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A CONTRIBUTION TO COLLATZ’S EIGENVALUE INCLUSION
THEOREM FOR NONNEGATIVE IRREDUCIBLE MATRICES∗
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Abstract. The matrix calculus is widely applied in various branches of mathematics and control
system engineering. In this paper properties of real matrices with nonnegative elements are studied.
The classical Collatz theorem is unique and immediately applicable to estimating the spectral radius
of nonnegative irreducible matrices. The coherence property is identified. Then the Perron–Frobenius
theorem and Collatz’s theorem are used to formulate the coherence property more precisely. It is
shown how dual variation principles can be used for the iterative calculation of x = X[A] and the
spectral radius of A, where x is any positive n-vector, X[A] is the corresponding positive eigenvector,
and A is an n × n nonnegative irreducible real matrix.
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1. Introduction. Let N = {1, 2, . . . , n}, A = (aij) be an n× n irreducible non-
negative matrix, x = (x1, x2, . . . , xn)t be any positive n-vector, fi(x) = (Ax)i/xi ≡∑n

j=1 aijxj/Xi,(i ∈ N), m(x) = mini∈N fi(x), and M(x) = maxi∈N fi(x). Collatz’s
eigenvalue inclusion theorem [6], refined by Wielandt [21], together with the Perron–
Frobenius theorems, is a classic part of the theory of nonnegative matrices.

Theorem 1.1. The Theorem of Collatz and Wielandt. The spectral radius
Λ[A] of the nonnegative irreducible matrix A satisfies either

m(x) < Λ[A] < M(x)(1)

or

m(x) = M(x) = Λ[A](2)

for any x > 0. (If (2) holds, then x is of course a positive eigenvector of A corre-
sponding to the eigenvalue Λ[A].)

We will refer to any interval (κ, µ), where κ = m(x), µ = M(x) for some positive
x, as an “inclusion interval.”

Collatz’s theorem is immediately applicable to estimating the spectral radius
Λ[A]. A sharper estimate or specialization of (1) has been developed by many math-
ematicians ([3], [12], [15], [17], [18], [19]).

Another important application of Collatz’s theorem comes from the following
observation. Let P denote the set of positive vectors with unit l1-norm. By the
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Perron–Frobenius theorem and Collatz’s theorem, the positive eigenvector X [A] ∈ P
and Λ[A] are solutions of the following minimax and maximin principles:

Λ[A] = max
x∈P

m(x) = min
x∈P

M(x),

where the extreme values are achieved only if x = X [A]; see [20]. It will be shown in a
later paper how these dual variation principles can be used for the iterative calculation
of x = X [A] and Λ[A]. Such an application is in part based on the fact that m(x) and
M(x) are not independent if x ∈ P is required. In fact, Collatz’s theorem suggests
that, if one of these two quantities is close to Λ[A], so is the other one. We may refer
to this as the “coherence property” of m(x),M(x) (or of the fi(x)). The purpose of
this paper is to formulate the “coherence property” more precisely.

The main result will define the precise set of all possible {m(x),M(x)} pairs for
x ∈ P . As a corollary it will be established that, if any of the quantities M(x) −
Λ[A],Λ[A]−m(x) converges to 0 (x ∈ P ), then ||x −X [A]|| converges to 0 with the
same speed. (|| · || will denote in this paper the l1-norm.)

2. Estimates of the Inclusion Intervals. The following lemma is fundamen-
tal.

Lemma 2.1. Let S = {xj} denote any sequence in P . If S has no accumulation
point in P , then

lim
j→∞

M(xj) = +∞.

Proof. Since the closure P is compact, S has an accumulation point y on the
boundary of P . Thus, yi ≥ 0 (i ∈ N) and the index set Z = {i ∈ N |yi = 0} is not
empty.

Since ||y|| = 1, N\Z is not empty either. Because A is assumed nonnegative
irreducible, there is an r ∈ Z, S ∈ N\Z such that ars > 0.

Let S′′ = {xσ(j)} denote a subsequence of S converging to y. Then

[xσ(j)]r → yr = 0, [xσ(j)]s → ys > 0(3)

as j → ∞. For nonnegative A = (ajj), fr(x) ≥ arr + ars
xs

xr
. Therefore, by (3),

fr(xσ(j)) → +∞ as j → ∞ and thus M(xσ(j)) → ∞. Hence, +∞ is an accumulation
point of any subsequence of {M(xj)} and therefore M(xj) → ∞.

