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INERTIA SETS ALLOWED BY MATRIX PATTERNS∗

A.H. BERLINER† , D.D. OLESKY‡ , AND P. VAN DEN DRIESSCHE§

Abstract. Motivated by the possible onset of instability in dynamical systems associated with a zero eigenvalue, sets of

inertias Sn and S∗n for sign and zero-nonzero patterns, respectively, are introduced. For an n × n sign pattern A that allows

inertia (0, n−1, 1), a sufficient condition is given for A and every superpattern of A to allow Sn, and a family of such irreducible

sign patterns for all n ≥ 3 is specified. All zero-nonzero patterns (up to equivalence) that allow S∗3 and S∗4 are determined, and

are described by their associated digraphs.
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1. Introduction. The inertia of a real matrix An of order n is an ordered triple (n+, n−, n0) of

nonnegative integers summing to n, where n+, n−, n0 are the number of eigenvalues of An with positive,

negative, zero real parts, respectively. In a dynamical system, the presence of a zero eigenvalue of the

Jacobian matrix at an equilibrium may herald the onset of instability. With the variation of a parameter, the

eigenvalues may move from all having negative real parts (linear stability) to having a simple zero eigenvalue,

that then moves to have a positive real part (instability), while the remaining eigenvalues continue to have

negative real parts. This corresponds to the inertia going from (0, n, 0) to (0, n − 1, 1) to (1, n − 1, 0). An

example from a dynamical system in ecology is given in Section 6.

With this motivation, we define the inertia set Sn with n ≥ 2 as

Sn = {(0, n, 0), (0, n− 1, 1), (1, n− 1, 0)}.

We are interested in the inertias of irreducible patterns, both sign patterns having entries in {+,−, 0}, and

zero-nonzero patterns with entries in {0, ∗}. If An denotes a sign pattern of order n, then An has inertia

i(An) = {i(An) : An ∈ Q(An)}, where Q(An) denotes the set of all real matrices having sign pattern An,

i.e., matrix An is a realization of An. The inertia of a zero-nonzero pattern is defined analogously. We

identify some irreducible sign patterns that allow Sn, i.e., i(An) ⊇ Sn, or require Sn, i.e., i(An) = Sn.

If An is a zero-nonzero pattern, then (n+, n−, n0) ∈ i(An) if and only if its reversal (n−, n+, n0) ∈ i(An).

Thus, we define the inertia set

S∗n = {(0, n, 0), (0, n− 1, 1), (1, n− 1, 0), (n, 0, 0), (n− 1, 0, 1), (n− 1, 1, 0)},

whose elements are the elements of Sn and their reversals. Using analogous definitions, we identify some

irreducible zero-nonzero patterns that allow S∗n. If sign pattern An allows Sn, then obviously the associated

∗Received by the editors on October 24, 2017. Accepted for publication on May 22, 2018. Handling Editor: Leslie Hogben.

Corresponding Author: Adam H. Berliner.
†Department of Mathematics, Statistics, and Computer Science, St. Olaf College, Northfield, MN, 55057, USA

(berliner@stolaf.edu).
‡Department of Computer Science, University of Victoria, Victoria, BC, V8W 2Y2, Canada (dolesky@cs.uvic.ca).
§Department of Mathematics and Statistics, University of Victoria, Victoria, BC, V8W 2Y2, Canada (pvdd@math.uvic.ca).



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 34, pp. 343-355, July 2018.

A.H. Berliner, D.D. Olesky, and P. van den Driessche 344

zero-nonzero pattern allows S∗n. However, the corresponding result with “allows” replaced by “requires”

may not be true (see, e.g., Example 1.1). For both sign and zero-nonzero patterns, we identify them up to

equivalence, i.e., up to any combination of transposition and permutation similarity, and signature similarity

for sign patterns, since these leave the spectrum unchanged.

It is often convenient to refer to a zero-nonzero pattern A = [αij ] (or a matrix A = [aij ]) of order n by

its associated digraph, a digraph on n vertices where there is an arc from vertex i to vertex j if and only if

αij = ∗ (or aij 6= 0). In the case that A is a sign pattern, the arc from vertex i to vertex j is signed as αij .

