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BOUNDS ON THE SUM OF MINIMUM SEMIDEFINITE RANK

OF A GRAPH AND ITS COMPLEMENT∗
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Abstract. The minimum semi-definite rank (msr) of a graph is the minimum rank among all positive semi-definite matrices

associated to the graph. The graph complement conjecture gives an upper bound for the sum of the msr of a graph and the

msr of its complement. It is shown that when the msr of a graph is equal to its independence number, the graph complement

conjecture holds with a better upper bound. Several sufficient conditions are provided for the msr of different classes of graphs

to equal to its independence number.

Key words. Minimum semidefinite rank, Matrix of a graph, Independence number, Graph complement conjecture.

AMS subject classifications. 15A18, 15A57, 05C50.

1. Introduction. We will use V to denote the set of vertices of a graph G. The cardinality of V

represents the order of G, denoted |G|. An edge is an unordered pair of vertices and we use E to denote the

set of edges in a graph G. A graph is said to be simple if it has no loops or multiple edges. Given an n× n
Hermitian matrix A = [aij ], we can associate a graph G(A) to the matrix A in such a way that the set of

vertices is V = {v1, v2, . . . , vn} and the set of edges is E = {{vi, vj} : aij 6= 0, i 6= j}. The diagonal entries of

A do not affect the structure of G(A). The graph G(A) is an undirected simple graph. A Hermitian matrix

A ∈Mn(C) is called positive semidefinite (psd) if x∗Ax ≥ 0 for all x ∈ Cn [7].

Suppose G is a simple connected graph with vertex set {v1, v2, . . . , vn}. We associate a set of vectors−→
V = {−→v 1,

−→v 2, . . . ,
−→v n} in Cm to the vertices such that, for i 6= j, 〈−→v i,

−→v j〉 6= 0 if and only if vi and vj are

adjacent vertices in G. The set
−→
V is called a vector representation (or orthogonal representation) of G. If

X = [−→v 1,
−→v 2, . . . ,

−→v n] is an m × n matrix then A = X∗X is a psd matrix associated with G. Since every

psd matrix A associated with G can be written as A = B∗B for some matrix B, we can always find a vector

representation
−→
V that produces the matrix A with rank(A) = dim(span

−→
V ) [7].

If E is a block matrix given by E =

[
A B

C D

]
, where A is nonsingular and D is square, then the

matrix D − CA−1B is called the Schur complement of A in E. If E is Hermitian (i.e, C = B∗) and A and

D − B∗A−1B are both psd, then E is also psd, and rank(E) = rank(A) + rank(D − B∗A−1B) [7]. If the

upper-block B consists of zeros, we call E a block lower triangular matrix.

A symmetric matrix A satisfies the Strong Arnold Hypothesis if the only real symmetric matrix X such

that AX = A ◦X = X ◦ I = 0 is the zero matrix, where ◦ denotes the entrywise product of matrices, and I

is the n× n identity matrix [5].
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Let P(G) denote the set of all complex Hermitian psd matrices A whose graph G(A) = G. Let S+(G)

denote the set of all real symmetric psd matrices A whose graph G(A) = G.

The complex minimum semidefinite rank of G is denoted by mrC+(G) and is defined as mrC+(G) =

min{rank(A) : A ∈ P(G)} and the real minimum semidefinite rank of G is denoted mrR+(G) and is defined

as mrR+(G) = min{rank(A) : A ∈ S+(G)}. Since S+(G) ⊆ P(G) we conclude mrC+(G) ≤ mrR+(G). An

example where strict inequality holds is given in [1]. When mrC+(G) = mrR+(G) we write mr+(G).

The paper is organized as follows: In Section 2, we present graph theory preliminaries and some known

results about the msr that will be used throughout the paper. In Section 3, we show that when the msr of

a graph is equal to its independence number, we get an upper bound for the sum of the msr of a graph and

its complement that is better than the one given in the graph complement conjecture. We present different

classes of graphs for which the msr is equal to the independence number.