The next theorem will specify an upper bound for a chosen ratio fk(x) if a common
lower bound of all other fi(x) is given and vice versa.

Birkhoff and Varga [2] observed that the results of the Perron–Frobenius theory
(and consequently also Collatz’s theorem) could be slightly generalized by allowing
the matrices considered to have negative diagonal elements. They introduced the
terms “essentially nonnegative matrix” for matrices whose off-diagonal elements are
nonnegative and “essentially positive matrix” for essentially nonnegative, irreducible
matrices. The only important change is that, whenever the Perron–Frobenius theory
or Collatz’s theorem refers to the spectral radius of a nonnegative matrix A, the
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corresponding quantity for an essentially nonnegative matrix Ã is the (real) eigenvalue
of the maximal real part in the spectrum of Ã, also to be denoted by Λ[Ã]. Of course
Λ[Ã] need not be positive and it is not necessarily dominant among the eigenvalues in
the absolute-value sense. The term X [Ã] will always denote the positive eigenvector
of the unit l1-norm of an essentially positive matrix Ã.

A = (aij) will henceforth denote an essentially positive matrix and A(k) its
(n − 1)st-order submatrix associated with akk, and νk = Λ[A(k)]. By a theorem
of Frobenius [10],

λ ≡ Λ[A] > Λ[A(k)] ≡ νk

(see also [20], p. 30; [11], p. 69; and [9]).
Theorem 2.2. Let k ∈ N and µ > νk.
(i) The system of n− 1 equations

fi(x) = µ for all i 
= k(4)

has a unique solution x = gk(µ) in P and

fk[gk(µ)] = akk + pt
k(µI −Ak)−1qk

def= θk(µ).1

Note: pk is the matrix constructed from the kth row of matrix A after deleting akk,
qk is the matrix constructed from the kth column of matrix A after deleting akk, and
A(k) is the matrix constructed from A by deleting row and column k.

(ii) If x ∈ P and fi(x) ≥ µ (≤ µ) for each i 
= k, i ∈ N , then

fk(x) ≤ θk(µ) (≥ θk(µ))

and fk(x) = θk(µ) holds only for x = gk(µ).
(iii) The function θk(µ) is analytic and decreasing in (νk,∞) and

θk(λ) = λ,(5)

θk(µ) =→ akk as µ → ∞,(6)

θk(µ) =→ +∞ as µ ↓ νk.(7)

Proof. (i) It may be assumed without loss of generality that k = n. Then A has
the partitioned form

A =
[
B q
pt ann

]
,

1Since it is clear from the context, the orders of identity matrices and of zero matrices will not be
indicated. Thus, identity matrices of all orders will be denoted by I and rectangular zero matrices
of all orders will be denoted by 0.
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where B ≡ A(n), p ≡ pn ≥ 0, and q ≡ qn ≥ 0.
Moreover, pn 
= 0, qn 
= 0, for, otherwise A would become reducible. Suppose

that µ > νn.
Let x = [x1, x2, . . . , xn]t satisfy (4) with k = n. We note that in this case

xn cannot vanish. The vector y formed from the first n − 1 components of x then
satisfies

By + xnq = µy.(8)

By a result of Frobenius (see [10]), the matrix µI −B has a nonnegative inverse
if B ≥ 0 and µ > Λ[B]. It has a positive inverse if in addition B is irreducible (see
also [11], p. 69, and [9]). Consequently, (8) has the nonnegative solution

y = (µI −B)−1q, xn 
= 0, so it can be set that xn = 1.(9)

We will show that y is actually a positive vector.
If A(n) is reducible, then there is a permutation matrix P to bring it into the

lower block triangular form

PBP t =



G11 0 0 . . . 0
G21 G22 0 . . . 0
. . . . . . .

Gk1 Gk2 Gk3 . . . Gkk


 ,(10)

where the Gii are irreducible mi ×mi matrices.2

It can be seen that there is no loss of generality to assume that B is reducible,
for, if it is irreducible, then the representation (10) consists of a single block B = G11.
This situation can be treated as a special case. Equation (8) can be rewritten as

(PBP t − µI)Py + Pq = 0.(11)

Suppose that Pq is partitioned into submatrices r1, r2, r3, . . . , rk of sizes m1 ×
1,m2 × 1, . . . ,mk × 1, respectively, and Py into the submatrices z1, z2, . . . , zk of cor-
responding sizes.

