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EXTREMAL OCTAGONAL CHAINS WITH RESPECT TO THE SPECTRAL RADIUS*

XIANYA GENG', SHUCHAO LI, AND WEI WEI$

Abstract. Octagonal systems are tree-like graphs comprised of octagons that represent a class of polycyclic conjugated
hydrocarbons. In this paper, a roll-attaching operation for the calculation of the characteristic polynomials of octagonal chain
graphs is proposed. Based on these characteristic polynomials, the extremal octagonal chains with n octagons having the
maximum and minimum spectral radii are identified.
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1. Introduction. In this paper, we consider only connected, simple and finite graphs. For graph
theoretic notation and terminology not defined here, we refer the readers to Bondy and Murty [4].

Let G = (Vig, Eg) be a graph with vertex set Vi and edge set Eg. Then G — v, G — uv denote the
graphs obtained from G by deleting vertex v € Vi, or edge uv € Fg, respectively. This notation is naturally
extended if more than one vertex or edge are deleted. Similarly, G 4 uv is obtained from G by inserting the
edge uv € Eg. Denote by P, and C,, the path and cycle on n vertices, respectively.

Let Vg = {v1,v2,...,v,} and A(G) = (a;j)nxn be the adjacency matriz of order n whose entries a;; = 1
if v;,v; are adjacent and 0 otherwise. Since A(G) is symmetric and real, the eigenvalues of A(G), also
referred to as the eigenvalues of G, can be arranged as Ay > Ay > - -+ > A\ with multiplicity ny,no, ..., ng,

respectively. Then the spectrum of G is the set of eigenvalues of A(G) together with their multiplicities,
denoted by {)\gnl), )\;m), ce )\,gn’“)}. The largest eigenvalue A\ (G) of A(G) is called the spectral radius or
index of G, denoted by p(G). The characteristic polynomial of G is

o(G, z) = det(zl, — A(G)),

where I, is an identity matrix of order n, and can also be expressed in the coefficients forms as follows:

o(G,z) = det(axl — A(G)) = Zaix"_i.

=0

As proposed by Brualdi and Solheid [5], an interesting problem is to determine the extremal graphs in
some class with respect to the spectral radius. This problem has attracted much attention in the literature
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(see, for example, [10, 11]). However, the problem, especially the minimization version, appears hard for
some graphs (see, for example, [15, 26, 29, 30, 31]). In contrast, tools for dealing with maximization version
are more developed (see also [12, 14]). The minimal index problem plays an important role in modeling virus
propagation in real networks (see [27] for more details). The adjacent spectral radius has been extensively
studied. Primarily the study has focussed on graphs with pendent vertices. There is also some work on
2-connected graphs.

Here we will mention only a few relevant results. Some fundamental results on spectral radius of
connected graphs with cyclomatic number are obtained in mathematical literature. In particular, in 1973,
Lovész and Pelikdn [24] found that of all trees, the star has the largest spectral radius and the path has
the smallest, respectively. For trees, we refer the readers to [10, 14, 19, 23, 25]. The corresponding results
for unicyclic graphs can be found in [2, 7, 22]. Those for bicyclic graphs can be found in [28, 32], whereas
those for tricyclic or quasi-k-cyclic graphs can be found in [16, 17, 18]. It seems that the study on the index
of graphs without pendant vertices is hard. Up to now, very few papers concerned this problem. Chen et
al. [8] considered the largest eigenvalue of complete bipartite graphs, missing at most two edges. Das et al.
[13] focused on a conjecture on the index of almost complete bipartite graph proposed in [8]. Zhang and
Tian [33] determined the hexagonal chain graphs with n hexagons having the largest and smallest adjacency
spectral radii, respectively.

In order to formulate our main results, we need to introduce some notation. An octagonal system is a
2-connected graph consisting of some regular octagons. It seems that the first study on octagonal systems in
mathematical chemistry is [6]. The octagonal chains are defined recursively as follows. An octagon O; is an
octagonal chain, with itself as the terminal octagon. If G,,_1 = 0105 - -- O,,_1 is an octagon chain consisting
of n — 1 > 2 octagons, where O; is the i'" octagon for 1 < i < n — 1 and O,_; is terminal octagon, then
the graph obtained from G,,_; by identifying an edge of O,,_; incident to only one octagon of G,,_1 with an
edge of an octagon O,, is an octagonal chain with terminal octagon O,,, denoted by G,, = 0103 - - - O,,.

Let G,, = 0105---0,, be an octagonal chain with n > 3. Let u;_sv;_o be the common edge of
O;_2 and O;_1, and u;_1v;_1 be the common edge of O;_1 and O; for i > 3. Let k be the number of edges
encountered when traversing O;_; starting at u;_ov;_o and ending at u;_1v;_1 in a clockwise direction. Then
k € {2,3,4,5,6} and the join is «, 8,7, 0, ¢ according to the value of k. For example, let O,,_1 = gpabedefq
with e,_1 = pq, and denote one edge of O, by rs. Then G, can be obtained from G,,_; and O, by «
(respectively 3, v, ¢, €) join (see Figure 1).

As it is irrelevant to which join the first and second octagons are, we set k; = k3 = . Then

If k; =~ for each i in (1.1), then G,, is a linear chain, which is denoted by L. If k; € {a, e} (or {8,d}) and
ki # kiy1 for each i > 3 in (1.1), then G,, is called a zigzag chain, we denote it by Z! (or Z2). If k; = «
(or €) for each i > 3 in (1.1), then G,, is a heliz chain and we denote it by H}. If k; = 8 (or &) for each

i >3 in (1.1), then G,, is also a heliz chain, which is denoted by H?2 (see Figure 2). Thus, we can see that
Gi=L1=7Z{ =2} =H{ =H? Gy=Ly=2}=73=Hi = H and G3 € {L3,Z} = Hi, 72 = H3}.

