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POSITIVE SOLUTIONS OF THE SYSTEM OF OPERATOR EQUATIONS A1X = C1,

XA2 = C2, A3XA
∗
3 = C3, AND A4XA

∗
4 = C4 IN HILBERT C∗-MODULES∗

RASOUL ESKANDARI† , XIAOCHUN FANG‡ , MOHAMMAD SAL MOSLEHIAN§ , AND QINGXIANG XU¶

Abstract. Necessary and sufficient conditions are given for the operator system A1X = C1, XA2 = C2, A3XA∗3 = C3,

and A4XA∗4 = C4 to have a common positive solution, where Ai’s and Ci’s are adjointable operators on Hilbert C∗-modules.

This corrects a published result by removing some gaps in its proof. Finally, a technical example is given to show that the

proposed investigation in the setting of Hilbert C∗-modules is different from that of Hilbert spaces.
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1. Introduction. Let A be a C∗-algebra. A Hilbert A-module is a right A-module equipped with an

A-valued inner product 〈·, ·〉 : H×H → A such that H is complete with respect to the induced norm defined

by ‖x‖ = ‖〈x, x〉‖ 1
2 for x ∈ H. Suppose that H and K are Hilbert A-modules. Let L(H,K) be the set of

maps A : H → K for which there is a map A∗ : K → H, called the adjoint operator of A, such that

〈Ax, y〉 = 〈x,A∗y〉 for each x ∈ H and y ∈ K.

It is known that each element A of L(H,K) must be a bounded linear operator, which is also A-linear in

the sense that A(xa) = (Ax)a for each x ∈ H and a ∈ A. We use the notations L(H) and L(H)+ to denote

the C∗-algebra L(H,H) and the set of positive elements of L(H), respectively. Let A ∈ L(H). By R(A)

and N (A) we mean the range and the null space of A, respectively. By [3, Lemma 4.1], we know that A is

positive if and only if 〈Ax, x〉 ≥ 0 for all x ∈ H.

Let H be a Hilbert A-module. A closed submodule K of H is said to be orthogonally complemented in

H if H = K ⊕K⊥, where

K⊥ = {x ∈ H : 〈x, y〉 = 0 for all y ∈ K} .

Evidently, K is orthogonally complemented in H if and only if there exists a projection P on H, whose

range is K and R(P )⊕N (P ) = H.

Throughout the rest of this section, H and K are Hilbert C∗-modules, and A is an element of L(H,K).

Recall that an operator A is regular if R(A) is closed in K.
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Lemma 1.1. (See [3, Theorem 3.2] and [9, Remark 1.1]) The closedness of any one of the following sets

implies the closedness of the remaining three sets:

R(A), R(A∗), R(AA∗), and R(A∗A).

If R(A) is closed, then R(A) = R(AA∗), R(A∗) = R(A∗A), and the following orthogonal decompositions

hold:

(1.1) H = N (A)⊕R(A∗) and K = R(A)⊕N (A∗).

Recall that each element A− of A{1} = {X ∈ L(K,H) : AXA = A} is called an inner inverse of A.

Clearly, it can be deduced from [9, Theorem 2.2] that A has an inner inverse if and only if A is regular. In

this case, we put

(1.2) LA := I −A−A,

where A− ∈ A{1} is unspecified.

The Moore–Penrose inverse A† of A (if it exists) is the unique element X of L(K,H) which satisfies

(1.3) AXA = A, XAX = X, (AX)∗ = AX, and (XA)∗ = XA.

We remark that as in the Hilbert space case, A† exists if and only if A is regular [9, Theorem 2.2], in

which case R(A†) = R(A∗), N (A†) = N (A∗), and

(1.4) (A†)∗ = (A∗)† and (AA∗)† = (A∗)†A† = (A†)∗A†.

If H = K and A is Hermitian, then A† is also Hermitian and AA† = A†A.

The study of operator equations has been developed from matrices to infinite dimensional spaces; for

example, arbitrary Hilbert spaces and Hilbert A-modules, by several mathematicians; see [1, 4, 8, 11, 12] and

references therein. In [8], some necessary and sufficient conditions for the existence of common Hermitian

and positive solutions X ∈ L(H) for the equations AX = C and XB = D are proposed and some formulas

for the general forms of their common solutions are given.

In this paper, we give some necessary and sufficient conditions for the operator system A1X = C1,

XA2 = C2, A3XA
∗
3 = C3, and A4XA

∗
4 = C4 to have a common positive solution, where Ai’s and Ci’s

are adjointable operators on Hilbert C∗-modules. This corrects the main result of Song and Wang [7] by

removing some gaps in its proof. Finally, we give a technical example and show that our investigation in the

setting of Hilbert C∗-modules differs from that in the framework of Hilbert spaces.