Then (11) takes the form

(µI −Gjj)zj = rj +
j−1∑
m=1

Gjmzm(12)

for 1 ≤ j ≤ k. (The sum is assumed to vanish if j = 1.) The spectrum of B is the
union of the spectra of the matrices Gjj . Therefore, µ > Λ[Gjj ] for 1 ≤ j ≤ k. Since
Gjj is irreducible by the quoted result of Frobenius, (µI −Gjj)−1 is a positive matrix
for 1 ≤ j ≤ k.

The positivity of the vectors z1, z2, . . . , zk will be proved now by induction. The
inductive hypothesis Sj , stating that zm > 0 for m < j, is empty for j = 1 and thus S1

2Any (1× 1) matrix is considered irreducible here.
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can be considered true. Assuming now Sj correct for some j, such that 1 ≤ j ≤ k−1,
it follows that the right-hand side of (12) can be the 0-vector only if rj = 0 and
Gjm = 0 for m < j. However, then all rows of A intersecting Gjj would only have
0 elements outside the block Gjj , which would imply that A is reducible. Therefore,
the right-hand side of (12) representing a nonnegative vector must have a positive
component. Because of the positivity of (µI − Gjj)−1, zj is also a positive vector.
Hence, Sj implies Sj+1 for j < k and thus, by induction, zj > 0 for 1 ≤ j ≤ k. As a
result,

y = (µI −B)−1q > 0(13)

is proved. We note that, by substituting Bt for B and p for q in (13), we obtain the
dual inequality

(µI −Bt)−1p > 0.(14)

Let a = (||y||+ 1)−1. Then

x∗ = gn(µ) def= α

[
y
1

]

is the unique solution of the problem (4) in P (in the case k = n). gn represents an
analytic mapping of (νn,∞) into P . The value of fn(x)∗ is obtained easily:

fn(x∗) = (AX∗)/x∗
n = pty + ann = ann + pt(µI −B)−1q = θ(µ).

(ii) Let x denote any vector in P . We introduce the matrices

C(x) = A− diag[f1(x), f2(x), . . . , fn(x)].(15)

C(x) is essentially positive for any x ∈ P . Moreover, its positive eigenvector is x itself
and the corresponding eigenvalue is

Λ[C(X)] = 0.

We note the special case x∗ = gn(µ):

C(x∗) = A− diag[µ, . . . , µ, θn(µ)].(16)

Suppose now that, for some x ∈ P, x 
= x∗,

fi(x) ≥ µ(i = 1, 2, 3, . . . , n− 1)(17)

and at the same time

fn(x) ≥ θn(µ).

Then, by (15) and (16), C(x) ≥ C(x∗). The matrices C(x), C(x∗) are different, for,
otherwise, x = x∗ would follow from the uniqueness of the positive eigenvector. If
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Λ[C(x)] > Λ[C(x∗)], then, because of the Frobenius theorem, Λ[C] is a strictly in-
creasing function of all entries of the essentially positive C. Thus, (17) implies

fn(x) < θn(µ).(18)

It can be shown similarly that (17) and (18) remain valid with the inequalities
reversed simultaneously.

(iii) From the definition of θn(µ) follows

(d/dµ)θn(µ) = −pt(µI −B)−2q = −[(µI −Bt)p]t[(µI −B)q].

Since both vectors in brackets were shown to be positive [(13), (14)], (d/dµ)θn(µ) < 0;
hence θn(µ) is decreasing.

By the theorem of Collatz, the statement

f1(x) = f2(x) = · · · = fn−1(x) = λ

implies that fn(x) = λ. Hence, by the result obtained in (i), the statement (5) is
proved.

The statement (6) is obvious by the definition of θk(µ). The statement (7) will be
proved by contradiction. If it is false, then θn(µ), a decreasing function, has a finite
limit as µ ↓ νn ≡ ν. But then, by Lemma 2.1, a sequence µj ↓ ν exists such that, if
gn(µj) = xj , then xj converges to a vector u = (u1, u2, . . . , un)t ∈ P . Let v denote
the vector formed of the first n − 1 components of u. Then, applying (9) to xj and
letting j → ∞, we get

(B − νI)v + unq = 0.