The current work is motivated by the paper [33], in which Zhang and Tian characterized the hexagonal
chain graphs with the largest and smallest adjacency indices, respectively. In this paper, we propose a roll-
attaching operation for calculating the characteristic polynomials of octagonal chain graphs and consider
the extremal problems on the spectral radius of octagonal chains as follows.
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FIGURE 1. Five cases of attaching an octagon On to an octagonal chain Gp_1.
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FIGURE 2. Graphs Ly, HY, H2, Z and Z2.

THEOREM 1.1. The heliz chain H} uniquely mazimizes the spectral radius among all octagonal chains
with n octagons.

THEOREM 1.2. The linear chain L, uniquely minimizes the spectral radius among all octagonal chains

with n octagons.

The organization of this paper is as follows. In Section 2, we give some auxiliary results on the charac-
teristic polynomials of graphs, which are used to study the spectral radius of octagonal chains. In Section 3,
we introduce a roll-attaching operation on the octagonal chains. Then we establish some technical lemmas
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that help us characterize the extremal graphs. Based on the results in the previous sections, we give the
proofs of our main results in Section 4.

2. Preliminaries. In this section, we introduce some preliminary results that will be used to study the
spectral radius of octagonal chains. For convenience, let C.(G) be the set of cycles in G containing edge e,
and C,(G) be the set of cycles in G containing vertex v. Denote the set of octagonal chains with n octagons
by G, and the symbol ~ denotes that two vertices in question are adjacent. First we recall the following
bounds.

2m

LEMMA 2.1. [1] Let G be a connected graph with n vertices and m edges. Then p(G) > =2,

n

Given an octagonal chain G,, in G,, with n > 1, it is straightforward to check that G,, has 6n+ 2 vertices
and 7n + 1 edges. Thus, Lemma 2.1 implies the following result.

LEMMA 2.2. For any octagonal chain G, € G, withn > 2, p(G,,) > 2.

Next we introduce some recursion formulas about characteristic polynomials.

LEMMA 2.3. [9, 21, 3] Let G1 and G5 be two vertex disjoint graphs. Then
P(G1 U Ga, ) = (G, 2)p(G2, 7).
LEMMA 2.4. [9, 21, 3] Let e = uv be an edge of a simple graph G. Then

0(G,x) = (G —w,z) - p(G-u—v,z) =2 > o(G-Ve,a).
CeCe(G)

Moreover, if e does not belong to any cycles, then
@(va) = SD(G - uvva) - SD(G —u-—= ’va)'

LEMMA 2.5. [20] Let H be a subgraph of G with uv € Eg and denote p(G) by p. If v is not the unique
neighbor of w in graph H, then

@(H, p) = pp(H —v,p) + p(H —u—wv,p) <0.
LEMMA 2.6. [20] Let G1 and Go be graphs. If o(G1,p(G2)) <0, then p(G1) > p(Ga).

Let H! = 0105 ---0,, = yyaa-- -« be a helix chain. Let ¢;d; be the common edge of O; and Oy and a;b;
be the common edge of O; and O;; for i > 2 as depicted in Figure 2.

LEMMA 2.7. Let the heliz chain H} be a subgraph of a octagonal chain G, with 1 < k < n. Denote
p(Gr) by p. Then o(H{ — c1,p) = p(H{ — dy, p) and o(H}, — by, p) < p(Hj, — ay, p) for 2 <k < n.

Proof. If k = 1, it is obvious that @(Hi — c1, p) = ¢(Pr,p) = ¢(Hi — d1, p), as desired.
If 2 < k < n, then we show our result by induction. For the case of k = 2, by Lemma 2.4,
O(HY — ag,z) = (2° — 42 + 32)p(H, x) — (2% — 322 + 1)p(H} — dy, x)
and

p(Hy — bz, x) = (2° = 32° + x)p(H}, ) — (¢* = 32% + 1)p(H{ — 1, )
—(z* = 20 (H{ —dy,x) + (2° — 22)p(H{ — ¢1 — dy, ).
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Note that H{ is a subgraph of G,, and ¢; is not the unique neighbor of d;. Hence, by Lemma 2.5
p(Hi,p) = pp(H{ — c1,p) + ¢(Hf — c1 — di, p) <O0.
According to p(H} — c1,p) = @(H{ — dy, p) and p > 2 for n > 2, we have (based on Lemma 2.5) that
P(Hy = b, p) —p(Hy — az,p) = (p° = 2p)lp(Hy, p) — pp(Hi — c1,p) + ¢(Hf — 1 — du, p)]
+(p* = Dlp(H{ — c1,p) = o(H} — di,p)] < 0.

Then we assume the inequality @(H} — by, p) < @(H} — ag, p) holds for 1 < ¢t < k and consider the case of
k. Note that

p(Hi —bi, p) — ¢(Hy — ax, p) = (p° = 2p)p(Hj_y, p) = (p* = 30 + 1)p(Hj_4
—ag-1,p) = (0* = V)p(Hji_y — br-1,p)
(2.2) +(p° = 2p)p(Hi—y — ar—1 — by—1, p)-
By induction, ¢(H} | — br—1,p) < p(H} | —ak—1,p). Combining p > 2 we have
(p* = 30" + ) (p(Hjp_y — ar—1,p) — e(Hi_y = br_1,p))
=[0*(p* = 4) + p* + 1[p(H}_y — ax—1,p) — e(H}_y — bk_1,p)] > 0;
that is,
(p* = 30> + V)o(Hjp_y — ar—1,p) + (0> = 1)(H}_y — b1, p)
> (p" = 2p)p(Hj_y — bi—1,p).
Hence, in view of (2.2),
¢(Hi = bi, p) — p(HLL — ax, p) <(p* = 20)[p(Hi_1,p) — po(Hj—y = br—1,p)
+ SD(H]ifl —ag—1 — bk:*lvp)] < 07
where the last inequality follows by Lemmas 2.2 and 2.5. O
Let G and G4 be two vertex disjoint graphs such that ui, v1 € Vg, and ug, va € Viz,. Then the graph

G1 ¢ G4 is constructed from G; and G5 by connecting u; and ug (respectively vq and vy ) with an edge e;
(respectively es). Graph G ¢ G is depicted in Figure 3.