Two digraphs are equivalent if and only if their associated patterns are equivalent. In Sections 4 and 5, we

use the same naming conventions and notation for digraphs as in [1].

For n = 2, there are two nonequivalent sign patterns that allow S2, namely

[
− −
− −

]
and

[
− −
+ +

]
(see [15]). The first sign pattern requires S2, whereas the second is spectrally arbitrary (i.e., it can attain

every spectrum allowed by a real matrix). Thus, the order 2 zero-nonzero pattern with each entry nonzero

allows but does not require S∗2.

To illustrate the inertia sets for n = 3, consider the following sign pattern.

Example 1.1. Sign pattern B3 and any matrix realization B3 are given by

B3 =

 − 0 +

+ 0 −
0 + 0

 and B3 =

 −a 0 1

c 0 −b
0 1 0

 ,
with a, b, c > 0. Note that without loss of generality, two entries on the 3-cycle in the digraph associated

with B3 can be set equal to 1. The characteristic polynomial of B3 is

pB3(z) = z3 + az2 + bz + ab− c.

If c < ab, then i(B) = (0, 3, 0), if c = ab, then i(B3) = (0, 2, 1), and if c > ab, then i(B3) = (1, 2, 0). Thus, B3
allows S3. There are ten possible inertias for a matrix of order 3, and the remaining seven can be eliminated

for B3 as follows:

• Since tr(B3) < 0, inertias (3, 0, 0), (2, 0, 1) are not possible.

• Since b 6= 0, the only eigenvalue allowed on the imaginary axis by B3 is a simple 0 eigenvalue, thus

eliminating inertias (0, 0, 3), (1, 0, 2), and (0, 1, 2).

• If one eigenvalue of B3 is 0, then the other two have negative real parts, thus eliminating inertia

(1, 1, 1).

• If c < ab in B3, then the Routh-Hurwitz condition (see, for example, [7, p. 194]) ab > ab − c is

satisfied, eliminating inertia (2, 1, 0).

Thus, in fact, sign pattern B3 requires S3. The associated zero-nonzero pattern B∗3 has a realization

F3 =

 −1 0 −1

1 0 1

0 1 0

 ,
with i(F3) = (1, 1, 1). Thus, the zero-nonzero pattern B∗3 allows but does not require S∗3. Note that F3 is

not equivalent to a realization of the sign pattern B3. Up to equivalence, B3 is the only signing of B∗3 that
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requires or allows S3, since it is the only such sign pattern that allows inertia (0, 3, 0), i.e., is potentially

stable [14].

A related set of refined inertias, in which n0 is split into zero eigenvalues denoted by nz and nonzero

pure imaginary eigenvalues denoted by 2np, giving the 4-tuple (n+, n−, n0, 2np), was introduced for sign

patterns in [2]. The set Hn is defined as

Hn = {(0, n, 0, 0), (0, n− 2, 0, 2), (2, n− 2, 0, 0)},

and can herald the onset of instability by a pair of nonzero pure imaginary eigenvalues. For further results

on Hn, see [8, 9, 10, 11], and for the related set H∗
n pertaining to zero-nonzero patterns, see [1]. For some of

our results we use techniques that are found in these cited papers.

We begin by considering sign patterns, giving sufficient conditions for a sign pattern and its superpatterns

to allow Sn. Recall that Bn is a superpattern of a sign pattern An if Bn is obtained from An by replacing

some (or possibly none) of the zero entries of An with − or +. In Section 3, we use this result and a bordering

technique to construct a family of irreducible sign patterns that allows Sn. In Sections 4 and 5, we identify

all zero-nonzero patterns (up to equivalence) that allow S∗n for n = 3 and n = 4, respectively. In Section 6,

we give an ecological example as an application of our sign pattern results.

2. Preliminary results on sign patterns allowing Sn. In this section, we begin with some obser-

vations, give an example of a family of irreducible sign patterns that allows Sn and requires Sn for small

orders, and conclude with a theorem on superpatterns that is used to obtain results in the following sections.

Observation 2.1. If sign pattern An allows Sn, then any superpattern Ân allows Sn if and only if Ân

allows inertia (0, n− 1, 1).

