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PROOF OF A CONJECTURE OF GRAHAM AND LOVÁSZ CONCERNING

UNIMODALITY OF COEFFICIENTS OF THE DISTANCE CHARACTERISTIC

POLYNOMIAL OF A TREE∗
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Abstract. The conjecture of Graham and Lovász that the (normalized) coefficients of the distance characteristic polynomial

of a tree are unimodal is proved; it is also shown that the (normalized) coefficients are log-concave. Upper and lower bounds

on the location of the peak are established.
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1. Introduction. The distance matrix D(G) of a simple, finite, undirected, connected graph G is the

matrix indexed by the vertices of G with (i, j)-entry equal to the distance between the vertices vi and vj ,

i.e., the length of a shortest path between vi and vj . The characteristic polynomial of D(G) is defined by

pD(G)(x) = det(xI − D(G)) and is called the distance characteristic polynomial of G. Since D(G) is a real

symmetric matrix, all of the roots of the distance characteristic polynomial are real. Distance matrices were

introduced in the study of a data communication problem in [9]. This problem involves finding appropriate

addresses so that a message can move efficiently through a series of loops from its origin to its destination,

choosing the best route at each switching point. Recently, there has been renewed interest in the loop

switching problem [6]. There has also been extensive work on distance spectra; see [1] for a recent survey.

A sequence a0, a1, a2, . . . , an of real numbers is unimodal if there is a k such that ai−1 ≤ ai for i ≤ k and

ai ≥ ai+1 for i ≥ k, and the sequence is log-concave if a2
j ≥ aj−1aj+1 for all j = 1, . . . , n− 1. Recent surveys

about unimodality and related topics can be found in [2, 3], and a classical presentation is given in [5].

For a graph G on n vertices, the coefficient in det(D(G) − xI) = (−1)npD(G)(x) of xk is denoted by

δk(G) by Graham and Lovász [8], so the coefficient of xk in pD(G)(x) is (−1)nδk(G). The following statement

appears on page 83 in [8] (a tree is a connected graph that does not have cycles, and n is its order, i.e.,

number of vertices):

It appears that in fact for each tree T , the quantities (−1)n−1δk(T )/2n−k−2 are unimodal

with the maximum value occurring for k =
⌊
n
2

⌋
. We see no way to prove this, however.
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Fact 1.1. [8, equation (44)] For a tree T on n vertices,

(−1)n−1δk(T ) > 0 for 0 ≤ k ≤ n− 2.

Throughout this discussion, the order of a graph is assumed to be at least three (any sequence a0 is

trivially unimodal and the peak location is 0). For a graph G of order n and 0 ≤ k ≤ n − 2, define

dk(G) = |δk(G)|/2n−k−2. We call the numbers dk(G) the normalized coefficients. If T is a tree, then

dk(T ) = (−1)n−1δk(T )/2n−k−2 by Fact 1.1. For a tree, the normalized coefficients represent counts of

certain subforests of the tree [8]. The conjecture in [8] can be rephrased as:

For a tree T of order n, the sequence of normalized coefficients d0(T ), . . . , dn−2(T ) is uni-

modal and the peak occurs at
⌊
n
2

⌋
.

The conjecture regarding the location of the peak was disproved by Collins [4] who showed that for both

stars and paths the sequence d0(T ), . . . , dn−2(T ) is unimodal, but for paths the peak is at approximately(
1− 1√

5

)
n (and at

⌊
n
2

⌋
for stars).1 Conjecture 9 in [4], which Collins attributes to Peter Shor, is:

Conjecture 1.2. (Collins-Shor) The [normalized] coefficients of the distance characteristic polynomial

for any tree T with n vertices are unimodal with peak between
⌊
n
2

⌋
and

⌈(
1− 1√

5

)
n
⌉

.

In [4], Conjecture 9 is stated without the floor or ceiling;
⌊
n
2

⌋
is clearly the intended lower bound, since

[4, Theorem 1] establishes
⌊
n
2

⌋
as the peak location for a star. An examination of the proof of [4, Theorem 3]

shows that the ceiling is needed in the upper bound (although the path Pn may attain either the floor or the

ceiling depending on n). This conjecture is included in [1] as Conjecture 2.6 (again without “normalized” and

without the floor and ceiling), followed by the comment, “No more results are known about that conjecture.”