2. Main results. Throughout this section, H,K,L, and Ki(1 ≤ i ≤ 4) are Hilbert A-modules.

The proof of Lemma 2.1 below is straightforward.

Lemma 2.1. Let A ∈ L(H,K), C ∈ L(L,K) be such that A is regular. Then the operator equation

AX = C has a solution X ∈ L(L,H) if and only if R(C) ⊆ R(A). In this case, the general solution to

AX = C is of the form

(2.5) X = A−C + (I −A−A)T,

where T ∈ L(L,H) is arbitrary.
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Lemma 2.2. (See [8, Theorem 2.1]) Let A,C ∈ L(H,K) be such that both A and CA∗ are regular. Then

the operator equation AX = C has a solution X ∈ L(H)+ if and only if CA∗ ≥ 0 and R(C) = R(CA∗). In

this case, the general positive solution to AX = C is of the form

X = C∗(CA∗)−C + LASL
∗
A,

where S ∈ L(H)+ is arbitrary and C∗(CA∗)−C is a positive element, which is independent of the choice of

the inner inverse (CA∗)−.

Lemma 2.3. (See [8, Theorem 3.7]) Let A1, C1 ∈ L(H,K), A2, C2 ∈ L(L,H),

D =

(
A1

A∗2

)
, E =

(
C1

C∗2

)
, and F =

(
C1A

∗
1 C1A2

(A1C2)∗ C∗2A2

)
be such that D and F are regular. Then the system

(2.6) A1X = C1, XA2 = C2, X ∈ L(H)

has a solution X ∈ L(H)+ if and only if F ≥ 0 and R(E) ⊆ R(F ). In this case, the general positive solution

to system (2.6) can be expressed as

X = E∗F−E + LDTL
∗
D,

where T ∈ L(H)+ is arbitrary and E∗F−E is a positive element, which is independent of the choice of the

inner inverse F−.

Remark 2.4. Suppose that A ∈ L(H,K) and C ∈ L(K) are both regular. It is indicated in [10,

Lemma 3.2] that the equation

(2.7) AXA∗ = C, X ∈ L(H),

has a solution X ∈ L(H)+ if and only if

(2.8) C ≥ 0 and R(C) ⊆ R(A).

In this case, the general positive solution for equation (2.7) can be expressed as

(2.9) X = A†C(A†)∗ +A†C(A†)∗V FA + FAV
∗A†C(A†)∗ + FAV

∗A†C(A†)∗V FA + FAWFA,

where FA = I −A†A, V ∈ L(H) is arbitrary, and W ∈ L(H)+ is arbitrary.

The point is, as shown in [2] by Groß for matrices, we can replace A† in (2.9) by a general inner inverse

A−, and meanwhile give a simplified formula for X. For the sake of completeness, we give a detailed proof

of Lemma 2.5 below, using a method somewhat different from that in [2].

Lemma 2.5. (See [2, Theorem 1]) Suppose that A ∈ L(H,K) and C ∈ L(K) are both regular such that

condition (2.8) is satisfied. Then the general positive solution to equation (2.7) can be expressed as

(2.10) X = [A−B + LAY ][A−B + LAY ]∗ + LAS(LA)∗,

where LA is defined by (1.2), Y ∈ L(K,H) is arbitrary, S ∈ L(H)+ is arbitrary, and B ∈ L(K) is an

arbitrary operator satisfying BB∗ = C.
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Proof. Let B ∈ L(K) be chosen such that BB∗ = C. By Lemma 1.1, we have R(B) = R(C); hence,

AA−B = B, which means that each operator X of the form (2.10) is a positive solution to equation (2.7).

Conversely, suppose that X ∈ L(H)+ is a solution to equation (2.7). Let U = XA∗ − A−C. Then

AU = 0; hence, XA∗ = A−C + LAU . Taking the ∗-operation, we have

(2.11) AX = C(A−)∗ + U∗(LA)∗
def
= C ′.

Note that C ′A∗ = AXA∗ = C, which is regular. Note also that X is a positive solution to the equation

AZ = C ′, Z ∈ L(H); so by Lemma 2.2, there exists S ∈ L(H)+ such that

(2.12) X = (C ′)∗(C ′A∗)†C ′ + LAS(LA)∗ = (C ′)∗(BB∗)†C ′ + LAS(LA)∗.

Clearly, C(B†)∗ = BB∗(B†)∗ = B, and, by (1.4), we have (BB∗)† = (B†)∗B†. In view of the observation

above, formula (2.10) for X follows immediately from (2.11) and (2.12) by putting Y = U(B†)∗.

Lemma 2.6. (See [6, Proposition 1.4.5]) Let x and a be elements in a C∗-algebra A such that a ≥ 0 and

x∗x ≤ a. If 0 < β < 1
2 , then there exists u ∈ A with ‖u‖ ≤

∥∥a 1
2−β

∥∥ such that x = uaβ.