A sign pattern An is combinatorially singular if det(An) = 0 for all An ∈ Q(An), and it is sign

nonsingular if det(An) 6= 0 for all An ∈ Q(An). A zero-nonzero pattern is combinatorially nonsingular if

the determinant is nonzero for every matrix realization of the pattern.

Observation 2.2. If sign pattern An allows Sn, then An is not combinatorially singular and not sign

nonsingular.

For sign patterns this observation means that there are at least two terms in the determinant of An ∈
Q(An) and they are of opposite signs. The next observation follows as in Lemma 3.1 of [2].

Observation 2.3. If sign pattern An has no zero entry on its main diagonal, then it allows Sn if and

only if it allows inertia (0, n− 1, 1).

Note that Observations 2.1, 2.2, and 2.3 with sign nonsingular replaced with combinatorially nonsingular

hold for zero-nonzero patterns and S∗n.

We next consider a sign pattern that has all of its diagonal entries negative, and the other nonzero

entries correspond to a positive n-cycle in the digraph associated with the sign pattern.

Theorem 2.1. Let Cn be the sign pattern of a positive n-cycle, i.e., Cn = [γij ] has γ12 = γ23 = · · · =

γn−1,n = γn1 = + and all other entries zero, and let In be the sign pattern with each diagonal entry + and

all other entries zero. Sign pattern Cn − In allows Sn for all n ≥ 3, but requires Sn only for n = 3 and 4.
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Proof. The eigenvalues of matrix Cn ∈ Q(Cn) are the nth roots of a positive scalar multiple of 1, thus

Cn has a simple positive eigenvalue a. With In denoting the identity matrix of order n, the matrix Cn−aIn
has inertia (0, n − 1, 1), and Observation 2.3 gives the allow result. The other seven (twelve) inertias for

n = 3 (n = 4) can be eliminated by using the facts that any matrix realization of Cn−In has negative trace,

is essentially nonnegative, and has a simple zero as the only eigenvalue on the imaginary axis, together with

continuity and the Routh-Hurwitz conditions. It follows that C3 − I3 (C4 − I4) requires S3 (S4). For n ≥ 5,

matrix Cn−In may have more than one eigenvalue in the right half plane, and thus, Cn−In does not require

Sn.

Now we give sufficient conditions for a sign pattern and its superpatterns to allow Sn. Let A = [aij ] be

a real matrix of order n having m ≥ n nonzero entries and i(A) = (0, n− 1, 1). Let matrix X be the same as

A, except that these m nonzero entries of A, namely ai1,j1 , . . . , aim,jm , are replaced by variables x1, . . . , xm,

respectively. The characteristic polynomial of X is

cX(z) = zn + p1z
n−1 + · · ·+ pn−1z + pn,

with coefficients p1, . . . , pn depending on x1, . . . , xm. The n×m Jacobian matrix J of A has (i, j)-entry equal

to ∂pi(x1,...,xm)
∂xj

evaluated at (x1, . . . , xm) = (ai1,j1 , . . . , aim,jm). If J has rank n, then A allows a Jacobian

matrix of full rank. This definition, which uses a rectangular Jacobian matrix as in [12], is equivalent to the

determinantal property that A “allows a nonzero Jacobian” as defined in [4].

Theorem 2.2. Let A be an n × n sign pattern that allows inertia (0, n − 1, 1) and let A ∈ Q(A) with

i(A) = (0, n − 1, 1). If A allows a Jacobian matrix of full rank, then every superpattern Â of A (including

A) allows Sn.

Proof. If A allows a nonzero Jacobian and i(A) = (0, n−1, 1), then it follows that {(1, n− 1, 0), (0, n, 0)}
⊆ i(A) by Lemma 3.4(i) of [3]. Therefore, A allows Sn. By Theorem 3.2 of [3], it follows that there exists

Â ∈ Q(Â) for which i(Â) = (0, n− 1, 1). Thus, by Observation 2.1, Â allows Sn.

3. A family of sign patterns that allows Sn. We employ the following bordering technique [13] to

construct a family of irreducible sign patterns that allows Sn.