The log-concavity of the sequences dk(T ) of normalized coefficients and |δk(T )| of absolute values of

coefficients are equivalent, and we show in Theorem 2.1 below that both sequences |δ0(T )|, . . . , |δn−2(T )|
and d0(T ), . . . , dn−2(T ) are log-concave and unimodal. In Section 3 we establish an upper bound of

⌈
2
3n
⌉

for the peak location of the normalized coefficients. We also show that the coefficient 2
3 can be improved

when the tree is “star-like” with many paths of length 2. Further, we give a lower bound of n
d+1 where d is

the diameter of the tree (i.e., the number of edges in a longest path in the tree). Finally, in Section 4 we

give an example showing unimodality need not be true for graphs that are not trees.

To establish these results, we need some additional definitions and facts. The next observation is

immediate from the definition.

Observation 1.3. Let a0, a1, a2, . . . , an be a sequence of real numbers, let c and s be nonzero real num-

bers, and define bk = sckak. Then a0, a1, a2, . . . , an is log-concave if and only if b0, b1, b2, . . . , bn is log-

concave.

Consider a real polynomial p(x) = anx
n + · · ·+ a1x+ a0. The coefficient sequence of p is the sequence

a0, a1, a2, . . . , an. The polynomial p is real-rooted if all roots of p are real (by convention, constant polynomials

are considered real-rooted). The next result is known (see, for example, [2, 3, 5]). It is straightforward to

adapt the proof of [2, Lemma 1.1] or [5, Theorem B, p. 270], which are stated with the additional assumption

that the polynomial coefficients are nonnegative, to the more general case.

1Despite use of the term coefficient throughout [4], the sequence discussed there is dk(T ), not δk(T ).
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Lemma 1.4.

(a) If p(x) = anx
n + · · ·+ a1x+ a0 is a real-rooted polynomial, then:

(i)
a2j

(n
j)

2 ≥ aj+1aj−1

( n
j+1)(

n
j−1)

for j = 1, . . . , n− 1.

(ii) The coefficient sequence ai of p is log-concave.

(b) If a0, a1, a2, . . . , an is positive and log-concave, then a0, a1, a2, . . . , an is unimodal.

2. Proof of Graham and Lovász’ unimodality conjecture for the distance characteristic

polynomial of a tree.

Theorem 2.1. Let T be a tree of order n.

(i) The coefficient sequence of the distance characteristic polynomial pD(T )(x) is log-concave.

(ii) The sequence |δ0(T )|, . . . , |δn−2(T )| of absolute values of coefficients of the distance characteristic

polynomial is log-concave and unimodal.

(iii) The sequence d0(T ), . . . , dn−2(T ) of normalized coefficients of the distance characteristic polynomial

is log-concave and unimodal.

Proof. Let D(T ) be the distance matrix of T . Since pD(T )(x) is real-rooted, the coefficient sequence

(−1)nδ0(T ), . . . , (−1)nδn−2(T ), 0, 1 is log-concave by Lemma 1.4 (a) (i).

Therefore, the sequence (−1)nδ0(T ), . . . , (−1)nδn−2(T ) is log-concave. By Fact 1.1, (−1)n−1δk(T ) >

0 for 0 ≤ k ≤ n − 2, so we have (−1)nδk(T ) < 0 for 0 ≤ k ≤ n − 2. Because all of the terms

(−1)nδ0(T ), . . . , (−1)nδn−2(T ) are negative, the sequence of their absolute values {|δk(T )|}n−2
k=0 is log-concave

and positive. Then by Lemma 1.4 (b), the sequence |δ0(T )|, . . . , |δn−2(T )| is unimodal.

Since dk(T ) =
(

1
2n−2

)
2k|δk(T )|, the log-concavity of the sequence {dk(T )}n−2

k=0 then follows from Obser-

vation 1.3. Since {dk(T )}n−2
k=0 is positive, it is unimodal by Lemma 1.4 (b).

3. Bounds on the peak location. For a tree T of order n, the question of the location of the peak of

the unimodal sequence of normalized coefficients {dk(T )}n−2
k=0 remains open. Note that Conjecture 1.2 says

that the peak location is between b0.5nc and roughly d0.5528ne. Computations on Sage [10, 11] confirm

this conjecture for all trees of order at most 20. In this section we show that the peak location is at most

d0.6667ne for all trees of order n, and at least
⌊
n−2
1+d

⌋
for a tree of diameter d and order n. Furthermore, the

upper bound we establish is better for a “star-like” tree, that is, when the tree has a high fraction of the

number of paths of length 2 in a star (which attains the maximum possible number of paths of length 2).