Lemma 2.7. Let A ∈ L(H,K) and B ∈ L(K)+ be such that AA∗ ≤ B. Then, for each β ∈ (0, 12 ), there

exists C ∈ L(H,K) such that A = BβC.

Proof. We consider the C∗-algebra L(H ⊕K), which contains Ã and B̃, where

Ã =

(
0 0

A 0

)
, B̃ =

(
0 0

0 B

)
.

It is obvious that Ã
(
Ã
)∗ ≤ B̃; so, for each β ∈ (0, 12 ), by Lemma 2.6, there exists W =

(
W11 W12

C W22

)
∈

L(H ⊕K) such that Ã = B̃βW . Direct computation yields A = BβC.

Now we state the main result of this paper, which is a modification of [7, Theorem 3.5].

Theorem 2.8. Let A1, C1 ∈ L(H,K1), A2, C2 ∈ L(K2, H), A3 ∈ L(H,K3), A4 ∈ L(H,K4), C3 ∈
L(K3), and C4 ∈ L(K4) be given such that A11,M,A33, C33, A44, C44, and A44LA33 are all regular, where

A11 =

(
A1

A∗2

)
, M =

(
C1A

∗
1 C1A2

C∗2A
∗
1 C∗2A2

)
, N = (C∗1 C2)M−

(
C1

C∗2

)
,

A33 = A3LA11
, A44 = A4LA11

, C33 = C3 −A3NA
∗
3, C44 = C4 −A4NA

∗
4.

Then the system

(2.13) A1X = C1, XA2 = C2, A3XA
∗
3 = C3, A4XA

∗
4 = C4, X ∈ L(H)

has a solution X ∈ L(H)+ if and only if the following three conditions hold:

(i) The operators M,C33 and C44 are all positive;

(ii) R
(
C1

C∗2

)
⊆ R(M), R(C33) ⊆ R(A33), R(C44) ⊆ R(A44);

(iii) There exist S ∈ L(H)+ and T ∈ L(K3,K4) such that

CS := C44 −A44LA33
SL∗A33

A∗44 ≥ 0,(2.14)

R
(
C

1
3

S T −A44A
−
33C

1
2
33

)
⊆ R(A44LA33

).(2.15)
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If conditions (i)–(iii) are satisfied, then the general positive solution X to system (2.13) can be expressed as

(2.16) X = N + LA11

(
A−33C

1
2
33 + LA33

Y
)(

A−33C
1
2
33 + LA33

Y
)∗

(LA11
)∗ + LA11

LA33
SL∗A33

L∗A11
,

where Y ∈ L(K3, H) is defined by

(2.17) Y = (A44LA33
)−
(
C

1
3

S T −A44A
−
33C

1
2
33

)
+W − (A44LA33

)−(A44LA33
)W,

in which W ∈ L(K3, H) is arbitrary.

Proof. The proof is carried out along the same line initiated in [7]. We take two steps: firstly, we consider

the necessity and secondly, we consider the sufficiency.

(1) Suppose that X0 ∈ L(H)+ is a solution to system (2.13). Then from the first two equations in (2.13),

we know that X0 is a positive solution to the equation

(2.18) A11X =

(
C1

C∗2

)
, X ∈ L(H).

As both A11 and M are regular, by Lemma 2.3, we conclude that

(2.19) M ≥ 0 and R
(
C1

C∗2

)
⊆ R(M),

and there exists V ∈ L(H)+ such that

(2.20) X0 =

(
C1

C∗2

)∗
M−

(
C1

C∗2

)
+ LA11

V L∗A11
= N + LA11

V L∗A11
.

Substituting the expression of X0 above into the third equation in (2.13) yields

(2.21) A33V A
∗
33 = C33.

Therefore, V is a positive solution to the following equation:

A33XA
∗
33 = C33, X ∈ L(H).

As both A33 and C33 are regular, by (2.8), we conclude that

C33 ≥ 0 and R(C33) ⊆ R(A33),

and by (2.10), there exist Y ∈ L(K3, H) and S ∈ L(H)+ such that

(2.22) V =
[
A−33C

1
2
33 + LA33Y

] [
A−33C

1
2
33 + LA33Y

]∗
+ LA33SL

∗
A33

.

Since X0 satisfies the last equation in (2.13), by (2.20), we can get

(2.23) A44V A
∗
44 = C44.