2. Preliminaries. In this section, we present some graph theory definitions and some known results

related to the msr(G) which will be used throughout the paper.

We will use N(v) to denote the set of vertices that are adjacent to a vertex v in a simple graph G. The

degree of a vertex v in G, denoted degG(v), is the cardinality of N(v). Let δ(G) denote the minimum degree

of the vertices in G, and ∆(G) denote the maximum degree of the vertices in G. A graph G is regular if

δ(G) = ∆(G), and it is k-regular if δ(G) = ∆(G) = k.

A graph is a tree if it is a connected graph with n vertices and n−1 edges. A star graph on n vertices is a

tree with one vertex having degree n−1, called the center, and the other n−1 vertices having degree 1. A cycle

of length n is the graph Cn on n vertices {v0, v1, v2, . . . , vn−1} with n edges {{v0, v1}, {v1, v2}, . . . , {vn−1, v0}}.
A complete graph or clique is a connected graph in which the vertices are pairwise adjacent, we use Kn to

denote a complete graph on n vertices. The size of the largest complete subgraph of G is called the clique

number, denoted ω(G) ([12], p. 192).

An independent set in a graph G is a set of vertices where no two of the vertices are adjacent. The

cardinality of a largest independent set in G is called the independence number of G and is denoted by α(G)

([12], p. 113). It was shown in [4] that, for a connected graph G, msr(G) ≥ α(G).

We use G = (R ∪ L,E) to denote a bipartite graph, where R is the set of vertices on the right side

and L is the set of vertices on the left side in a pictorial representation of G. In a bipartite graph G with

|R| = m ≥ |L| = n, the set of vertices in both R and L are pairwise disjoint, so they form two independent

sets. When G is connected, the independence number of G is m. Hence, msr(G) ≥ m. Equality is achieved

for a complete bipartite graph Km,n, m ≥ n [3].

An induced subgraph H of G is a subgraph with V (H) ⊆ V (G) and E(H) = {{i, j} ∈ E(G) : i, j ∈
V (H)}. Since a principal submatrix of a psd matrix is psd, and the rank of a submatrix can never be greater

than that of a matrix [7], minimum semi-definite rank of any induced subgraph of a given graph G gives a

lower bound for the minimum semi-definite rank of G. Moreover, for a psd matrix A = [aij ], the diagonal

entry aii is a principal submatrix, and hence, aii ≥ 0. If there is a nonzero off-diagonal entry in the ith row

of A then aii > 0.

The complement G of a simple graph G on n vertices is the simple graph with vertex set V (G) and edge

set E(G) defined by uv ∈ E(G) if and only if uv /∈ E(G). Since cliques become independent sets (and vise

versa) under complementation, we have α(G) = ω(G).
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A subset S of vertices of a connected graph G is a cut-set if the graph induced by the set of vertices

V (G)− S is disconnected. The vertex connectivity of a graph G, denoted k(G), is the minimum cardinality

of a vertex set S such that G−S is disconnected or has only one vertex. Since deleting the neighbors of any

vertex in a graph G disconnects G, k(G) ≤ δ(G) ([12], p. 149). A graph G is k-connected if every cut set of

G has at least k vertices.

A graph G is a superposition of two graphs, G1 and G2 if G is obtained by identifying G1 and G2 at a

set of vertices, keeping all the edges that are present in either G1 or G2 [3].

An isomorphism from G to H is a bijection f : V (G) → V (H) such that uv ∈ E(G) if and only if

f(u)f(v) ∈ E(H). We say that G is isomorphic to H if there is an isomorphism from G to H.

The Laplacian matrix of a graph G is the matrix L(G) = D(G) − A(G), where D(G) is the diagonal

matrix whose ith diagonal entry is the degree of vertex vi in G, and A(G) is the adjacency matrix of G.