Observation 3.1. Let T be a tree on n vertices and define

`T (x) = − 1

2n−2
det(2xI −D(T )).

Then `T (x) is a real-rooted polynomial with coefficients −4 for xn, 0 for xn−1, and dk(T ) > 0 for xk when

0 ≤ k ≤ n− 2.

Lemma 3.2. Let a0, a1, a2, . . . , an−2 be a unimodal sequence with ai > 0 for i = 0, . . . , n − 2 such that∑n
k=0 akx

k is a real-rooted polynomial.

1. If for some index j 6= n, n− 1
n− j
n(j + 1)

· a1

a0
< 1,
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then the peak location is at most j.

2. If for some index j 6= n, n− 1, 0

(n− 2)(n− j + 1)

3j
· an−2

an−3
> 1,

then the peak location is at least j.

Proof. By Lemma 1.4 (a) (i),

a2
j ≥

(
n
j

)2(
n
j+1

)(
n
j−1

)aj+1aj−1 =
(j + 1)(n− j + 1)

j(n− j)
aj+1aj−1.

Then

aj+1

aj
≤ j(n− j)

(j + 1)(n− j + 1)
· aj
aj−1

≤
(

j

j + 1
· j − 1

j
· · · 1

2

)(
n− j

n− j + 1
· n− j + 1

n− j + 2
· · · n− 1

n

)
a1

a0

=
n− j
n(j + 1)

· a1

a0
.

If this value is smaller than 1, then aj+1 < aj and the peak location is at most j.

Similarly,

aj
aj−1

≥ (j + 1)(n− j + 1)

j(n− j)
· aj+1

aj

≥
(
j + 1

j
· j + 2

j + 1
· · · n− 2

n− 3

)(
n− j + 1

n− j
· n− j
n− j − 1

· · · 4
3

)
an−2

an−3

=
(n− 2)(n− j + 1)

3j
· an−2

an−3
.

If this value is greater than 1, then aj > aj−1 and the peak location is at least j.

Theorem 3.3. Suppose T is a tree on n ≥ 3 vertices with at least ρ
(
n−1

2

)
paths of length 2 for some

nonnegative real number ρ. Then the peak location of the normalized coefficients d0(T ), d1(T ), . . . , dn−2(T )

is at most
⌈

2−ρ
3−ρn

⌉
. Since ρ = 0 applies to every tree, the peak location is at most

⌈
2
3n
⌉

for every tree on n

vertices.

Proof. By Observation 3.1, we may apply Lemma 3.2 to `T (x). When 0 ≤ j ≤ n− 2 and

n− j
n(j + 1)

· d1(T )

d0(T )
< 1,

the peak location is at most j. Since d0(T ) and d1(T ) are both positive numbers, the inequality is equivalent

to

j >
rn− n
n+ r

= n− n2 + n

n+ r
, where r =

d1(T )

d0(T )
.

The formula d0(T ) = n − 1 is given in [9, Theorem 3]. Defining NP3(T ) to be the number of subtrees

of T that are isomorphic to the path P3 on three vertices (of length 2), the formula d1(T ) = 2n(n − 1) −
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2NP3(T ) − 4 follows from [7, Theorem 4.1]2 by using the definition dk(T ) = (−1)n−1δk(T )/2n−k−2. Since
1
2ρ(n− 1)(n− 2) = NP3

(T ) ≥ n− 2,

r =
2n(n− 1)− 2NP3

(T )− 4

n− 1
=

2n(n− 1)− ρ(n− 1)(n− 2)− 4

n− 1
< (2− ρ)n+ 2ρ.

Now

n− n2 + n

n+ r
< n− n2 + n

(3− ρ)n+ 2ρ
= n− n+ 1

3− ρ+ (2ρ/n)
≤ n− n

3− ρ
=

2− ρ
3− ρ

n.

The last inequality follows from n
3−ρ ≤

1
(2ρ/n) , which is justified by ρ ≤ 1.

Therefore, j =
⌈

2−ρ
3−ρn

⌉
is an upper bound of the peak location.

Remark 3.4. If the number NP3
(T ) of paths of length two is known for every tree T in a particular

family, then ρ can be set equal to
NP3

(T )

(n−1
2 )

. For example, for the star Sn on n vertices, NP3
(Sn) =

(
n−1

2

)
, so

ρ = 1 and
⌈

2−ρ
3−ρn

⌉
=
⌈
n
2

⌉
. Thus, for a star, our upper bound is equal to (if n is even) or one more than (if

n is odd) the known value
⌊
n
2

⌋
for the peak of the normalized coefficients for Sn [4, Theorem 1].