Since the spectrum of B is the union of spectra of the submatrices Gii obtained by the
partitioning (11), there is at least one submatrix Gss such that Λ[Gss] = Λ[B] = ν.
If Pq is partitioned as before and Pv is partitioned into submatrices w1, w2, . . . , wk

of corresponding sizes, then equations analogous to (13) are obtained, replacing only
zj with wj and µ with ν. In particular,

(νI −Gss)Ws = vnrs +
s−1∑
m=1

Gsmwm,(19)

since all right-hand terms of (19) are known to be nonnegative. So it comes to such
terms as

(Gss − νI)ws ≤ 0.(20)

Here ws > 0 and Gss is an essentially positive matrix such that Λ(Gss−νI) = ν−ν =
0. If ws is not an eigenvector of Gss, then, by the theorem of Collatz, (Gss − νI)ws

must have a positive component. In view of (20), therefore, ws is an eigenvector of
Gss and (Gss − νI)ws = 0.

Therefore, (19) implies by the positivity of the vectors wi and of vn that Gsm = 0
(m = 1, 2, 3, . . . , s− 1) and rs = 0.
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As a result, the rows of A containing Gss are otherwise empty. However, then A
would be reducible, contrary to assumption. Thus (7) has to be correct.

Corollary 2.3. Let

Φ(µ) = max{θi(µ)|i ∈ N},

Ψ(µ) = min{θi(µ)|i ∈ N},

and Φ−1 denote the inverse function of Φ. Then, for any x ∈ P ,

Ψ(M(x)) ≤ m(x) ≤ Φ−1(M(x)).(21)

Proof. Equation (21) is a consequence of (ii) in Theorem 2.2.
The functions Φ−1, Ψ are continuous, piecewise analytic, and strictly decreasing

in [λ,∞]. Further,

Φ−1(λ) = Ψ(λ) = λ,

lim
µ→∞Φ−1(µ) = max

i∈N
(νi) ≡ X, and

lim
i∈N

Ψ(µ) = min
i∈N

(aii) ≡ α.

Hence, every inclusion interval (κ, µ) (defined by κ = m(x), µ = M(x), valid for some
x ∈ P ) can be represented by a point in the closed, curvilinear, wedge-shaped region
L∗ enclosed by the curves Γ1 : κ = Ψ(µ) and Γ2 : κ = Φ−1(µ) (see Fig. 1).

The following theorem is an application of this corollary to the design of algo-
rithms using the Perron–Frobenius–Collatz minimax principle for the calculation of
X [A].

Theorem 2.4. Suppose that, for a sequence {xi} of positive unit vectors, m(x) →
Λ[A] ≡ λ. Then xi → X [A] ≡ ξ. Moreover, the sequences {m(xi)}, {xi} are equicon-
vergent in the sense that an index ν and a constant K > 0 exist such that

||xi − ξ|| < K[λ−m(xi)] if i ≥ ν.

Similar statements can be made if M(xi) → λ is known.
Proof. By the corollary of Theorem 2.2 and the theorem of Collatz,

λ ≤ M(xi) ≤ φ(m(xi)).(22)

Since φ(λ) = λ, (22) implies M(xi) → λ. All accumulation points of the sequence
{xi} are in P , for, otherwise, M(xi) would be unbounded, by Lemma 2.1. Let {xρ(i)}
denote a convergent subsequence, say, xρ(i) → y ∈ P . Then

M(y) = m(y) = λ
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κ - λ

κ = Χ

µ - λ

κ = α

Figure 1
Locus of the Inclusion Intervals (κ , µ)

κ = m(x) µ =M(x)
Γ
1: κ = Φ-1(µ) Γ

2: κ = ψ(µ)

Forbidden
Region

Region
Forbidden

Γ
1

Γ
2

and, therefore, y = X [A] = ξ, by the theorem of Collatz. This is true for any
convergent subsequence {xρ(i)}. Hence xi → ξ.