For n ≥ 3, consider the family of sign patterns An associated with the family of matrices An that are

obtained from successive borderings of the form

An+1 =

[
In 0

en
T 1

] [
An en
0T −1

] [
In 0

−enT 1

]
=

[
An − enenT en
en

TAn 0

]
,

where en = (0, 0, . . . , 0, 1)T and en
TAn is the nth row of An. Note that if i(An) = (n+, n−, n0), then

i(An+1) = (n+, n− + 1, n0).

Example 3.1. To illustrate the above bordering, let n = 3 and A3 be the matrix B3 in Example 1.1

with a = b = c = 1. Then i(B3) = (0, 2, 1) and the bordering gives

B4 =


−1 0 1 0

1 0 −1 0

0 1 −1 1

0 1 0 0

 .
It can be shown (see the proof of Theorem 3.1) that B4 allows a Jacobian matrix of rank 4. So, by Theorem

2.2, sgn(B4) allows S4. However, sgn(B4) does not require S4 since it allows H4 (see G9/23 in Table 3 of
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[1]). A second iteration of bordering gives

B5 =


−1 0 1 0 0

1 0 −1 0 0

0 1 −1 1 0

0 1 0 −1 1

0 1 0 0 0

 ,

and by similar arguments, sgn(B5) allows S5.

Continued iterations of bordering, as in Example 3.1, lead to irreducible matrices Bn = [bij ] of order

n ≥ 3 defined as follows:

• b13 = b21 = bn2 = 1 and b11 = b23 = −1.

• For 3 ≤ i ≤ n− 1, bii = −1, bi,i+1 = 1, and bi2 = 1.

• bij = 0 otherwise.

Theorem 3.1. With matrix Bn defined as above for n ≥ 3, Bn = sgn(Bn) and every superpattern of

sgn(Bn) allow Sn.

Proof. Since i(B3) = (0, 2, 1), it follows that i(B4) = (0, 3, 1) and by induction, i(Bn) = (0, n− 1, 1).

We define XBn
= [wij ] to be equal to Bn except that n nonzero entries of Bn have been replaced by

variables x1, . . . , xn in the following way:

• w13 = w21 = 1.

• For 3 ≤ i ≤ n− 1, wii = −1 and wi,i+1 = 1.

• w11 = x1, w23 = x2, and for 3 ≤ i ≤ n, wi2 = xi.

• wij = 0 otherwise.

The labeled signed digraph of XBn
is as follows:

1

2

3 4 5 n
1

1

1 1 1 1

x2 x3 x4 x5
xn

x1

−1 −1 −1

It is well-known (see, e.g., [16, page 29-6, Fact 4]) that if

pXBn
= zn + p1z

n−1 + p2z
n−2 + · · ·+ pn−1z + pn

is the characteristic polynomial of XBn
, then for 1 ≤ k ≤ n, pk is the sum of all (disjoint) signed generalized

cycle products of order k in the labeled digraph of XBn . Note that a generalized k-cycle in a digraph is a

set of disjoint cycles that together cover k vertices, and a generalized cycle product of order k is the product
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of the entries on these cycles. The sign of each generalized cycle product is (−1)q, where q is the number of

cycles in the product (see [6, Theorem 1.2]). In order to use Theorem 2.2, we need to determine the entries

of the Jacobian matrix of XBn
as functions of x1, . . . , xn. The (i, j)-entry of the n×n Jacobian matrix JXBn

is equal to
∂pi
∂xj

.

From the digraph of XBn , it can be seen that p1 = n− 3− x1, so that the first row of JXBn
is

[−1, 0, 0, . . . , 0] .

Again using the digraph of XBn
, it follows that

pn = detXBn
= (−1)2x1x2xn + (−1)1xn

since there are only two generalized n-cycles. Thus, row n of JXBn
is equal to

[x2xn, x1xn, 0, . . . , 0, x1x2 − 1] .

