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RANKS OF QUANTUM STATES WITH PRESCRIBED REDUCED STATES∗

CHI-KWONG LI† , YIU-TUNG POON‡ , AND XUEFENG WANG§

Abstract. Let Mn be the set of n × n complex matrices. In this note, all the possible ranks of a bipartite state in

Mm ⊗Mn with prescribed reduced states in the two subsystems, are determined. The results are used to determine the Choi

rank of quantum channels Φ :Mm →Mn sending I/m to a specific state σ2 ∈Mn.
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1. Introduction. In quantum information science, quantum states are used to store, process, and

transmit information. Mathematically, quantum states are represented by density matrices, i.e., positive

semidefinite matrices of trace 1.

Let Mn (Hn) be the set of n× n complex (Hermitian) matrices. Let Dn be the set of density matrices

in Hn. Suppose σ1 ∈ Dm and σ2 ∈ Dn are two quantum states. Their product state is σ1 ⊗ σ2 ∈ Dmn. The

combined system is known as the bipartite system, and a general quantum state is represented by a density

matrix ρ ∈ Dmn.

Two important quantum operations used to extract information of the subsystems from a quantum state

of the bipartite system are the partial traces defined as

tr1(σ1 ⊗ σ2) = σ2 and tr2(σ1 ⊗ σ2) = σ1

on tensor states σ1 ⊗ σ2 ∈ Dmn, and extended by linearity for general states in Dmn. In particular, suppose

ρ = (ρij)1≤i,j≤m ∈ Dmn such that ρij ∈Mn. Then

tr1(ρ) = ρ11 + · · ·+ ρmm ∈Mn and tr2(ρ) = (trρij)1≤i,j≤m ∈Mm.

Let rank (σ) be the rank of a matrix σ. The purpose of this note is to give a complete answer to the

following.

Problem. Determine all the possible values of rank (ρ) for ρ ∈ Dmn in the set

S(σ1, σ2) = {ρ ∈ Dmn : tr1(ρ) = σ2, tr2(ρ) = σ1}

for given σ1 ∈ Dm and σ2 ∈ Dn.
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It is well known and easy to verify that the maximum rank of ρ ∈ S(σ1, σ2) equalsR = rank (σ1)rank (σ2).

In Section 2, we will present a finite algorithm for determining the minimum rank value r of ρ ∈ S(σ1, σ2) in

terms of the eigenvalues of σ1 and σ2. Moreover, we will show that there is ρ ∈ S(σ1, σ2) with rank (ρ) = k

for every k ∈ {r, r + 1, . . . , R}.

In Section 3, we will describe some implications of the results in Section 2 to the study of quantum

channels. In particular, the results allow us to determine all the possible Choi ranks of a quantum channel

Φ :Mm →Mn having a prescribed state Φ(Im/m) ∈ Dn.

In our discussion, let Mm,n be the set of m× n complex matrices so that Mn =Mn,n. Denote by Un
and Hn the set of unitary matrices and the set of Hermitian matrices in Mn, respectively. Let Rn↓ denote

the set of n-tuples in Rn with decreasing coordinates. Given σ ∈ Hn, λ(σ) = (λ1(σ), . . . , λn(σ)) ∈ Rn↓ will

denote the eigenvalues of σ arranged in decreasing order.

Let {e(m)
1 , . . . , e

(m)
m } and {e(n)1 , . . . , e

(n)
n } be the standard bases for Cm and Cn, respectively. Then,

clearly, {e(m)
1 ⊗ e(n)1 , e

(m)
1 ⊗ e(n)2 , . . . , e

(m)
m ⊗ e(n)n } is the standard basis for Cm ⊗ Cn ≡ Cmn. For simplicity,

we use the notation ei for e
(m)
i or e

(n)
i if the dimension of the vector is clear in the context. Also, we use

ei ⊗ ej instead of e
(m)
i ⊗ e(n)j , and eie

t
j = Eij to denote the basic complex unit of appropriate size.

The following observation is useful in our discussion.

Lemma 1.1. Let σ1 ∈ Dm, σ2 ∈ Dn, U ∈Mm and V ∈Mn. Then

S(Uσ1U
∗, V σ2V

∗) = (U ⊗ V )S(σ1, σ2)(U ⊗ V )∗ = {(U ⊗ V )ρ(U ⊗ V )∗ : ρ ∈ S(σ1, σ2)}.

2. Ranks of matrices in S(σ1, σ2). In this section, we present results concerning the ranks of states

in S(σ1, σ2). We will use the fact that S(σ1, σ2) contains a rank one matrix if and only if σ1 and σ2 have

the same nonzero eigenvalues counting multiplicities; see [2, 5].