As both A44 and C44 are regular, once again by (2.8), we have

C44 ≥ 0 and R(C44) ⊆ R(A44).
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We may combine (2.22) and (2.23) to get

(2.24)
[
A44

(
A−33C

1
2
33 + LA33

Y
)] [

A44

(
A−33C

1
2
33 + LA33

Y
)]∗

= CS ,

which means that CS ∈ L(K4)+, and by Lemma 2.7, there exists T ∈ L(K3,K4) such that

(2.25) A44

(
A−33C

1
2
33 + LA33Y

)
= C

1
3

S T.

Therefore, Y is a solution to the following equation

(2.26) A44LA33
X = C

1
3

S T −A44A
−
33C

1
2
33, X ∈ L(K3, H).

Since A44LA33 is regular, by Lemma 2.1, there exists W ∈ L(K3, H) such that Y is given by (2.17). We may

combine (2.20) with (2.22) to conclude that X0 can be expressed as (2.16). This completes the proof of the

necessity.

(2) Suppose that conditions (i)–(iii) are all satisfied. Let X be given by (2.16) with Y be formulated

by (2.17). Then X is positive since its first term N in summation is positive by Lemma 2.3, and its other

two terms are also positive. By (2.15), Y is a solution to (2.26); or equivalently, equation (2.25) is satisfied;

hence, by the second equation in (2.14), we know that (2.24) is also valid.

Now, let V be defined by (2.22). Then (2.23) follows immediately from (2.22), (2.24), and (2.14). Since

R
(
C

1
2
33

)
= R(C33) ⊆ R(A33), equation (2.21) can be derived from (2.22). Furthermore, by (2.16) and (2.22),

we can conclude that

(2.27) X = N + LA11
V L∗A11

.

The equation above, together with (2.21) and (2.23), yields the last two equations in (2.13). In view of

(2.19), we have

A11N = M∗M−
(
C1

C∗2

)
= MM−

(
C1

C∗2

)
=

(
C1

C∗2

)
,

and thus, X formulated by (2.27) is a solution to (2.18); that is, the first two equations in (2.13) are also

true. This completes the proof of the sufficiency.

Remark 2.9. Due to Lemma 2.7, we choose the number 1
3 as the power of CS in (2.25). Evidently, in

the Hilbert space case this number can be changed more naturally to be 1
2 , since each closed subspace of a

Hilbert space is orthogonally complemented. In fact, based on the equation (2.24) a partial isometry T can

be constructed which satisfies

A44

(
A−33C

1
2
33 + LA33

Y
)

= C
1
2

S T

such that the equation of C
1
2

S TT
∗C

1
2

S = CS is satisfied automatically. It is remarkable that the same is not

always true for general Hilbert C∗-modules. We construct a counterexample as follows.

Example 2.10. Let Ω = {z ∈ C : |z − 1| ≤ 1} and A = C(Ω) be the C∗-algebra consisting of all

complex-valued continuous functions on Ω. With the inner product defined by 〈f, g〉 = f∗g, for f, g ∈ A, the
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C∗-algebra A itself is also a Hilbert A-module. Define adjointable operators A,B,C ∈ L(A) by

(Af)(z) =

{
|z|ei4 arg zf(z), z 6= 0,

0, z = 0,

(Cf)(z) =

{
|z|ei arg zf(z), z 6= 0,

0, z = 0,

(Bf)(z) = |z|2f(z),

where arg z ∈ (−π2 ,
π
2 ) for z 6= 0 is the argument function and arg(0, 0) = 0, which is discontinuous only at

the origin (0, 0). Then B = B∗ and

(A∗f)(z) =

{
|z|e−i4 arg zf(z), z 6= 0,

0, z = 0,

(C∗f)(z) =

{
|z|e−i arg zf(z), z 6= 0,

0, z = 0.

It follows that AA∗ = A∗A = C∗C = CC∗ = B. We show that there does not exist an X ∈ L(A) such that

AX = C. Indeed, if such an X exists, then, for each z 6= 0 and f ∈ A with f(0) 6= 0, we have

|z|ei arg zf(z) = (Cf)(z) = (AXf)(z) = |z|ei4 arg z(Xf)(z) .

Hence, if z 6= 0, then

(2.28) (Xf)(z) = ei3 arg zf(z) for each f ∈ A with f(0) 6= 0.

Let f satisfy the condition in (2.28). If z ∈ Ω and z = rei arg z → 0 with arg z −→
(
π
2

)−
, then (Xf)(z) →

ei
3π
2 f(0). On the other hand, (Xf)(z)→ e−i

3π
2 f(0) when z ∈ Ω and z = rei arg z → 0 with arg z −→

(
−π2
)+

.

Hence, limz→0(Xf)(z) dose not exist; this shows that Xf 6∈ A.

Remark 2.11. The counterexample above shows that Lemma 3.4 stated in [7] is incorrect, which leads

to the wrong expression of Y given in (3.5) of [7] and the nonsufficiency of the conditions stated in [7,

Theorem 3.5].
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