We will utilize a technique similar to the upper bound in order to derive a lower bound. However, we

need the following lemma to provide an estimate for the necessary ratio.

Lemma 3.5. For any tree T on n vertices with diameter d

dn−3(T )

dn−2(T )
<

1

3
nd.

Proof. Let D := D(T ) denote the distance matrix of T , and let Dij denote its ij-entry. From [7, equations

(4c) and (4d)],

δn−2(T ) = (−1)n−1
∑
i<j

D2
ij

and

δn−3(T ) = (−1)n−1
∑
i<j<k

2DijDjkDki.

We will now express the corresponding normalized coefficients in terms of the traces of powers of D.

First, let us consider dn−2(T ). Since the diagonal entries of D are all zero,

dn−2(T ) =
∑
i<j

D2
ij =

1

2

∑
i

∑
j

DijDji =
1

2

∑
i

(D2)ii =
1

2
tr(D2),

2Our notation is slightly different but examination of [7, Table 2] clarifies the notation.
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where the second equality follows from D being symmetric. Similarly, for d3(T ),

dn−3(T ) =
∑
i<j<k

DijDjkDki

=
1

6

∑
i,j,k

different

DijDjkDki

=
1

6

∑
i,j,k

DijDjkDki

=
1

6

∑
i

∑
j,k

DijDjkDki =
1

6

∑
i

(D3)ii =
1

6
tr(D3),

where the third line follows because if any two of i, j, k are equal, then the corresponding entry in D is 0.

Let λ1 ≤ λ2 ≤ · · · ≤ λn =: λmax denote the eigenvalues of D(T ). Since tr(D2) =
∑
i

λ2
i and similarly

tr(D3) =
∑
i

λ3
i , we have

dn−3(T )

dn−2(T )
=

1
6
1
2

tr(D(T )3)

tr(D(T )2)
=

1

3

∑
i λ

3
i∑

i λ
2
i

≤ 1

3

λmax
∑
i λ

2
i∑

i λ
2
i

=
1

3
λmax <

1

3
nd,

where the last inequality comes from that the the row sums of D are bounded above by nd.

Theorem 3.6. Let T be a tree on n ≥ 3 vertices with diameter d. Then, the peak location of the

normalized coefficients d0(T ), d1(T ), . . . , dn−2(T ) is at least
⌊
n−2
1+d

⌋
.

Proof. By Observation 3.1, we may apply Lemma 3.2 to `T (x). When 1 ≤ j ≤ n− 2 and

(n− 2)(n− j + 1)

3j
· dn−2(T )

dn−3(T )
> 1,

the peak location is at least j. Since dn−2(T ) and dn−3(T ) are both positive numbers, the inequality is

equivalent to

j <
(n− 2)(n+ 1)

(n− 2) + (3/r)
, where r =

dn−2(T )

dn−3(T )
.

By applying Lemma 3.5, 3
r < nd. Thus,

(n− 2)(n+ 1)

(n− 2) + (3/r)
>

(n− 2)(n+ 1)

(1 + d)n− 2

=
n− 2

1 + d
· n+ 1

n− 2/(1 + d)

>
n− 2

1 + d
.

So, j =
⌊
n−2
1+d

⌋
is a lower bound of the peak location.
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4. Graphs that are not trees. Since the distance matrix of any graph G is a real symmetric matrix,

the coefficient sequence of the distance characteristic polynomial of G is log-concave. However, it need not be

the case that all coefficients of the distance characteristic polynomial have the same sign. Thus, statements

analogous to those in Theorem 2.1 can be false for graphs that are not trees.

Example 4.1. The normalized coefficients and absolute values of the coefficients of the distance charac-

teristic polynomial are not unimodal (and hence not log-concave) for the Heawood graph H shown in Figure

1. The coefficients of the distance characteristic polynomial are log-concave but not unimodal.

Figure 1. The Heawood graph H.

The distance characteristic polynomial of H is

pD(H)(x) = x14 − 441x12 − 6328x11 − 36456x10 − 75936x9 + 104720x8

+ 573696x7 − 118272x6 − 1885184x5 + 973056x4

+ 2795520x3 − 3885056x2 + 1892352x− 331776.

The values of dk(H), for k = 0, . . . , 12, are

81, 924, 3794, 5460, 3801, 14728, 1848, 17928, 6545, 9492, 9114, 3164, 441.
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