Since the Laplacian matrix L(G) is psd and has rank |G| − 1 [8] when G is a connected graph, it follows

that msr(G) ≤ |G| − 1 for every connected graph G [6]. Moreover, msr(G) = n − 1 if and only if G is a

tree on n vertices [11]. It is well known that for a connected graph G with |G| ≥ 2, msr(G) = 1 if and only

if G = Kn. Thus, for any connected graph G with |G| ≥ 2 where G is neither a tree nor a complete graph,

we have 2 ≤ msr(G) ≤ |G| − 2. If a graph G is disconnected, then the direct sum of psd matrices for the

connected components Gi of G gives a psd matrix for the entire graph. In this case, msr(G) =
∑

imsr(Gi).

Hence, we assume in this paper all graphs are simple and connected.

3. The graph complement conjecture. It has been conjectured in [2] thatmrR+(G)+mR
+(G) ≤ |G|+2

for all graphs G, which is known as the “graph complement conjecture (GCC+)”. Proposition 3.2 below

gives a better upper bound for the sum of the msr of a graph and its complement.

Lemma 3.1. [9] If a graph G contains a clique of size k, then there exists a matrix A ∈ S+(G) that

satisfies the Strong Arnold Hypothesis with rank(A) = |G| − k + 1.

Proposition 3.2. Let G be a connected graph. If mrR+(G) = α(G), then mrR+(G) +mR
+(G) ≤ |G|+ 1.

Proof. Since mrR+(G) = α(G) and α(G) = ω(G), where ω(G) is the size of the largest clique in G, using

Lemma 3.1, we get mrR+(G) ≤ |G| − ω(G) + 1 = |G| −mrR+(G) + 1. Hence, mrR+(G) +mR
+(G) ≤ |G|+ 1.

In this section, we investigate classes of graphs whose msr is equal to their independence number and

hence satisfy Proposition 3.2. In some cases, we give a better upper bound.

Proposition 3.3. If G is a connected graph obtained from a complete graph Km by deleting all the edges

of the subgraph Kr with r ≤ m− 1, then mrR+(G) = α(G) = r and mrR+(G) +mrR+(G) = r + 1.

Proof. We show that mrR+(G) = r. Since edges of Kr are removed from Km, there is a set of r vertices

in G no two of which are adjacent. Since this is a maximum independent set, α(G) = r and so mrR+(G) ≥ r
by [3]. To show that mrR+(G) ≤ r, we will exhibit a vector representation of G in Rr. Label the vertices of G

as {v1, v2, . . . , vr, . . . , vm}. Assume that the set of the vertices {v1, v2, . . . , vr} is the maximal independent

set. Let {−→e1 ,−→e2 , . . . ,−→er} be the standard orthonormal basis in Rr. We assign to the vertices v1, v2, . . . , vr
the vectors −→v1 = −→e1 , −→v2 = −→e2 , . . . , −→vr = −→er . For the remaining m − r vertices, we assign vectors of the form
−→vi =

∑r
j=1
−→ej , i = r+ 1, r+ 2, . . . ,m. The set {−→v1 ,−→v2, . . . ,−→vr , . . . ,−→vm} is a vector representation of the graph

G in Rr, so mrR+(G) ≤ r. Hence, mrR+(G) = r. It is clear that G consists of m− r isolated vertices and the

complete graph Kr, so mrR+(G) = 1. Therefore, mrR+(G) +mrR+(G) = r + 1.
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Proposition 3.4. If G is a connected graph obtained from a complete graph Km, m ≥ 5 by deleting all

but s edges of the subgraph Kr, where 1 ≤ s ≤ r−1, 3 ≤ r ≤ m−1, such that all the s edges share a common

vertex in G, then mrR+(G) = α(G) = r − 1.