U1 U2
U1 V2

FIGURE 3. Graph G1 ¢ Ga.

LEMMA 2.8. For the graph G = G1 ¢ G2 through edges e; = ujus and es = v1va, then

0(G,z) = o(G1,7)p(Go,w) — (G1 — u1, )p(Ga — uz,z) — 9(G1 — v, 2)p(G2 — v2, T)

+p(G1 —ur — v1,2)p(Ga — ug — vg, ) — 2 Z o(G - Vg, x).
CeCe, (G)



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 34, pp. 356-372, August 2018.

361 Extremal Octagonal Chains With Respect to the Spectral Radius

Proof. By Lemma 2.4,

o(G,x) = (G — urug, ) — (G —u; —ug,x) — 2 Z o(G — Vg, x).
cec., (@)

Applying Lemma 2.4 again,

o(G —ujug, ) = (G — urus — v1v2, ) — (G — uyus — V1 — Vo, T),

@(G—Ul —u273«") :W(G—Ul —uz—v1v27$)—¥’(G—U1 — Up — V] — V2, T).

Thus,
0(G,x) = o(G — urug — V12, 7) — (G — uruz — v1 — V2, ) — (G — Uy — ug — V12, )
+o(G —uyp —ug — vy — v, x) — 2 Z (G = Ve, ).
cec., (G)
Note that

G — uiug — 1192 = G1 UGo,

G—uy —us—v1 —v2 2 (G —uy —uz) U (Gy — vy — va),
(G1 —u1) U (G2 — ua),

(G1 —v1) U (G — va).

1%

G —up — ug — v U2

(o™

G7u1u2 — V1 — V2
Hence, by Lemma 2.3

(G, 7) = p(G1U G2, 7) — p((G1 —v1) U (G2 — v2),7) — p((G1 — u1) U (G2 — uz), 7)
+o((G1 —up —uz) U (G2 — vy —v2),2) — 2 Z (G = Ve, x)
CeCe, (G)
= 0(G1,7)p(G2,7) — p(G1 — u1,2)p(G2 — u2, ) — p(G1 — v1,2)p(G2 — v2, )

+o(Gr —ur —v1,2)p(Gy —uz —v2,2) =2 Y 9(G =V, ).
cec., (G)

3. Some technical lemmas on the roll-attaching operation. In this section, we present a few
technical lemmas. First we introduce a roll-attaching operation on the octagonal chains as follows. Let
k € {e, 8,7, B,a}, then define k as

a, iftk=c¢;
B8, itk =2;
k=< v, ifk=m;
0, itk=20;
e, ifk=a.

We call k the rolling of k. Given an octagonal chain G,, = 0105 ---0,, = yYks -+ -kp, B = 0;0i11---Op
is an octagonal subchain of G,,. We also set B = k;k;11 -+ ky, (where k1 = ko =« if ¢ = 1) and denote the
rolling of B by B = kiki,1-- - k,. Hence, G,, = yYks - - - k,, is the rolling of G,,. Obviously, G,, is isomorphic
to Gy,.
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Suppose G, = 0105 ---O,, = yyk3 - - - ky is an octagonal chain. Let A = 0105 ---O;_o = yyks - k;i_o
and B = 0;0;41 - Oy, = kikiy1 - - kn. Let e,_o = pq (respectively e;_; = rs) be the common edge of O;_»
and O;_; (respectively O;_1 and O;). Then

e (G, can be regarded as an octagonal chain obtained from A by attaching O;_; through a k;_; join
and then from O10; - --O;_1 by attaching B through a k; join. Label the vertices of Vo, , \ Vo,_,
by a,b,c,d, e, f in a clockwise direction. One can see that if k; = «, then denote the resulting graph
by G¢. If k; = 3, then denote the resulting graph by GZ. If k; = ~, then denote the resulting graph
by G7. If k; = 6, then denote the resulting graph by G9. If k; = ¢, then denote the resulting graph
by G¢. Graphs G, G2, G7, G° and G¢, are depicted in Figure 4;

e define the roll-attaching operation on G,, with respect to B as follows: attach the rolling B of B to
AO;_1 = yyks---k;—1 by K} join. It is easy to see that the resulting octagonal chain obtained by
this roll-attaching operation can be written as yvks - - - k;_1klki11 - - - ky, where k! € {a, 8,7, 0,¢}. If
k! = o, then denote the resulting graph by G¢'. If k/ = 3, then denote the resulting graph by G&.
If k! =+, then denote the resulting graph as G7. If k| = 6, then denote the resulting graph by G2 .
If k; = e, then denote the resulting graph by Gfll. Graphs Gg/, Ggl, GZ', Gf; and Gfll are depicted
in Figure 4.

IS

’ ’ / ’ ’
FIGURE 4. Graphs G, GE, G, G2, GE, and G, G5 , G, G8', G2

In what follows, we consider the octagonal chains in G, with n > 3. Our first lemma gives conditions
under which we can replace an « join by a 3 join and decrease the spectral radius.

