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Abstract. In this note, sufficient conditions, based on the largest eigenvalue, are presented for some Hamiltonian properties

of graphs.
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1. Introduction. We consider only finite undirected graphs without loops or multiple edges. Notation

and terminology not defined here follow those in [2]. For a graph G, we use n to denote its order |V (G)|.
The complement a graph is denoted by Gc. A subset V1 of the vertex set V (G) is independent if no two

vertices in V1 are adjacent in G. The eigenvalues of a graph G, denoted λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G), are

defined as the eigenvalues of its adjacency matrix A(G). For a square matrix M , we use det(M) to denote its

determinant. A cycle C in a graph G is called a Hamiltonian cycle of G if C contains all the vertices of G. A

graph G is called Hamiltonian if G has a Hamiltonian cycle. A path P in a graph G is called a Hamiltonian

path of G if P contains all the vertices of G. A graph G is called traceable if G has a Hamiltonian path.

In 2010, Fiedler and Nikiforov [3] obtained the following spectral conditions for the Hamiltonicity and

traceability of graphs.

Theorem 1.1. Let G be a graph of order n.

(1) If λ1(G) ≥ n − 2, then G contains a Hamiltonian path unless G = Kn−1 + v; if strict inequality holds,

then G contains a Hamiltonian cycle unless G = Kn−1 + e.

(2) If λ1(Gc) ≤
√
n− 1, then G contains a Hamiltonian path unless unless G = Kn−1 + v.

(3) If λ1(Gc) ≤
√
n− 2, then G contains a Hamiltonian cycle unless G = Kn−1 + e.

Motivated by the results of Fiedler and Nikiforov, a lot of authors obtained additional spectral conditions

for the Hamiltonian properties of graphs. Some of them can be found in [11], [6], [8], [7], [10], and [1]. In

this note, we present new spectral conditions based on the largest eigenvalue for the Hamiltonicity and

traceability of graphs. The main results are as follows.

Theorem 1.2. Let G be a graph of order n ≥ 3 with connectivity κ (κ ≥ 2). If λ1 ≤ δ
√

κ+1
n−κ−1 , then G

is Hamiltonian or G is Kκ, κ+1.

Theorem 1.3. Let G be a graph of order n ≥ 12 with connectivity κ (κ ≥ 1). If λ1 ≤ δ
√

κ+2
n−κ−2 , then

G is traceable or G is Kκ, κ+2.
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2. Lemmas. We need the following results as our lemmas when we prove Theorems 1.2 and 1.3. Lemma

2.1 below is from [9].

Lemma 2.1. Let G be a balanced bipartite graph of order 2n with bipartition (A, B). If d(x)+d(y) ≥ n+1

for any x ∈ A and any y ∈ B with xy 6∈ E, then G is Hamiltonian.

Lemma 2.2 below is from [5].

Lemma 2.2. Let G be a 2-connected bipartite graph with bipartition (A, B), where |A| ≥ |B|. If each

vertex in A has degree at least k and each vertex in B has degree at least l, then G contains a cycle of length

at least 2 min(|B|, k + l − 1, 2k − 2).

3. Proof of Theorem 1.2. Let G be a graph satisfying the conditions in Theorem 1.2. Suppose, to

the contrary, that G is not Hamiltonian. Then n ≥ 2κ + 1 (otherwise δ ≥ κ ≥ n
2 and G is Hamiltonian).

Since κ ≥ 2, G has a cycle. Choose a longest cycle C in G and give an orientation on C. Since G is not

Hamiltonian, there exists a vertex u0 ∈ V (G)− V (C). By Menger’s theorem, we can find s (s ≥ κ) pairwise

disjoint (except for u0) paths P1, P2, . . . , Ps between u0 and V (C). Let vi be the end vertex of Pi on C,

where 1 ≤ i ≤ s. Without loss of generality, we assume that the appearance of v1, v2, . . . , vs agrees with

the orientation of C. We use v+i to denote the successor of vi along the orientation of C, where 1 ≤ i ≤ s.

Since C is a longest cycle in G, we have that v+i 6= vi+1, where 1 ≤ i ≤ s and the index s + 1 is regarded

as 1. Moreover, {u0, v+1 , v
+
2 , . . . , v

+
s } is independent (otherwise G would have cycles which are longer than

C). Set S := {u0, v+1 , v
+
2 , . . . , v

+
κ }. Then S is independent. Let ui = v+i for each i with 1 ≤ i ≤ κ.