Proof. Label the vertices of G as {v1, v2, . . . , vr, . . . , vm}. Assume that the set of the s edges of Kr are

{{v1, v2}, {v1, v3}, . . . , {v1, vs+1}} ⊂ E(G). Then, the set of vertices {v2, v3, . . . , vr} is a maximal independent

set and so, the independence number of G is α(G) = r−1 and mrR+(G) ≥ r−1. To show that mrR+(G) ≤ r−1,

we will exhibit a vector representation of G in Rr−1. Let {−→e 2, . . . ,
−→e s,
−→e s+1, . . . ,

−→e r} be the standard

orthonormal basis in Rr−1. To the vertices v2, . . . , vr we assign the vectors −→v 2 = −→e 2,
−→v 3 = −→e 3, . . . ,

−→v s+1 =
−→e s+1, . . . ,

−→v r = −→e r, and to the vertex v1, we assign the vector −→v 1 =
∑s+1

j=2
−→e j . To the remaining m −

r vertices, we assign the vectors −→v i =
∑r

j=2
−→e j where i = r + 1, r + 2, . . . ,m. The set of the vectors

{−→v 1, . . . ,
−→v m} represents G in Rr−1 and so, mrR+(G) ≤ r − 1. Therefore, mrR+(G) = r − 1.

Corollary 3.5. If G is a connected graph obtained from a complete graph Km,m ≥ 5 by deleting all

but one edge of the subgraph Kr, r ≤ m− 1, then mrR+(G) +mrR+(G) = r + 1.

Proof. The graph G consists of m−r isolated vertices and the complete graph Kr minus one edge. Hence,

mrR+(G) = 2 by Proposition 3.3. Since mrR+(G) = r − 1 using Proposition 3.4, we get mrR+(G) +mrR+(G) =

r + 1.

Lemma 3.6. [3] If G is a superposition of two graphs G1 and G2, then msr(G) ≤ msr(G1) +msr(G2).

Corollary 3.7. Let G be a connected graph obtained from a complete graph Km, m ≥ 7 by deleting all

but s edges of the subgraph Kr, where 2 ≤ s < r − 1 and 4 ≤ r ≤ m− 1. If all the s edges share a common

vertex v in G, then mrR+(G) ≤ r − s.

Proof. In this case, the graph G consists of m − r isolated vertices and a connected component, call it

G
′
. Since mrR+ of an isolated vertex is zero, we may only consider the connected component of G. Since all

the s edges share a common vertex in G, the connected component G
′

can be viewed as the superposition of

the complete graph Kr−1 and the star graph on r − s vertices whose center is the vertex v. The two graphs

are identified at the set of vertices V (G
′
)−S, where S is the set of vertices on which the s edges are incident.

Using Lemma 3.6, we get mrR+(G) = mrR+(G
′
) ≤ 1 + r − s− 1 = r − s.

Proposition 3.8. If G is a connected graph obtained from a complete graph Km, m ≥ 5 by deleting all

but the s edges of the subgraph Kr, where 2 ≤ s ≤ b r2c and 3 ≤ r ≤ m − 1 such that no two of the s edges

share a vertex, then mrR+(G) = α(G) = r − s.

Proof. Label the vertices of G as {v1, v2, . . . , vr, . . . , vm}. Since no two of the s edges share a vertex,

they will be incident on 2s different vertices and the graph G will have m− r vertices of degree m− 1. Let

{−→e 1,
−→e 2, . . . ,

−→e r−s} be the standard orthonormal basis in Rr−s.

Case I. Suppose r is even and s = r
2 . Assume that {{v1, v2}, {v3, v4}, . . . , {vr−1, vr}} ⊂ E(G) is the set

of s edges of Kr. By taking one vertex from each of the s existing edges in Kr we get a maximal set of r
2

independent vertices, so the independence number of G is α(G) = r
2 = r − s. Hence, mrR+(G) ≥ r − s. To

show that mrR+(G) ≤ r−s, we will exhibit a vector representation of G in Rr−s. To the vertices v1, v2, . . . , vr
we assign the vectors −→v 2i = −→v 2i−1 = −→e i, where 1 ≤ i ≤ s. To the remaining m− r vertices, we assign the

vectors −→v t =
∑s

i=1
−→e i, where t = r + 1, r + 2, . . . ,m. The set of the vectors {−→v 1, . . . ,

−→v m} represents G in

Rr−s and so, mrR+(G) ≤ r − s. Therefore, mrR+(G) = r − s.