LEMMA 3.1. Let G%/ = Ak;_1akiy1 -k, and G;BL = Ak;_18kiy1---ky as depicted in Figure 4. If
P(A —q,p(G))) < o(A—=p,p(Gh)), then p(Gs) > p(G}).
Proof. By Lemmas 2.4 and 2.8,

P(Gy  x) = p(A,x)[(a* = 32” + 1)p(B,x) — (¢® - 22)p(B — 1,7)]
+9(A—p—q,2)[(z* = 22)p(B — s5,2) — (% = 1)p(B — 7 — s,2)]
—(A—p,2)[(z* =322 + (B — s,2) — (2% — 22)p(B —r — 5,1)]
—p(A =g, 2)[(2° = 22)p(B,x) — (¢ = 1)¢(B —r,7)]

(3.3) -2 > (G~ Ve,x)
CECYs (G2
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and

p(Gh,7) = (A, 2)[(a* — 22%)p(B, z)
— (2% = 22)p(B —r,x) — (2* —2)p(B — s,2) + (2* — 1)p(B — r — 5,1)]
+@(A—p—q,2)[(2? = (B, x) — xp(B — 5,7)]
(A—p,2)[(z* - 22)p(B,z) — (¢* = 1)p(B — 5,2)]
(A—g,2)[(z° = 2)p(B,z) — (2* = 1)p(B —r,2)
22

o(B—s,z)+xp(B—1—382)]—2 Z o(G8 — Vo, z).
C€Cpa(Gh)

(3.4)

Comparing equations (3.3) and (3.4), using Cps(G') = Cpa(G2), yields

Yoo~V = Y e(Gh Vo).

CGCPS(G%/) Cecpa(Gg)
Hence,
p(Gy,7) — 9(Gh,x) = —[(2” = D)p(4,2) — (2° - 22)p(A - p, )

+(2? = D)p(A—p—q,z) — 20(A— q,z)]
X[‘P(Bvx) - fSD(B - ?",.’E) + QO(B —-r—= va)}

For convenience, let p(G2) = p. Since ¢(A — q,p) < ¢(A — p,p) and p > 2, then (p* — 2p)(0(A — p,p) —
¢(A —gq,p)) = 0. Hence, (p° — 2p)p(A —p,p) + pp(A = q.p) = (p° — p)p(A — g, p). Note that

©(A,p) —pp(A—q,p) +o(A—p—q,p) <0, @(B,p)—pp(B—r,p)+ @B —r—-s,p)<0.

Hence,
0(GS,p) — 9(GE,p) = — [(* — 1)p(A, p) — (> — 20) (A — p, p)
+(p* = De(A—p—q,p) — pp(A—q,p)]
x [p(B,p) — pp(B —1,p) + (B —1—s,p)]
— (P = D)p(A,p) — pp(A—q.p) + p(A—p—q,p)]
x [p(B,p) = pp(B —1,p) + (B —r—s,p)] <0.
Thus, (G2, p) < ¢(GE, p) and by Lemma 2.6, p(G®) > p(GP). 0

Lemma 3.2 gives conditions under which we can replace an « join by a 7 join and decrease the spectral
radius.

LEMMA 3.2. Let G% = Aki_loéki+1 s kn, G%/ = Aki_loé];ii_;_l s En and GZL = Aki—l'}/ki-&-l e kn as
depicted in Figure 4.

(i) If (A —q,p(G})) < p(A —p,p(G})) and (B — 1, p(G})) < (B = s,p(G})), then p(Gy) > p(G7).
(ii) If o(A = q,p(G})) < p(A = p,p(G})) and o(B —1,p(G))) > ¢(B — s,p(G})), then p(GS ) > p(G})).

n
Proof. For convenience, denote p(G7) by p.
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(i) By Lemmas 2.4 and 2.8,

p(Gh. ) = p(A,2)[(a" = 32 + 1)p(B,2) — (27 — 22)¢(B — 5,2)]
+o(A—p—q,2)[(z° = 20)p(B — ) — (z° = 1)p(B —r — 5,2)]
—p(A —p,x)[(z* = 322 + 1)p(B — r,z) — (2% — 22)p(B — r — 5,2)]
—p(A = g, 2)[(2® = 22)p(B,x) — (¢ = 1)p(B — s,7)]

(3.5) -2 > Gy =V, )
CeCpr(GY)

p(Gh.a) = p(A,2)[(z" — 20 + 1)¢(B,x) — (2° — 2)p(B —r,7)
— (23 — 2)p(B — s,2) + 22p(B — 1 — s5,1)]
+o(A—p—q,2)[z°0(B,x) —2p(B — 5,2) — 2p(B —r,2) + ¢(B — 1 — 5,7)]
—p(A = p,2)[(a° - 2)p(B,z) — (2° — 1)p(B —r,x)
—2%90(B — s,2) + xo(B — 1 — 5,2)]
—p(A = g, 2)[(2° — 2)p(B,x) — (¢ = 1)¢(B — s, )

(3.6) —F2?o(B —r,2)p(B—7r—s,z)] — 2 o(G) — Vo, ).
CECpa(Gr)

Note that C,(GS) = Cpa(GY). Then compare (3.5) with (3.6),
Yo G =Ve,x)= Y (G- Vo).
C€Cyr(G2) CeCpa(Gr)

Hence,

p(Gh, ) — (G, x) = —[1*p(A,2) — (2 — 2)p(A —p, )
+2%p(A—p—gq,2) — xp(A - q,7)]
X[@(va) - m(p(B —’I”,.’l?) +<p(B -r-= S,Q?)]
—z[p(A,x) —ap(A —p,x) + 9(A—p—q,2)]
(3.7) x[p(B —rx) — (B —s,z)].
Bearing mind that (A — ¢, p) < ¢(A — p, p) and by Lemma 2.5,
(0* = p)e(A—=p,p) + po(A—q,p) = p*p(A —q,p),

(B, p) = pp(B —1,p) + (B —1—s5,p) <0.
Thus,

P(Gy,p) — (G, p) < = P[4, p) — pp(A = g, p) + 9(A = p — ¢, p)]
x [p(B,p) — pp(B —1,p) + (B —1—s,p)|
— plp(A, p) — pp(A —p,p) + ©(A—p—q,p)]
[p(B —r,p) —@(B = s,p)].

