T jely, 0:(I)N06;I) =0, i#j}
of one-to-one maps, 0; € ©, Vj € Iy, and ()\;)jer, € ¢*(Lo)T such that
T = \P, + By,
Jj€lo

where By,(f) == hY ;c;, f(0), for h e £ (I)" with h(i) = 0, Vi € 0;(I), for each j € Io.
iv) Te; <"* Tey, and Tey, <V° Te;, Vk,j € I, and for each i € I, either there exists exactly one j € I
with Te;(i) > 0 or the set {Te;(i) | j € I} is a singleton.

Proof. We have i) — iv) — 4i), by Lemma 3.11 and Theorem 3.14. Also, Statement i) implies i) by
Theorem 3.8. Statements i4i) and iv) are equivalent by Theorem 3.12. a

Weak and standard majorization relations and their linear preservers on ¢*(I) are studied in [6, 22, 23, 24].
Linear preservers of majorization, weak majorization and weak supermajorization on £*(I)* are the same,
if we consider only positive operators.

COROLLARY 3.16. Let I be an infinite set. Suppose that T : (*(I) — (*(I) is a positive bounded linear
operator. The following statements are equivalent:

i) T is a linear preserver of majorization relation (<);
i1) T is a linear preserver of weak majorization relation (<. );
iii) T is a linear preserver of weak supermagjorization relation (<"*).
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Proof. Statements i) and ii) are equivalent by [24, Corollary 3.1]. Statements i) is equivalent with iii)

by [6, Proposition 5.9] and by Theorem 3.15. 0

[1]
2]

3]
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