Set T := V − S = {w1, w2, . . . , wn−κ−1 }. We label the vertices of u0, u1, . . . , uκ, w1, w2, . . . , wn−κ−1 by

1, 2, . . . , κ + 1, κ + 2, . . . , n, respectively. Let d1(wi) = |N(wi) ∩ S| and d2(wi) = |N(wi) ∩ T | for each i

with 1 ≤ i ≤ n− κ− 1. Obviously,
∑κ+1
i=0 d(ui) =

∑n−κ−1
i=1 d1(wi).

Define a two by two matrix B = (Bi j )2×2, where

B11 = 0, B12 =

∑κ
i=0 d(ui)

κ+ 1
, B21 =

∑n−κ−1
i=1 d1(wi)

n− κ− 1
, B22 =

∑n−κ−1
i=1 d2(wi)

n− κ− 1
.

Then B is a quotient matrix of the adjacency matrix of G with partition S and T . Let µ1 ≥ µ2 be the

eigenvalues of B. Then, by Corollary 2.3 on Page 596 in [4], we have that λ1 ≥ µ1 and µ2 ≥ λn, where

λ1 ≥ λ2 ≥ · · · ≥ λn are the eigenvalues of G.

In the proofs below, we use some ideas in the proof of Theorem 3.3 in [4]. We, from Perron-Frobenius

theorem, have that |λn| ≤ λ1. Thus,

λ21 ≥ −λ1λn ≥ −µ1µ2 = −det(B) = B12B21

=

∑κ
i=0 d(ui)

κ+ 1

∑n−κ−1
i=1 d1(wi)

n− κ− 1
=

∑κ
i=0 d(ui)

κ+ 1

∑k
i=0 d(ui)

κ+ 1

κ+ 1

n− κ− 1

≥ δ2(κ+ 1)

n− κ− 1
≥ λ21.

Therefore, λ1 = −λn, λ1 = µ1, λn = µ2, and d(ui) = δ for each i with 0 ≤ i ≤ κ. Since 0 = λ1 + λn =

µ1 + µ2 = B22, d2(wi) = |N(wi) ∩ T | = 0 for each i with 1 ≤ i ≤ n − κ − 1. Thus, G is a bipartite graph

with partition sets S and T .
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Notice that

δ =

∑κ
i=0 d(ui)

κ+ 1
=

∑n−κ−1
i=1 d1(wi)

n− κ− 1

n− κ− 1

κ+ 1

=

∑n−κ−1
i=1 d(wi)

n− κ− 1

n− κ− 1

κ+ 1
≥ δ n− κ− 1

κ+ 1
.

Therefore, n ≤ 2κ+ 2. Since n ≥ 2κ+ 1. We have n = 2κ+ 1 or n = 2κ+ 2.

When n = 2κ + 1, then n − κ − 1 = κ. Since d(ui) = δ ≥ κ for i with 0 ≤ i ≤ κ, uiwj ∈ E for each i

with 0 ≤ i ≤ κ and for each j with 1 ≤ j ≤ n− κ− 1. Hence, G is Kκ, κ+1.

When n = 2κ + 2, then n − κ − 1 = κ + 1 and G is a balanced bipartite graph. From Lemma 2.1, we

have G is Hamiltonian, a contradiction.

This completes the proof of Theorem 1.2. �

4. Proof of Theorem 1.3. Let G be a graph satisfying the conditions in Theorem 1.3. Suppose, to

the contrary, that G is not traceable. Then n ≥ 2κ+ 2 (otherwise δ ≥ κ ≥ n−1
2 and G is traceable). Choose

a longest path P in G and give an orientation on P . Let x and y be the two end vertices of P . Since G is

not traceable, there exists a vertex u0 ∈ V (G)−V (P ). By Menger’s theorem, we can find s (s ≥ κ) pairwise

disjoint (except for u0) paths P1, P2, . . . , Ps between u0 and V (P ). Let vi be the end vertex of Pi on P ,

where 1 ≤ i ≤ s. Without loss of generality, we assume that the appearance of v1, v2, . . . , vs agrees with

the orientation of P . Since P is a longest path in G, x 6= vi and y 6= vi, for each i with 1 ≤ i ≤ s, otherwise

G would have paths which are longer than P . We use v+i to denote the successor of vi along the orientation

of P , where 1 ≤ i ≤ s. Since P is a longest path in G, we have that v+i 6= vi+1, where 1 ≤ i ≤ s − 1.