Case II. Suppose r is odd and s = r−1
2 . In this case, we assume the vertex vr is not joined to any of the

vertices incident on the s edges. Assume that the s edges of Kr are {{v1, v2}, {v3, v4}, . . . , {vr−2, vr−1}} ⊂
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E(G). By taking one vertex from each of the s existing edges in Kr and the vertex vr we get a maximal

set of r−1
2 + 1 independent vertices, so the independence number of G is α(G) = r+1

2 = r − s. Hence,

mrR+(G) ≥ r − s. To show that mrR+(G) ≤ r − s, we will exhibit a vector representation of G in Rr−s. To

the vertices v1, v2, . . . , vr−1 we assign the vectors −→v 2i = −→v 2i−1 = −→e i, where 1 ≤ i ≤ s. To the vertex vr,

we assign the vector −→v r = −→e s+1. To the remaining m − r vertices, we assign the vectors −→v t =
∑s+1

i=1
−→e i,

where t = r+ 1, r+ 2, . . . ,m. The set of the vectors {−→v 1, . . . ,
−→v m} represents G in Rs+1 and so, mrR+(G) ≤

s+ 1 = r − s. Therefore, mrR+(G) = r − s.

Case III. Suppose 2 ≤ s < b r2c. In this case, the graphG has r−2s pairwise disjoint vertices other than the

vertices that the s edges are incident on. By taking one vertex from each of the s existing edges in Kr and the

r−2s pairwise disjoint vertices we get a maximal set I of independent vertices. Since |I| = s+ r − 2s = r−s,
the independence number of G is α(G) = r − s. Hence, mrR+(G) ≥ r − s. Assume that the s edges of Kr

are {{v1, v2}, {v3, v4}, . . . , {v2s−1, v2s}} ⊂ E(G). To show that mrR+(G) ≤ r − s, we will exhibit a vector

representation of G in Rr−s. To the vertices v1, v2, . . . , v2s we assign the vectors −→v 2i = −→v 2i−1 = −→e i, where

1 ≤ i ≤ s. To the r− 2s pairwise disjoint vertices, we assign the vectors −→v j = −→e j , where 2s+ 1 ≤ j ≤ r. To

the remaining m−r vertices, we assign the vectors −→v t =
∑s

i=1
−→e i+

∑r
j=2s+1

−→e j where t = r+1, r+2, . . . ,m.

The set of the vectors {−→v 1, . . . ,
−→v m} represents G in Rr−s, from this we get mrR+(G) ≤ r − s. Therefore,

mrR+(G) = r − s.

Since the msr of a complete bipartite graph is equal to its independence number, complete bipartite

graphs satisfy Proposition 3.2. Next, we present upper bounds for the sum of the msr of a bipartite graph

and its complement.

Proposition 3.9. Let G be a connected bipartite graph which is not a tree. Then mrR+(G) +mrR+(G) ≤
3
2 |G| − 1

Proof. Since the set of vertices in R forms an independent set and |R| ≥ |G|2 , we get α(G) = ω(G) ≥ |G|2 ,
where ω(G) is the size of the largest clique in G. Using Lemma 3.1, we get mrR+(G) ≤ |G|−ω(G)+1 ≤ |G|2 +1.

Since mrR+(G) ≤ |G| − 2, it follows that mrR+(G) +mrR+(G) ≤ |G| − 2 + |G|
2 + 1 = 3

2 |G| − 1.

In the next proposition, we give an upper bound for the msr of complements of two classes of bipartite

graphs.

Proposition 3.10. Let G = Km,n\p edges, 2 ≤ p < n ≤ m. Then, mr+(G) ≤ p + 2 if one of the

following conditions is satisfied:

(i) All the missing edges in G share a common vertex v ∈ V (G).

(ii) No two of the missing edges in G share a common vertex.