Furthermore, for 2 ≤ k ≤ n − 1, there exists a generalized k-cycle in the digraph of XBn with cycle

product (−1)1x2xk+1. This is the only generalized k-cycle involving xk+1, and xi is not on a generalized

k-cycle for any i ≥ k + 2. Thus, for some possibly nonzero values ∗,

JXBn
=



−1 0 0 0 · · · 0 0

∗ ∗ −x2 0 · · · 0 0

∗ ∗ ∗ −x2 · · · 0 0
...

...
...

...
. . .

...
...

∗ ∗ ∗ ∗ · · · −x2 0

∗ ∗ ∗ ∗ · · · ∗ −x2
x2xn x1xn 0 0 · · · 0 x1x2 − 1


.

Since x1 = x2 = −1 and xn = 1 achieves inertia (0, n − 1, 1), it follows that for these values, the

(n, n)-entry of JXBn
is 0 and so det JXBn

= (−1)n. Thus, Bn allows a Jacobian matrix of full rank, and by

Theorem 2.2, Bn and every superpattern of Bn allow Sn.

Note that Bn does not require Sn for n ≥ 4 since it allows refined inertia (0, n − 2, 0, 2), and is not

spectrally arbitrary since any Bn ∈ Q(Bn) has negative trace.

4. Zero-nonzero patterns that allow S∗3. For n ≥ 3, the sign pattern Bn in Theorem 3.1 gives an

associated zero-nonzero pattern than allows S∗n. In this section, we describe all irreducible nonequivalent zero-

nonzero patterns of order 3 that allow S∗3. With digraphs D1–D3 in Appendix A, Table 1 gives realizations

A = [aij ] of three different sign (hence, zero-nonzero) patterns that allow S3 (hence, S∗3). Entries not

mentioned are taken to be 0. Each of these realizations has inertia (0, 2, 1) and allows a Jacobian matrix

of full rank (we will illustrate the use of the Jacobian in the next section, which discusses patterns of order

4). By Theorem 2.2, these three zero-nonzero patterns and any superpattern of them allow S∗3. In fact, any

irreducible zero-nonzero pattern of order 3 that is not equivalent to a superpattern of one of these three does

not allow S∗3. The zero-nonzero pattern associated with digraph D2 with a loop at vertex 2 is combinatorially

singular, and all others are combinatorially nonsingular, so do not allow S∗3 (see Observation 2.2).
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Digraph Loops at Nonzero Entries in Realization with Inertia (0, 2, 1)

D1 123 a11 = a22 = −1, a12 = a23 = 1, a31 = 2, a33 = −2

D2 13 a11 = −1, a12 = a23 = a21 = 1, a32 = a33 = −2

D3 3 a33 = −1, a12 = a23 = 1, a21 = −1/4, a31 = 1/4

Table 1

Order 3 realizations with inertia (0, 2, 1).

Digraph Loops at Nonzero Entries in Realization with Inertia (0, 3, 1)