The function Φ(µ) is continuous and piecewise analytic in (χ,∞). Therefore, it
has a left-hand derivative Φ̇l(λ) ≡ k1. If λ−m(x) = δ ↓ 0, thenM(x)−λ ≤ k1δ+0(δ2).
Thus, for each i ∈ N and k = 2max(k1, 1), and also for sufficiently large values of j,

|fi(xj)− λ| ≤ kδ,

from which

||Axj − λxj || ≤ kδ(23)
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follows easily.
Remembering now that λ is, by the Perron–Frobenius theorem, a simple eigen-

value of A, an elementary consideration shows that a constant β (dependent on A
alone) exists such that, for any unit n-vector y,

||y − ξ|| ≤ β||Ay − λy||

by (23) therefore for sufficiently large j and K = βk. Thus,

||xj − ξ|| ≤ 0[λ−m(xj)].

If M(xj) → λ is assumed, the corresponding results can be obtained similarly.
It should be noted that the result as such has been studied thoroughly in the

literature and the work reported here is a step forward in achieving such a method from
a different point of view. The main difference in this paper is the exact description
of all possible pairs of maximal and minimal quotients m(x) and M(x) of a positive
vector built from a nonnegative irreducible matrix A. A large number of authors
have been dealing with methods for calculating the Perron vector by constructing
a sequence x(i) with decreasing M(x(i)). Their convergence is shown to be linear
([13], [14]). On the other hand, as described in section 1 of [7], a linear convergence
was also derived. In the context of [8] and [5], a linear convergence was proved and
numerical results were presented. It would be impossible to list by name the authors
who studied thoroughly the above-mentioned method. We would, however, like to
mention the contribution of a handful of mathematicians ([4], [1], [16]), as cited in
the last paper.

Remark 2.5. It is interesting to compare this result to the behavior of the
minimum sequence in the Rayleigh–Ritz method applicable to Hermitian matrices.
Typically, in that case,

||xj − ξ|| = 0(|λ−Rj | 12 )

only where Rj is the Rayleigh quotient belonging to the sequence element xj , ξ is the
eigenvector, and λ is the corresponding eigenvalue.

3. The Set of All Inclusive Intervals. The corollary to Theorem 2.2 states
that, if all possible {m(x),M(x)} pairs are represented in a (κ, µ) Cartesian coordinate
system, their locus L is a (proper or improper) subset of the closed wedge-shaped
region L∗ bounded by the curves k = φ−1(µ) and κ = ψ(µ) (µ ≥ λ). By Theorem
2.2, for any µ ≥ λ, an x ∈ P can be found such that M(x) = µ. Therefore, (21)
implies that φ−1(µ) ≥ ψ(µ) for any µ > λ.

The following questions remain to be resolved:
(1) Is φ−1(µ) ≥ ψ(µ) true for µ > λ?
(2) Is every (κ, µ) ∈ L∗ an inclusion interval (i.e., is κ = m(x), µ = M(x) for

some x ∈ P )?
The answer given in Theorem 3.2 below is affirmative to both questions if n ≥ 3. We
will show first that neither of the answers is necessarily yes for n = 2. Let A = (aij)

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 10, pp. 31-45, February 2003



ELA

40 T. S. Oepomo

be a 2× 2 essentially positive matrix. Then, with the notation of Theorem 2.2,

θi(µ) = aii +
aijaji

µ− ajj
,

where i = 1, 2 and j = 3− i.
It can be verified by direct calculation that, for µ > λ,

φ−1(µ) = max{θ1(µ), θ2(µ)} and

ψ(µ) = min{θ1(µ), θ2(µ)}.
Furthermore,

φ−1(µ) > ψ(µ) if µ > λ and a11 
= a22 and

φ−1(µ) = ψ(µ) for all µ ≥ λ if a11 = a22.

The set L is then the union of the curves described by κ = θ1(µ) and κ = θ2(µ)
for (µ ≥ λ) (thus L∗ 
= L if a11 
= a22).

In the proof of Theorem 3.2, we will need the answer to a question that is inter-
esting in itself. Is it possible to modify a vector x ∈ P continuously so that two of the
ratios fi(x) should change? How are the changes of the two selected ratios related?

Lemma 3.1. Suppose that xo ∈ P and fi(xo) = φi. Then positive numbers τi, τij

exist (i, j ∈ n, i 
= j) such that, for any r, s ∈ N , r 
= s, the system

fi(x) = φi if i 
= r, s,

fr(x) = φr + ρ,

fs(x) = φs + σ

(24)

has a uniquely determined solution x ∈ P whenever the real numbers ρ, σ satisfy

τrsρσ + τrρ+ τsσ = 0(25)

and

ρσ ≤ 0.