X
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Combining Lemma 2.5,

©(A,p) = pp(A—p,p) +9(A=p—0q,p) <0, @(Ap)—pp(A—q,p)+¢(A—p—q,p) <0.
Note that (B —r, p) < ¢(B — s, p). Hence, we get o(G2%, p) < ©(G7,p). By Lemma 2.6, p(GS) > p(GY)).
(ii) Note that CpS(G,‘;‘/) = Cpa(GY)). Then combining (3.3) and (3.6) yields
(G 7) = 9(GY2) = —alap(A,2) = (2® — 1)p(A = p,2) + 29(A —p — g,)
_QO(A - q,x)} X [@(va) - "EQD(B - 871‘) - SD(B -r—= S7$)]
—[zp(A,2) = (2% = Dp(A - p,z) + 2p(A —p = q,2)
—p(A—qz)] X [p(B —s,2) — p(B —r,z)].

Note that (A — q,p) < (A —p,p) and p > 2. Hence, (p* — 1)(p(A — p, p) — p(A — q, p)) = 0, that is,
(0* = D)p(A=p,p) + o(A = q,p) > p*0(A — q,p).
Together with Lemma 2.5,
P(Ap) = pp(A—q,p) +9(A=p—q,p) <0, ¢(B,p) = pp(B—s,p) —¢(B—r—s,p) <0.
Hence, by o(B — 1, p) > (B — s, p),

P(Gy,p) — (G, p) < = P°[(A; p) = pp(A = ¢, p) + (A —p — g, p)]
x [p(B,p) — pp(B —s,p) + (B —r—s,p)]
— plp(A 79)—pw(A—q,p)w(A—p—q,p)]
X [p(B —s,p) — (B —r,p)] <0.

According to Lemma 2.6, p(G2) > p(G7). 0

Lemma 3.3 gives conditions under which we can replace an « join by a ¢ join and decrease the spectral
radius.

LEMMA 3.3. Let G% = Aki,lakHl s ]ﬂ»,“ G%/ = Aki,lal;i+1 s En and Gfl = Akifléki+1 -k, as de-
picted in Figure 4.

(i) If (A —gq,p Gg P(A —p,p(Gp)) and (B ity Gi)g —5,p(G3)), then p(G) > p(G?).
(i) If (B —r, p(G°, B —5,p(G?)), then p(G% ) > p(G2).
Proof. For convenience, denote p(G?) by p.

(i) By Lemmas 2.4 and 2.8,

0(G),7) = p(A,2)[(2* = 22°)p(B,z) — (2" = 22)p(B — 5,2) — (z° = 2)p(B — 1, )
+(@? = 1)p(B =1 = s,2)] + p(A —p - q,2)[(2® = D)p(B,x) — 2p(B - r,z)]
—p(A—p,2)[(z° — 2)p(B,x) — (+* = 1)p(B — s,2) — 2°p(B — r,x)
+rp(B =1 —s5,2)] — p(A — g, 2)[(2° — 22)p(B,x) — (¢ = 1)¢(B —r,7)]
(3.8) -2 > (G~ Vo).

CeCpa(Gy)
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Note that C,,.(GS) = Cpa(G?). Hence, in view of (3.5) and (3.8),
0(Gy2) — (G, ) = = (2° = (A, ) — wp(A = p,z) + p(A —p — q,2)]
x [o(B,z) —xp(B —r,x)
+o(B—r—s2)]— (2" = 1)[p(A - q,2) — p(A - p,)]
X [p(B —r,x) — p(B—s,x)].
Combining Lemma 2.5 yields

(A, p) = pp(A—=p,p) +9(A=p—q,p) <0, @(B,p)—pp(B—7,p)+ @B —r—sp) <0.
Notice that (A — g, p) < ¢(A —p, p), (B —7,p) < p(B —s,p) and p > 2. Hence, p(G5, p) < ¢(Gy, p). By
Lemma 2.6, p(G%) > p(G?).

(ii) Put A == o(G¥, x) — p(GY, ). Note that Cps(G2) = Cpa(G?). Hence, in view of (3.3) and (3.8),
we get
A =(1—a?)[p(A,2) —2p(A—p,x) + p(A—p—q,2)]
X [p(B,x) —wp(B —s,2) + o(B -1 —s,2)]
—z[p(A,z) —zp(A—p,x)+ (A —p—q)][p(B—sz) - 9B -ruz)

By Lemma 2.5,

©(A,p) — pp(A—p,p) + e(A—p—0q,p) <0, @(B,p)—pp(B—s,p)+¢(B—r—s,p) <0.
According to p(B —1,p) > p(B — s, p) and p > 2, p(G¥, p) < p(G?, p). By Lemma 2.6, p(G%) > p(G?).0O
Lemma 3.4 gives conditions under which we can replace an « join by an ¢ join and decrease the spectral
radius.
LEMMA 3.4. Let G% = Aki,lakHl s kn, G%, = Aki,la/_cwrl s ];:n and GZ = Aki,1€ki+1 -k, as de-
picted in Figure 4.
(i) If (A —q,p(G3)) < (A —p,p(G)) and o(B —1,p(G5)) = ¢(B — 5, p(G5)), then p(GS) > p(G?).
() 2f o(A — 4, p(G3)) < (A —p, p(G3)) and (B — 1, p(G5)) < @(B — 5, p(G3)), then p(Ga') > p(G=).
Proof. For convenience, denote p(G%) by p.
(i) By Lemmas 2.4 and 2.8,
p(Groa) = o(A, ) [(z" =32 + 1)p(B,x) — (2° — 22)p(B — r,2)]
+p(A—p—gq,2)[(z° = 22)p(B = s,2) — (2* = 1)p(B =1 — 5,2)|