G1 1234 a11 = a22 = −1, a12 = a23 = a34 = 1, a33 = −2, a44 = −3, a41 = 6

G2 134 a11 = a21 = a33 = a44 = −1, a12 = a23 = a34 = a42 = 1

G3 12 a11 = −1, a12 = a23 = a34 = a41 = 1, a13 = −6/5, a22 = −5/6

G3 24 a22 = a13 = −1, a12 = a23 = a34 = a41 = 1, a44 = −2

G4 24 a22 = −1, a12 = a23 = a14 = a31 = 1, a43 = a44 = −2

G5 34 a21 = a33 = −1, a12 = a23 = a34 = 1, a41 = 2, a44 = −2

G6 2 a13 = a22 = a41 = −1, a12 = a23 = a34 = 1, a14 = 2

G7 2 a13 = a22 = −1, a12 = a23 = a34 = 1, a21 = −1/3, a41 = 1/27

G8 1 a11 = −1, a12 = a23 = a34 = a42 = 1, a21 = −1/2, a43 = −2

G8 34 a21 = a33 = a44 = −1, a12 = a23 = a34 = a43 = 1, a42 = 3/2

G9 2 a13 = a22 = −1, a12 = a23 = a34 = 1, a31 = 1/3, a41 = 1/27

G11 34 a21 = a33 = a43 = a44 = −1, a12 = a14 = a23 = a31 = 1

G13 14 a11 = a32 = a44 = −1, a12 = a23 = a34 = a42 = 1, a21 = −2

G15 12 a11 = a22 = a32 = a43 = −1, a12 = a23 = a34 = a21 = 1

G15 14 a11 = a21 = a32 = a44 = −1, a12 = a23 = a34 = a43 = 1

G16 1 a11 = −1, a12 = a23 = a34 = 1, a14 = −27, a32 = −1/27, a41 = 8/729

G17 234
a22 = a44 = −1, a12 = a13 = a14 = 1,

a33 = −2, a21 = −4, a31 = −3, a41 = 5.5

G22 1 a11 = −1, a12 = a23 = a34 = a24 = 1, a13 = 3, a32 = −1/3, a41 = 2/27

G29 2 a22 = a34 = −1, a13 = a24 = a32 = a21 = 1, a12 = −1/3, a41 = 7/9

Table 2

Order 4 realizations with inertia (0, 3, 1).

5. Zero-nonzero patterns that allow S∗4. In this section, we describe all irreducible nonequivalent

zero-nonzero patterns of order 4 that allow S∗4. In Appendix B, we list 38 of the 61 digraphs G1–G61

given in [1]; the remaining 23 digraphs are not needed here since their associated zero-nonzero patterns are

superpatterns of patterns associated with the listed 38 digraphs. With the digraphs in Appendix B, Table

2 gives realizations A = [aij ] of 19 different sign (hence, zero-nonzero) patterns. Entries not mentioned are

taken to be 0. Each of these realizations has inertia (0, 3, 1) and allows a Jacobian matrix of full rank. By

Theorem 2.2, any of these 19 zero-nonzero patterns and any superpattern of any of these 19 zero-nonzero

patterns allow S∗4.

Example 5.1. To illustrate the use of the Jacobian, we give justification for one of the realizations.

Consider the zero-nonzero pattern A associated with digraph G3 with loops at vertices 2 and 4:

A =


0 ∗ ∗ 0

0 ∗ ∗ 0

0 0 0 ∗
∗ 0 0 ∗

 .
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A matrix with an associated sign pattern and inertia (0, 3, 1) is

A =


0 1 −1 0

0 −1 1 0

0 0 0 1

1 0 0 −2

 .

In order to apply Theorem 2.2, we let

X =


0 x1 x2 0

0 x3 x4 0

0 0 0 x5
x6 0 0 x7

 .
The characteristic polynomial of X is

cX(z) = z4 + (−x3 − x7)z3 + x3x7z
2 − x2x5x6z + (x2x3x5x6 − x1x4x5x6)

and the Jacobian matrix JXA
is

0 0 −1 0 0 0 −1

0 0 x7 0 0 0 x3

0 −x5x6 0 0 −x2x6 −x2x5 0

−x4x5x6 x3x5x6 x2x5x6 −x1x5x6 x2x3x6 − x1x4x6 x2x3x5 − x1x4x5 0

 .
Matrix JXA

evaluated at x1 = x4 = x5 = x6 = 1, x2 = x3 = −1, x7 = −2, gives the full rank matrix

JXA
=


0 0 −1 0 0 0 −1

0 0 −2 0 0 0 −1

0 −1 0 0 1 1 0

−1 −1 −1 −1 0 0 0

 .
Thus, by Theorem 2.2, A and any superpattern of A allows S∗4.

In fact, any irreducible zero-nonzero pattern of order 4 that is not equivalent to a superpattern of one

of these 19 in Table 2 does not allow S∗4. Tables 3–5 give justification for why each of the these zero-

nonzero patterns do not allow S∗4. Some zero-nonzero patterns are combinatorially singular while others are

combinatorially nonsingular (see Tables 3 and 4). While this covers most patterns, there are three patterns

that are neither combinatorially singular nor combinatorially nonsingular yet still do not allow S∗4 (see Table

5). These patterns require a characteristic polynomial that has no quadratic term, and therefore, inertias

(0, 3, 0) and (0, 2, 1) are not allowed.