Proof. To prove (i), assume that all the missing edges share a common vertex v ∈ V (G). We consider

two cases:

Case I. Suppose v ∈ R. In this case, the graph G can be viewed as a superposition of two subgraphs,

say, G1 and G2 identified at the cut vertex v, where G1 = Km and G2 is the superposition of Kn and K1,p

identified at the p vertices of K1,p. By Lemma 3.6, we get mr+(G) = mr+(G1)+mr+(G2) ≤ 1+1+p = 2+p.

Case II. If v ∈ L, then the graph G can be viewed as a superposition of two subgraphs, say, G1 and G2

identified at the cut vertex v, where G1 = Kn and G2 is the superposition of Km and K1,p that are identified

at the p vertices of K1,p. By Lemma 3.6, we get mr+(G) = mr+(G1) +mr+(G2) ≤ 1 + 1 + p = 2 + p.
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To prove (ii), assume that no two of the missing edges share a common vertex. Then, the graph G can

be viewed as a superposition of two subgraphs, say, G1 and G2 identified at the p vertices in L from which

the edges are missing, where G1 = Kn and G2 is the superposition of bp2c copies of C4 and another graph

G′2 identified at the p vertices in R from which the edges are missing, where G′2 = Km if p is even and

G′2 = Km + e if p is odd. We explain this as follows: since both sets of vertices L and R form independent

sets in G, they form cliques in G. Since no two of the missing edges share a common vertex, each two of

those missing edges will be incident on four different vertices in G, two of them, say y1 and y2 are in R and

the other two, say x1 and x2 are in L where y1 ∈ N(y2) and x1 ∈ N(x2) in G. So if p is even, then G2

can be viewed as a superposition of Km and p
2 copies of C4 identified at the p vertices in R from which the

edges are missing, and if p is odd then G2 can be viewed as a superposition of Km + e and p−1
2 copies of

C4 identified at the p vertices in R from which the edges are missing. Since mr+(G2) ≤ 2bp2c + mr+(G′2),

2bp2c + mr+(G′2) = 1 + p if p is even, and 2bp2c + mr+(G′2) = 2(p−1)
2 + 2 = p + 1 if p is odd, we obtain

mr+(G) ≤ mr+(G1) +mr+(G2) ≤ 1 + 1 + p = 2 + p.

Corollary 3.11. Let G = Km,n\p edges, where m ≥ n + 1 and 2 ≤ p < n such that all the missing

edges share a common vertex v ∈ R, R ⊂ V (G) with |R| = m. Then mr+(G) +mr+(G) ≤ |G|+ 1.

Proof. In this case, the graph G can be viewed as the superposition of the two subgraphs G−v = Km−1,n
and Kn−p,1 identified at the p vertices in L from which the edges are missing. So, by Lemma 3.6 we

get mr+(G) ≤ m − 1 + n − p = |G| − 1 − p, and by Proposition 3.10 we get mr+(G) ≤ 2 + p. Hence,

mr+(G) +mr+(G) ≤ |G| − 1− p+ 2 + p = |G|+ 1.

Corollary 3.12. Let G = Km,n\p edges, where m ≥ n and 2 ≤ p < n such that all the missing edges

share a common vertex v ∈ L, L ⊂ V (G) with |L| = n ≤ m. Then mr+(G) +mr+(G) ≤ m+ 2p+ 2.

Proof. Since G is obtained from Km,n by deleting p edges, we get mr+(G) ≤ mr+(Km,n) + p = m + p

[3]. By Proposition 3.10, mr+(G) ≤ 2 + p. Hence, mr+(G) +mr+(G) ≤ m+ p+ 2 + p = m+ 2p+ 2.

Corollary 3.13. Let G = Km,n \ p edges, where m ≥ n and p ≥ 2 such that no two edges share an end

point. Then mr+(G) +mr+(G) ≤ m+ 2p+ 2. In addition, if p ≤ n
2 then G satisfies GCC+.