—p(A —p,z)[(z* - 22)p(B,z) — (2> = 1)p(B — r, )]
—p(A = q,2)[(z* = 322 + 1)p(B — 5,2) — (2° — 22)p(B — 1 — s5,2)]

(3.9) -2 > (G, = Ve, ).
CECpa(GS)
Note that Cp (GS) = Cpo (GS). In view of (3.5) and (3.9),
p(Gh,2) — (G5 ) = —(2° — 22)[p(4, él?) +¢(A—p—q)][p(B—sz)—@(B-rmz)
+(z® = 22)p(A — p,2) (B, ) zp(B—71,2) + (B —r1—5,1)

(
~(a* —2w)<P(A—q, 2)p(B.x) — wp(B - 5,2) + p(B -1 — 5,2)).
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By Lemma 2.5, ¢(B, p) — pp(B — s,p) + ¢(B —r — s, p) < 0. Together with ¢(A — ¢, p) < ¢(A — p,p) and
p> 2,

p* —2p)[e(A,p) + (A —p—q,p)le(B—s,p) —p(B—rp

3

e(Gh,p) —p(GF,p) < ) )]
p° = 2p)p(A —q,p)lp(B, p) — pp(B —r1,p) + p(B —1 —5,p)]
)e( )]

)]

+ (
p° = 2p)p(A = q,p)p(B,p) — pp(B — 5,p) + ¢(B =1 —5,p
p* = 2p)[0(A, p) + 9(A—p—q,p)l[p(B = s,p) —p(B—r,p
p*t = 2p")p(A =g, p)[e(B = s,p) — p(B —1,p)]

p* = 2p)[0(A, p) — pp(A = ¢, p) + 9(A = p — ¢, p)]

[p(B = s,p) — (B —1,p)].

_l_

—(
(
—(
—(
(
—(

X

Combining Lemma 2.5 yields ¢(A, p) — pp(A—gq, p)+@(A—p—gq,p) < 0. Note that ¢o(B—r,p) = p(B—s,p)
and p > 2. Hence, we get ¢(G%,p) < p(G%, p). By Lemma 2.6, p(G%) > p(G%).

(i) Note that Cps(G2) = Cpa(GZ). In view of (3.3) and (3.9), we get
PGy 7) = 9(Gh2) = ~[p(A — g,2) = p(A — p,a)]
x[(x® = 22)p(B, z) — (z* — 32° + 1)p(B — s, )
+(2® —22)p(B —r —s,2) — (2% — 1)p(B —r,z)].
Note that (B —r,p) < (B — s,p) and p > 2. Hence,

(p* = 3p* + 1)(@(B = s,p) — (B —r,p))
=[p*(0* = 1)+ p* + 1J(p(B = 5,p) — (B — 1, p))
>0,

that is,
(p* = 3p" + 1)p(B — s,p) + (p> = 1)p(B —1,p) > (p* — 2p°)p(B —1,p).
As 9(A—q,p) <p(A—p,p) and p > 2,

PG p) — 0(G5,p) < —(p* = 2p)[0(A — q.p) — 0(A — p, p)][@(B, p) — pp(B — 1, p) + (B —r — s, p)].

Note that (B, p) — pp(B —r,p) + @(B — 1 — 5,p) < 0. Then o(G¥,p) < ¢(GS,p). By Lemma 2.6,
PGy ) > p(GR). 0

Lemma 3.5 gives conditions under which we can replace a v join by an « join and increase the spectral
radius.

LEMMA 3.5. Let G = Aki_1vkiz1 - kn, Gl = Aki_17kiy1 -k and G = Aki_yakiyr -k as de-
picted in Figure § with A= A. Then p(GY) < p(G®) if o(B—r, p(G7)) < @(B—s,p(G2)) and p(GY) < p(G%)
otherwise.

Proof. As A= A, it is obvious that ¢(A — q,7) = p(A — p,z). Let p(G}) = p. By Eq. (3.7)
p(Gh ) = 9(G ) = —2?[p(A,2) — (v = D)p(A = p,2) + (A —p — ¢, 2)
730(*4 - an)] X [CP(B"T) - IQD(B - ‘T) + SD(B —-r-= S,I)}

—[p(A, ) — 2p(A = p,x) + (A —p —q,7)]
X[p(B—=r,2)—p(B—s,x)].
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Note that (A — ¢, z) = p(A — p,z). Hence,

oG, p) — (G, p) = — p*lp(A, p) — po(A—p,p) + ©(A—p—q,p)]
X [p(B,p) — pp(B —1,p) + (B —1—s,p)]
—ple(4,p) — pcp(A —p,p)+p(A—p—q,p)]
X [p(B —r,p) — (B —s,p)].

According to Lemma 2.5,

©(A,p) —pe(A—p,p) +0(A—p—q,p) <0, @(B,p)—pp(B—r,p)+pB—r—-s,p) <0.

If o(B —r,p) < ¢(B — s,p), then together with p > 2, p(G%,p) < (G, p). By Lemma 2.6, the result
p(GS) > p(G}) holds.