This solution x = hrs(xo, ρ) is an analytic function of ρ in its definition interval
(−τs/τrs,∞).

Proof. Consider the matrix

C = diagonal [f1(xo), f2(xo), . . . , fn(xo)]−A.

Let Ci(x) denote the (n − 1)-square submatrix obtained by omission of the ith row
and column, Cij the (n − 2)-square submatrix resulting after omission of the ith
and jth rows and columns of C(i, j ∈ N, i 
= j), and τi = det(Ci), τij = det(Cij) the
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corresponding principle minors. Here −C is essentially positive and its positive eigen-
vector is xo, with corresponding eigenvalue Λ[−C] = 0. By the theorem of Frobenius
[9], τi = det(Ci) > 0 and τij = det(Cij) > 0 under these circumstances (see also [10],
p. 70 and [8]). If x ∈ P , then the system (24) is equivalent to

Fx ≡ (C + ρ∆r + σ∆s)x = 0,(26)

where ∆p is the n× n matrix ∆p
ij = δpiδpj and δpi is the Kronecker delta. Equation

(26) has a nontrivial solution if and only if

det(F ) = det(C) + ρτr + στs + ρστrs = 0.

Since Λ(C) = 0, C is singular and therefore the last equation is equivalent to
(25). If ρ = 0 and σ = 0 then the (unique) solution of (24) is x = xo. The principle
minors of F associated with the (rr) and (ss) elements are

F

(
1, 2 r − 1, r + 1 n
1, 2 r − 1, r + 1 n

)
= τs + στrs,

F

(
1, 2 s− 1, s+ 1 n
1, 2 s− 1, s+ 1 n

)
= τr + ρτrs.

If ρσ < 0, at least one of these is positive. Therefore, the rank of F is n− 1 and
the solution of (26) is determined uniquely up to a scalar factor.

By (25),

σ = −τr/(τrsρ+ τs)
def= σrs(ρ).(27)

Therefore, together with σ, all subdeterminants of F are analytic functions of ρ in
the interval (γ,∞), where γ = −τs/τrs. Therefore, (26) has a normalized solution
t(ρ) = hrs(xo, ρ), an analytic function of ρ in an open domain of the complex plane
containing the real interval (−γ,∞), and t(0) = xo. It will be shown next that M [t(ρ)]
is bounded in (−γ,∞). In fact, if x = t(ρ), then, by definition of C and by (26),

(Ax)p = [φp + ρδrp + σδsp]xp (p = 1, 2, 3, . . . , n).

It follows easily from this identity that

M(x) ≤ M(xo) + max{ρ, σ},(28)

where σ = σrs(ρ). Now suppose that (α, β) is the component of the open set Ω = {ρ ∈
(γ,∞)|t(ρ) ∈ P} that contains ρ = 0. If α > γ, then by continuity t(α) ∈ P . But,
by Lemma 2.1, M [t(ρ)] would be unbounded as ρ ↓ α, contrary to (28). A similar
contradiction arises if β < ∞ is assumed. Hence Ω = (γ,∞) and T rs(xo, ρ) ∈ P for
γ < ρ < ∞.
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Theorem 3.2. Let n > 3. Then, with the notation of the corollary of Theorem
2.2,

(i) ψ(µ) < φ−1(µ) if µ > λ.
(ii) The locus L of all (µ, κ) pairs, with κ = m(x), µ = M(x), and x ∈ P , is

precisely the closed curvilinear wedge-shaped domain L∗ between the curves Γ1 and
Γ2; i.e.,

L = {(µ, κ)|φ−1(µ) ≤ κ ≤ ψ(µ)}

(see Fig. 1).
Proof. With the notation of Theorem 2.2, let µ > λ and r, s ∈ N such that

µ = φ(τ) = θr(τ),

ψ(µ) = θs(µ).