Proof. Since G is modified from Km,n by deleting p edges, we get mr+(G) ≤ mr+(Km,n) + p = m + p

[3]. By Proposition 3.10, mr+(G) ≤ 2 + p. Hence, mr+(G) +mr+(G) ≤ m+ p+ 2 + p = m+ 2p+ 2. If p ≤ n
2

then mr+(G) +mr+(G) ≤ |G|+ 2.

Corollary 3.14. Let G = Km,n\p edges, where 2 ≤ p < n such that all the missing edges share a

common vertex v ∈ L, L ⊂ V (G) with |L| = n = |R| = m. Then mr+(G) +mr+(G) ≤ |G|+ 2.

Proof. In this case, the graph G can be viewed as a superposition of the two graphs Km,n−1 and Km−p,1
identified at the m− p vertices in R. Hence, mr+(G) ≤ m+m− p = |G| − p. Using Proposition 3.10, we get

mr+(G) +mr+(G) ≤ |G|+ 2.

Lemma 3.15. Let M be an m×n matrix. If N is the m×m lower triangular matrix defined by N [j, j] = 1,

N [j, 1] = −
∑n

s=1M [1, s] ·M [j, s] for j = 2, . . . ,m, and N [j, k] = −
∑n

s=1M [k, s] ·M [j, s] −
∑k−1

s=1 N [k, s]

·N [j, s], where k = 2, . . . ,m and j = k + 1, . . . ,m, then the rows of the matrix
[
M N

]
are mutually

orthogonal.

Proof. We have 〈row i, row j〉 =
∑n

s=1M [i, s] ·M [j, s] +
∑i

k=1N [i, k] ·N [j, k]. Note that N [i, k] = 0

for k > i, and N [j, k] = 0 for k > j. Now
∑n

s=1M [i, s] ·M [j, s] = −N [j, i]−
∑i−1

s=1N [i, s] ·N [j, s] =

−
∑i

s=1N [i, s] ·N [j, s] since N [i, i] = 1. Hence, 〈row i, row j〉 = 0 for all i 6= j where 1 ≤ i ≤ m and

1 ≤ j ≤ m+ n.

Theorem 3.16. Consider the matrix C =
[
M N

]T
, where

[
M N

]
is the matrix constructed in
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Lemma 3.15. Let A =

[
Im+n D

D∗ Im

]
, m ≥ 3, n ≥ 0, where Im+n and Im are the (m + n) × (m + n) and

the m×m identity matrices, respectively, and the matrix D is an (m+n)×m matrix whose column vectors

are given by
−→ci
‖−→ci ‖

, where −→ci are the column vectors of the matrix C for all i, 1 ≤ i ≤ m. Then the graph G

associated to A is a connected bipartite graph whose mrC+(G) is equal to α(G) = m+ n.

Proof. Since the rows of the matrix
[
M N

]
are mutually orthogonal, the columns of C are mutually

orthogonal. Taking Schur Complement with respect to the (1, 1) entry of A we get that the matrix A is psd

with rank(A) = m + n. Since the columns of A are mutually orthogonal, we can associate a graph to the

matrix A whose vertices associated to the column vectors of A can be partitioned into two sets of vertices,

call them L and R with |R| = m+ n and |L| = m such that the vertices in each set are pairwise disjoint. In

this case, α(G) = m+ n and since rank(A) = m+ n, we get mrC+(G) = m+ n = α(G).

In the next theorem, we show that mrC+(G) of a class of bipartite graphs is equal to their independence

number by associating a psd matrix to the graph and showing that the rank of the associated matrix is the

independence number of the given graph.

Theorem 3.17. Let G be a connected bipartite graph with V (G) = L∪R, |L| = m and |R| = m+n, n ≥ 0.

Label the vertices of L as v1, v2, . . . , vm and the vertices of R as u1, u2, . . . , um+n. If v1 is adjacent to ui for

all 1 ≤ i ≤ n+ 1, i 6= 2 and for 2 ≤ j ≤ m, the vertex vj is adjacent to uk for all 1 ≤ k ≤ n+ j, the vertex

vt is not adjacent to un+s for all 1 ≤ t ≤ m and all t+ 1 ≤ s ≤ m+ n, then mrC+(G) = m+ n = α(G).