Next we consider (B —r,p) > ¢(B — s, p). By Lemmas 2.4 and 2.8,

(G ) = (A, 2)[(z* — 20" + 1)p(B,z) — («° — 2)p(B — 1,2)
—(2® —2)p(B — 5,2) + 22p(B —r — 5,1)]
(A= p— g, 0)e0(B,x) — 29(B — 5,2) — 2p(B — 1,7)
(B =1 — 5,2)] — 9(A— p, )|z — 2)p(B,2) — (4% — 1)p(B — 5,)
—2%0(B —r,x) + xp(B — 1 — 5,2)]
(A= g, 0)[(z — 2)p(B, ) — (2* — V(B —1,2)

(3.10) —2%¢(B — s,x) + 2p(B — 1 — 5,1)] — 2 Z o(GY — Ve, z).
CE€Cpa(GY)

Note that Cpr(G2) = Cpa(G). Hence, in view of (3.5) and (3.10),

#(Gr2) = @(GY ) = = (A, 0)ap(B,x) = (2 = 1)p(B —r,2)
+xzp(B—1r—s,x)— (B —s,1)]
—2p(A—p—q2)zp(B,2) - (2> — 1)p(B — r,z)
+xp(B—1r—s,2)— @B —s,z)]

+ (2% = Dp(A = p,2)[wp(B,z) — (2* = 1)p(B — 1, z)
+xzp(B—1r—3s,x)— (B —s,1)]

+¢(A = q,2)[zp(B, 2) — (2% — (B —r,2)
+axzp(B—1—s,2)— (B —s,z)].
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Since p(A — ¢, x) = (A — p, ),
@(szr) - SD(G;YZI7‘/L.) = !E(,O(A,LL‘)[!E(,O(B,{L‘) - ($2 - 1)90(3 -7 CL')
+zp(B—r1—s,z)— (B —s,z)
—2p(A —p—q,2)[rp(B,x) — (z* = 1)p(B - r,z)
+m<P(B -Tr—= S,Z‘) - @(B - S,l‘)]
+2%0(A = p,x)[zp(B, x) — (¢* = 1)p(B - r,x)
+xp(B—r1—s,z)— (B —s,z)
=—z[p(4,2) —zp(A —p,z) + (A —p —q,7)]
x [zo(B,z) — (% — 1)p(B —r,z)
+xzp(B—1r—s,2) — (B —s,z)].
Note that (B —r,p) > ¢(B — s, p). Hence,
(0* = D)p(B =1, p) + (B —5,p) > p*p(B — 5, p).
By the condition A2 A, p(G2) = p(G2) = p(G2) = p. According to Lemma 2.5,
(A, p) = pp(A—p,p) +9(A—p—q,p) <0,
@(B,p) — pp(B —s,p) +p(B—1—15,p) <O0.
As p> 2,
0(Gp) = 0(Gy . p) < — p*[(A, p) — pp(A = p,p) + (A —p—q,p)]
x [p(B,p) — pp(B = s,p) + (B =1 —s,p)] <0,
Hence, p(G2, p) < o(GY,p), i.e., o(G%, p(G1)) < (G2, p(GY')) and then p(GY) < p(G2). O

Lemma 3.6 gives conditions under which we can replace a - join by a 8 join and increase the spectral
radius.

LEMMA 3.6. Let G} = Ak;_17vkiy1---kn and G,ﬁl = Ak;_1Bkiy1 - kn as depicted in Figure 4. If A= A,
then p(Gy) < p(Gp).

Proof. Note that Cpe(G2) = Cpa(G) and p(A — p, ) = ¢(A — g, ). Hence, in view of (3.4) and (3.6),

(Gl x) — (G, 2) = —[p(A,z) —2p(A—p,x) + p(A—p—q,2)|[p(B,z) —xp(B —r,2)+ p(B—r—s,z)|.

Denote p(G}) by p. By Lemma 2.5,
0(A,p) = pp(A=p,p) +9(A=p—0q,p) <0, @(B,p)—pp(B—r.p)+p[B-r=sp) <0
Then (G2, p) < (G2, p). And by Lemma 2.6, the result p(G}) < p(G2) holds. 0

Lemma 3.7 gives conditions under which we can replace a - join by a ¢ join and increase the spectral
radius.

LEMMA 3.7. Let G} = Ak;_1vkiy1---kn and Gfl = Ak;_10k;y1 -k, as depicted in Figure 4. If A= A,
then p(G) < p(GS).
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7. Together with A = A, G =~ G;BL/ and C;'Z/ = G). By
Lemma 3.6, we get p(Gh) > p(G3) and p(G) > p(Gy). Thus, p(GS) = p(G3) = p(GL) > p(GY) =
p(GY) = p(GY), as desired. |

Proof. Note that G =~ G9 and G =~ G

Lemma 3.8 gives conditions under which we can replace a v join by an € join and increase the spectral
radius.

LEMMA 3.8. Let G:{L = Akifl’ykprl s kn, G;Yl/ = Aki,17];3i+1 cee ]_fn and Gi = Akiflﬁkprl -k, as de-
picted in Figure /. Suppose A = A, then p(GY) < p(GS) if p(B — r,p(GY)) < ¢(B — s,p(GY)) and
p(GY) < p(G%) otherwise.

Proof. Note that G5 = G¢. Hence, together with A = A one has G5, = G2 Assume, without loss of
generality, that (B —r, p(G7)) < ¢(B — s,p(G?)). Then by Lemma 3.5, p(G%) > p(G}). According to the
structure of G and G2 (respectively G7 and '), under the condition ¢(B — s, p(G7)) < @(B —r, p(G)),
the result p(G2) > p(GY) is equivalent to p(GS') > p(Gy). Hence, p(G%) = p(GZ) = p(G) > p(GY), as
desired. |

4. Proofs of our main results. In this section, we determine the graph with the maximum (respec-
tively minimum) spectral radius among all octagonal chains in G,,.