Further, let y = gs(µ), x = gr(τ). Then x, y satisfy the equations

fi(y) = µ if i 
= s,

fs(y) = ψ(µ),

fi(x) = τ = φ−1(µ) if i 
= r,(29a)

fr(x) = µ.(29b)

In particular, note that M(x) = M(y) = µ.
For the proof of (i) it is sufficient to show a single vector µ ∈ P such that

m(µ) < τ , whereas M(µ) = µ.
Let j, k ∈ N and j, k 
= r. Then, by (29a), fj(x) = fk(x) = τ < µ.
The function t(ξ) = hjk(x, ξ) introduced in Lemma 3.1 is continuous for ξ ≥ 0

and satisfies

fj[t(ξ)] = τ + ξ,

fk[t(ξ)] = τ + σjk(ξ),

where σjk(ξ) is the function (27) and is negative for ξ > 0. The other ratios fi[tjk(ξ)]
are constants. Setting µ = tjk(µ− τ), we find by Lemma 3.1 that

fk(u) < τ,M(u) = fj(u) = µ.

Hence proposition (i) is proved.
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For the proof of (ii) it suffices to show that a continuous function w : [0, 1] → P
can be found such that

w(0) = x,w(1) = y,(30a)

M [w(ξ)] = µ (0 ≤ ξ ≤ 1).(30b)

Then, by the intermediate value theorem, for any η in the interval (φ−1(µ), ψ(µ)),
η = m[w(ξ∗)] for some ξ∗ ∈ P and thus (η, µ) is an inclusion interval.

Let p(1), p(2), . . . , p(n) denote a permutation of the numbers 1, 2, . . . , n such that
(a) p(2) 
= r and (b) p(n) = s. (Such a permutation can be found if n ≥ 3.) Let the
function v1, v2, . . . , vn−1 : [0, 1]→ P be defined recursively by the following rules:

v1(0) = x
def= z1,

vi(0) = vi−1(1) def= zi(i > 1),

and

vi(ξ) = hp(i)p(i+1)(zi, δiξ),

where i = 1, 2, . . . , n− 1 and δi = µ− fp(i)(zi). By Lemma 3.1,

fp(i)[vi(ξ)] = fp(i)(zi) + δiξ = µξ + fp(i)(zi)(1 − ξ),(31)

fp(i+1)[vi(ξ)] = fp(i+1)(zi) + σp(i)p(i+1)(δiξ),(32)

whereas

fj [vi(ξ)] = fj(zi) if j 
= p(i), p(i+ 1).(33)

It may be observed that the function (31) is nondecreasing and (32) is nonincreasing
if δj > 0. (The function (33) is constant.)

Since M(x) = µ, clearly δ1 ≥ 0. Hence, by (31), (32), and (33), fj [v1(ξ)] ≤ µ
for 0 ≤ ξ ≤ 1. Furthermore, fr[v1(ξ)] = µ since fr(z1) = fr(x) = µ, and, by
the assumption r 
= p(2), either (31) or (33) applies. By (31), then, fp(1)(z2) = µ.
Furthermore, among the functions fi[v1(ξ)], all but (possibly) the one with i = p(1)
are nonincreasing. Therefore, letting H [t] denote the index set

H [t] = {i ∈ N |fi(t) = µ}

for any t ∈ P , we obtain

{p(1)} ⊆ H [z2] ⊆ {p(1)} ∪ {r}.
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It can be proved similarly for i = 2, 3, . . . , n− 1 by induction by means of (31), (32),
and (33) that

δi ≡ µ− fp(i)(zi) ≥ 0,

M [vi(ξ)] = µ(0 ≤ ξ ≤ 1),

{p(1), . . . , p(i)} ⊆ H [zi+1] ⊆ {p(1), . . . , p(i)} ∪ {r}(34)

(zn ≡ vn−1(1)). By (34), then, in particular, H [zn] contains at least the (n − 1)-
element set {p(1), . . . , p(n− 1)} = N − {s}. It may not contain n elements, in which
case µ > Λ[A] would be an eigenvalue ofA, contrary to the Perron–Frobenius theorem.
Therefore, H [zn] = N − {s}. Then, by Theorem 2.2, Zn = gs(µ) = y is a result. It
is now easy to see that the function w defined by

w(ξ) = vi[(n− 1)ξ − (i− 1)] if
i− 1
n− 1

≤ ξ ≤ i

n− 1
,

w(1) = vn−1(1) = zn

(i = 1, 2, . . . , n−1) is continuous in [0, 1] and satisfies the relations in (30). Thus, the
proof of proposition (ii) is completed.
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