Proof. Since |R| = m + n, the independence number of G is α(G) = m + n. Consider the matrix

C =
[
M N

]T
, where M is an m × n matrix that has the entry M [2, 1] = 0 and all other entries

are positive and the matrix N is constructed as in Lemma 3.15. To the graph G, associate the matrix

A =

[
Im+n D

D∗ Im

]
, where Im+n and Im are the (m + n) × (m + n) and the m × m identity matrices

respectively, the matrix D is an (m + n) × m matrix whose column vectors are given by
−→ci
‖−→ci ‖

, where −→ci
are the column vectors of the matrix C for all i, 1 ≤ i ≤ m. Since α(G) = m + n and A is psd with

rank(A) = m+ n, we get mrC+(G) = m+ n.

Proposition 3.18. Let G be a k-regular graph on 2k vertices with k ≥ 2, such that for each v ∈ V (G)

the set N(v) forms an independent set. Then mr+(G) +mr+(G) ≤ |G|+ 1

Proof. We will show that G is isomorphic to the complete bipartite graph Kk,k. Let v ∈ V (G). We claim

that V (G) − N(v) = N(w) for some w ∈ N(v). If not, then N(w) ∩ N(v) 6= φ for every w ∈ N(v). This

contradicts the assumption that N(v) is an independent set. Therefore, G is isomorphic to Kk,k, and so

mr+(G) +mr+(G) ≤ |G|+ 1.

The k-connected Harary graph Hk,n, k < n, is constructed as follows [12]: Place n vertices in circular

order. If k = 2r, form Hk,n by making each vertex adjacent to the nearest r vertices in each direction around

the circle. If k = 2r + 1 and n is even, then form Hk,n by making each vertex adjacent to the nearest r

vertices in each direction and to the vertex opposite it on the circle. In each case, the graph Hk,n is regular.

If k = 2r+ 1 and n is odd, then index the vertices by the integers modulo n. Construct Hk,n from H2r,n by

adding the edges {i, i+ (n+1)
2 } for 0 ≤ i ≤ (n−1)

2 . In this case, the graph Hk,n cannot be regular since both

k and n are odd numbers.

Lemma 3.19. [10] Let G be a k-connected Harary graph Hk,n, where k = 2r, r ≥ 1. Then, mrC+(G) =

|G| − δ(G).
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Let G be a connected graph and let S = {v1, . . . , vm} be an ordered set of vertices of G. Denote by Gk

the subgraph induced by v1, v2, . . . , vk for each k, 1 ≤ k ≤ m. Let Hk be the connected component of Gk

such that vk ∈ V (Hk). If for each k, there exists wk ∈ V (G) such that wk 6= vl for l ≤ k, wkvk ∈ E(G), and

wkvl /∈ E(G), for all vl ∈ V (Hk) with l 6= k, then S is called a vertex set of ordered subgraphs (or OS-vertex

set). The OS-number of a graph G, denoted OS(G), is the maximum cardinality among all OS−vertex sets

of G [6].

The next theorem shows that the class of k-regular Harary graphs where k is even satisfies the GCC+.

Its proof uses the notion of OS−number.

Theorem 3.20. Let G be a k-regular Harary graph, Hk,n which is k-connected. If k = 2r, r ≥ 1, then

mrC+(G) +mrC+(G) ≤ |G|+ 2.

Proof. By Proposition 9 in [9], we have OS(G)+mrC+(G) ≤ |G|+2. Using Proposition 4.11 in [10], we get

mrC+(G) ≤ |G|+2−OS(G) = δ(G)+2. But since δ(G) = |G|−1−δ(G), it follows thatmrC+(G) ≤ |G|−δ(G)+1.

Since G is k-regular, G is (|G| − k − 1)-regular. So, mrC+(G) ≤ k + 2. Combining this and Lemma 3.19, we

achieve the result.
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