6. Concluding remarks. As discussed in Section 1, there is no zero-nonzero pattern that requires S∗2.

All zero-nonzero patterns that allow S∗3 (from Section 4) and S∗4 (from Section 5) have been checked, and

each such pattern allows at least one additional inertia. Thus, no irreducible zero-nonzero patterns require

S∗3 or S∗4. We do not know if this remains true for n ≥ 5.

However, note that the sign pattern

[
− −
− −

]
requires S2 and

 − − 0

− − −
0 − −

 requires S3 (see [15]).

These sign patterns can be used as follows to construct higher order reducible sign patterns that require Sn.
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Digraph(s) Loop location(s) with combinatorially nonsingular pattern

G1 1, 2, 3, 4, 12, 13, 14, 23, 24, 34, 123, 124, 134, 234

G2 1, 2, 3, 4, 12, 13, 14, 23, 24, 34, 123, 124, 234

G3, G6 1, 3, 4, 13, 14, 34, 134

G4, G10 2, 4, 12, 14, 23, 34, 123, 134

G5 1, 2, 3, 4, 12, 13, 14, 23, 24, 123, 124

G7 1, 3, 4, 13, 14

G8, G28, G45 2, 3, 4, 23, 24

G9, G19, G24,

G27, G35, G38
1, 3, 13

G11 2, 4, 14, 23, 123

G12 1, 2, 3, 4, 12, 13, 23, 24, 123

G13 1, 12, 13, 34, 123, 234

G14, G18, G21 1, 4, 14

G15 1, 2, 3, 4, 13, 23, 24

G17 23, 24, 34, 123, 124, 134

G23 1, 2, 3, 12, 13, 23, 123

G26 1, 2, 3, 12, 13

G29, G33 1

G30 2, 4, 14, 23, 34, 134

G31 2, 4, 12, 14

G32 1, 12, 34, 234

G42, G44 2, 4, 24

G47 1, 4, 12, 24

G51 2
Table 3

Digraphs of order 4 with combinatorially nonsingular associated patterns.

Digraph(s) Loop location(s) with combinatorially singular pattern

G4, G10, G30, G31 1, 3, 13

G11 1, 3, 12, 13

G13, G32 2, 3, 4, 23, 24

G17 1, 2, 3, 4, 12, 13, 14

G47 2, 3, 23
Table 4

Digraphs of order 4 with combinatorially singular associated patterns.

Observation 6.1. Consider the reducible sign pattern

Gm+n =

[
An #

0 Pm

]
,

with # an arbitrary n×m sign pattern.

(a) If An allows Sn and Pm allows inertia (0,m, 0), then Gm+n allows Sm+n.

(b) If An requires Sn and Pm is sign stable (i.e., i(Pm) = (0,m, 0) for all Pm ∈ Q(Pm)), then Gm+n

requires Sm+n.
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Digraph(s) Loop location(s) that do not allow (0, 4, 0)

G3 2

G14 2, 3
Table 5

Other digraphs of order 4 with associated patterns that do not allow inertia (0, 4, 0).

As mentioned in Section 1, motivation for Sn comes from considering the onset of instability in dynamical

systems. Consider an ecological example given by Weisser et al. [17, equation (5)] for a host-parasitoid system

with a type II functional response of the parasitoids. For this system, the Jacobian matrix at the positive

equilibrium has the sign pattern

A =

 + − 0

+ − +

0 + −

 .
As shown in [5, 15], A allows H3. In addition, the following three realizations show that A allows S3: 1 −1 0

3 −3 1

0 2 −2

 ,
 1 −1 0

2 −3 1

0 2 −2

 ,
 1 −1 0

1 −3 1

0 2 −2

 .
Thus, for this sign pattern, instability of the positive equilibrium can occur through either a pair of nonzero

complex eigenvalues or a zero eigenvalue, depending on the numerical values of a matrix realization.
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Appendix A. Non-equivalent strongly connected digraphs on 3 vertices used in Section 4

(retaining the labels from [1]).

1

23
D1

1

23
D2

1

23
D3

Appendix B. Non-equivalent strongly connected digraphs on 4 vertices used in Section 5

(retaining the labels from [1]).
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3
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4

G11

1 2
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1
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1
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