Proof of Theorem 1.1. We know Gy = Ly = Z} = Z? = H} = H? and Gy = Ly = Z3 = Z3 = H} = H3.
Then in order to complete the proof, it suffices to consider the case n > 3.

Let G, = vvk3-- -k, be an octagonal chain with the maximum spectral radius in G,,. We show G,

1R

H! = vya---a or G, = H} = yye---c. Note that yya---a = yye---c. Here, we only show G,
H! = yya---a. Suppose to the contrary that G,, % H}. Denote by k; the first element of k3, ky, ..., ky,
such that k; € {3,7,9,¢}. Let A = ky---k;_o and B = k;---k,. Note that A = H! ,. Denote by
pq the common edge of O;_5 and O;_1 and rs the common edge of O;_1 and O;. Then by Lemma 2.7,
(A —q,p(Gn)) < p(A—p,p(Gr)).

If k; = B, then G,, = yya---afkit1 -k, Let G, = yya---aakiiy---k,. By Lemma 3.1, p(G,,) <
p(G?,), which contradicts the choice of G,,.

If k; = ~, then G,, = yya -+ - avykiy1 - - kn. Let

Gl =vyya---aakii,--k, and G =~vyya---ackiiy k.

By Lemma 3.2, we know that if o(B—r, p(G,)) < ¢o(B—s, p(Gy)), then p(G,) < p(G.); if o(B—r, p(G,)) >
©(B — s,p(Gy,)), then p(G,) < p(Gl), a contradiction.

If k; = 0, then G, = yya - - - adkiy1 - - ky. Let

G =vyya---ackiii---k, and G =~yya---ackiii---ky.

By Lemma 3.3, we know that if o(B—r, p(Gy,)) < ¢(B—s,p(Gy)), then p(G,,) < p(GL); if o(B—r, p(Gy)) >
o(B — s, p(Gr)), then p(G,) < p(Gl), a contradiction.

If k; = ¢ with i = 3, then G,, = yyeky---k, and A = 7. Note that A = A = . Then we consider
the graph G,, = yyaky---k,. Denote by k; the first element of ky,...,k, such that k; € {B,7,6,¢}. Let
A" = ~yyaky - kj_ and B' = kj - - - k,. Note that A’ = H}_Q. Denote by p'q’ the common edge of O;_» and

O;_1 and 7's’ the common edge of O;_; and O;. Then by Lemma 2.7, o(A’ — ¢, p(G,)) < (A" —p', p(Gy)).



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society I I

Volume 34, pp. 356-372, August 2018.

371 Extremal Octagonal Chains With Respect to the Spectral Radius

Note that k; € {B,7,6, e}. Hence, by Lemmas 3.1-3.4, there exists another graph G, in G, such that

p(Grn) = p(Gy) < p(Gh), a contradiction.

If k; = ¢ with i > 4, then G,, = yya---aek;y1 -k, and A = H} , contains at least two octagons.
Then by Lemma 2.7, p(4A — q,p(Grn)) < 9(A — p,p(Gr)). Let G, = yyo---aakiyr -k, and G =
yya- - aakiyy -k, By Lemma 3.4, we know that if (B — 7, p(G,)) < ¢(B — s,p(Gr)), then p(G,) <
p(G"); if (B — 1, p(Gr)) > ¢(B — 5,p(Gy)), then p(Gr) < p(G),), which contradicts the choice of G,,.

Hence, G,, = yyaa - - - a, that is, the helix chain H} maximizes the spectral radius among G,,. 0

Proof of Theorem 1.2. We know that G; = L1 = Z = Z? = H{ = H? and Gy = Ly = Z3 = 73 =
H21 = H22 Thus, it suffices to consider the case n > 3. Let G,, = yyks - - - k;, be an octagonal chain with the
minimum spectral radius in G,,. We show G,, & L, =~vy---7.

Suppose to the contrary that G,,  L,. Denote by k; the first element of ks, ky, ..., k, such that k; # ~,
ie. Gy = vy - vkikiy1- - kn, where k; € {a,8,9,e}. Let A =Fky---ki—o and B = k;---k,. Note that

A = A. Denote by pq the common edge of O;_s and O;_; and rs the common edge of O;_; and O;.

If k; = @, then G,, = yy---yakiy1 - kn. Let G, = yy---yvkit1---ky and G” = vy yykiy1 - kn.
By Lemma 3.5, we know that if o(B—r, p(G))) < o(B—s, p(G.,)), then p(G,) > p(G.); if o(B—r,p(G))) >
©(B — s,p(G),)), then p(G,) > p(G1), which contradicts the choice of G,,.

If k; = B) then G,, = Y- "Yﬁki-i-l -+ ky,. Let G{n =yy--- 'Y'Yki+l vk By Lemma 3.6, we know that
p(Gy) > p(Gl), a contradiction.

If k; =9, then G,, = vy vOkiy1 -+ kn. Let GI, = vy -+ yykit1 - - kn. By Lemma 3.7, we know that
p(Gr) > p(G),), a contradiction.

If k; = ¢, then G, = vy ---vekip1 - kn. Let G)) = yy---yykiy1--kn and G = vy ---yYkiz1 - kn.
By Lemma 3.8, we know that if o(B—r, p(GL)) < ¢(B—s,p(G%,)), then p(G,) > p(G2); if o(B—r, p(GL)) >
o(B —s,p(GL)), then p(Gy,) > p(Gl), contradiction.

Hence, G,, = vy - -7, that is, the line chain L, attains the minimum spectral radius among G, . 0
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