Moreover, {u0, v+1 , v
+
2 , . . . , v

+
s , x} is independent (otherwise G would have paths which are longer than P ).

Set S := {u0, v+1 , v
+
2 , . . . , v

+
κ , x}. Then S is independent. Let ui = v+i for each i with 1 ≤ i ≤ κ and uκ+1 = x.

Set T := V −S = {w1, w2, . . . , wn−κ−2 }. We label the vertices of u0, u1, . . . , uκ, uκ+1, w1, w2, . . . , wn−κ−2

by 1, 2, . . . , κ+ 1, κ+ 2, . . . , n, respectively. Let d1(wi) = |N(wi)∩ S| and d2(wi) = |N(wi)∩ T | for each i

with 1 ≤ i ≤ n− κ− 2. Obviously,
∑κ+1
i=0 d(ui) =

∑n−κ−2
i=1 d1(wi).

Define a two by two matrix B = (Bi j )2×2, where

B11 = 0, B12 =

∑κ+1
i=0 d(ui)

κ+ 2
, B21 =

∑n−κ−2
i=1 d1(wi)

n− κ− 2
, B22 =

∑n−κ−2
i=1 d2(wi)

n− κ− 2
.

Then B is a quotient matrix of the adjacency matrix of G with partition S and T . Let µ1 ≥ µ2 be the

eigenvalues of B. Then, by Corollary 2.3 on Page 596 in [4], we have that λ1 ≥ µ1 and µ2 ≥ λn, where

λ1 ≥ λ2 ≥ · · · ≥ λn are the eigenvalues of G.

We, from Perron-Frobenius theorem, have that |λn| ≤ λ1. Thus,

λ21 ≥ −λ1λn ≥ −µ1µ2 = −det(B) = B12B21

=

∑κ+1
i=0 d(ui)

κ+ 2

∑n−κ−2
i=1 d1(wi)

n− κ− 2
=

∑κ+1
i=0 d(ui)

κ+ 2

∑k+1
i=0 d(ui)

κ+ 2

κ+ 2

n− κ− 2

≥ δ2(κ+ 2)

n− κ− 2
≥ λ21.

Therefore, λ1 = −λn, λ1 = µ1, λn = µ2, and d(ui) = δ for each i with 0 ≤ i ≤ κ + 1. Since 0 = λ1 + λn =

µ1 + µ2 = B22, d2(wi) = |N(wi) ∩ T | = 0 for each i with 1 ≤ i ≤ n − κ − 2. Thus, G is a bipartite graph

with partition sets S and T .
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Notice that

δ =

∑κ+1
i=0 d(ui)

κ+ 2
=

∑n−κ−2
i=1 d1(wi)

n− κ− 2

n− κ− 2

κ+ 2

=

∑n−κ−2
i=1 d(wi)

n− κ− 2

n− κ− 2

κ+ 2
≥ δ n− κ− 2

κ+ 2
.

Therefore, n ≤ 2κ+ 4. Since n ≥ 2κ+ 2. We have n = 2κ+ 2, n = 2κ+ 3, or n = 2κ+ 4.

When n = 2κ+ 2, then n− κ− 2 = κ. Since d(ui) = δ ≥ κ for i with 0 ≤ i ≤ κ+ 1, uiwj ∈ E for each i

with 0 ≤ i ≤ κ+ 1 and for each j with 1 ≤ j ≤ n− κ− 2. Hence, G is Kκ, κ+2.

When n = 2κ + 3, then n − κ − 2 = κ + 1. Notice that κ ≥ 5 since n = 2κ + 3 ≥ 12. Notice further

that each vertex in S or T has degree at least δ ≥ κ. From Lemma 2.2, we have G has a cycle of length

2κ+ 2. Since n = 2κ+ 3 and κ ≥ 5, G has a path containing all the vertices of G. Namely, G is traceable,

a contradiction.

When n = 2κ+ 4, then n− κ− 2 = κ+ 2. Notice that κ ≥ 4 since n = 2κ+ 4 ≥ 12. Notice further that

each vertex in S or T has degree at least δ ≥ κ. From Lemma 2.2, we have G has a cycle of length 2κ+ 4,

which implies that G is traceable, a contradiction.

This completes the proof of Theorem 1.3. �
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