For w = (w1, . . . , wmn)t ∈ Cmn, let W = [w] be the m × n matrix such that the ith row equals

(w(i−1)n+1, . . . , win) for i = 1, . . . ,m. Suppose W = [w] has singular value decomposition XSY t such that

X ∈Mm is unitary with columns x1, . . . , xm, Y ∈Mn is unitary with columns y1, . . . , yn and S = s1e1e
t
1 +

· · · + skeke
t
k, where k is the rank of W . It follows that W = [w] =

∑k
j=1 sjxjy

t
j , and w =

∑k
j=1 sjxj ⊗ yj ,

which is known as the Schmidt decomposition of w.

Theorem 2.1. Let (σ1, σ2) ∈ Dm ×Dn such that rank (σ1) = r1 ≥ r2 = rank (σ2). There is an element

in S(σ1, σ2) attaining the lowest rank r with r ≤ r1. Moreover, there exists ρ ∈ S(σ1, σ2) of rank k if and

only if r ≤ k ≤ r1r2.

Proof. By Lemma 1.1, we may assume that

σ1 = diag(µ1, . . . , µr1 , 0, . . . , 0) and σ2 = diag(µ̂1, . . . , µ̂r2 , 0, . . . , 0).

If ρ =
∑k
j=1 zjz

∗
j ∈ S(σ1, σ2), then tr1(ρ) = σ2 and tr2(ρ) = σ1.

For 1 ≤ i ≤ r1 and 1 ≤ j ≤ r2, let ei ⊗ ej denote e
(m)
i ⊗ e(n)j , and let vij =

√
µiµ̂jei ⊗ ej . Now, for

` = 1, . . . , r1, let

z` =


∑r2
i=1 vi+`−1,i if 1 ≤ ` ≤ r1 − r2 + 1,

∑r1+1−`
i=1 vi+`−1,i +

∑r2
i=r1+2−` vi+`−1−r1,i if r1 − r2 + 1 < ` ≤ r1 .
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For example, z1 = v11 + · · ·+vr2,r2 , z2 = v21 +v32 + · · ·+vr2+1,r2 , . . . , zr1 = vr1,1 +v12 + · · ·+vr2−1,r2 . Then

(2.1) tr1 (z`z
∗
` ) =


∑r2
i=1 µi+`−1µ̂iEii if 1 ≤ ` ≤ r1 − r2 + 1,

∑r1+1−`
i=1 µi+`−1µ̂iEii

+
∑r2
i=r1+2−` µi+`−1−r1 µ̂iEii

if r1 − r2 + 1 < ` ≤ r1,

and

(2.2) tr2 (z`z
∗
` ) =


∑r2
i=1 µi+`−1µ̂iEi+`−1 i+`−1 if 1 ≤ ` ≤ r1 − r2 + 1,

∑r1+1−`
i=1 µi+`−1µ̂iEi+`−1 i+`−1

+
∑r2
i=r1+2−` µi+`−1−r1 µ̂iEi+`−1−r1 i+`−1−r1

if r1 − r2 + 1 < ` ≤ r1 .

Let

(2.3) ρ =

r1∑
`=1

z`z
∗
` ∈ S(σ1, σ2) .

Then ρ has rank r1. It follows from (2.1) and (2.2) that ρ ∈ S(σ1, σ2). In (2.3) if we replace z1z
∗
1 by

v11v
∗
11 + · · ·+ vppv

∗
pp +

∑
j>p

vjj

∑
j>p

vjj

∗ , p = 1, . . . , r2 − 1,

the resulting state is in S(σ1, σ2) with rank p+ r1 for p = 1, . . . , r2 − 1. Similarly, we can replace each zjz
∗
j

by a rank p + 1 matrix for p = 1, . . . , r2 − 1, in such a way that the resulting state still lies in S(σ1, σ2).

Hence, S(σ1, σ2) contains matrices of rank k for every k ∈ {r1, . . . , r1r2}.

Now, suppose ρ ∈ S(σ1, σ2) has rank r < r1. We will show that there exists ρ̃ ∈ S(σ1, σ2) with rank k

for any r < k < r1. We prove the result by induction on k. To this end, let

(2.4) ρ =

r∑
j=1

zjz
∗
j ∈ S(σ1, σ2).

By the Schmidt decomposition, zj =
∑tj
`=1 sj`xj` ⊗ yj` for each j, where tj = rank ([zj ]). Let wj` =

sj`xj` ⊗ yj`. Similar to the previous case, we can replace zjz
∗
j by

∑
`≤p

wj`w
∗
j` +

∑
`>p

wj`

∑
`>p

wj`

∗

so that the resulting state still lies in S(σ1, σ2). We may increase the number of summands in (2.4) by one

at each time until we get ρ̂ =
∑
j,` wj`w

∗
j`. Note that in each step, the rank of the state will either stay the

same or increase by 1, and rank (ρ̂) ≥ rank (tr2(ρ̂)) = rank (σ1) = r1. As a result, the set S(σ1, σ2) contains

matrices of ranks r, . . . , r1.

We illustrate the above theorem by the following example.
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Example 2.2. Suppose σ1 = diag(a1, a2, a3) and σ2 = diag(b1, b2) with a1 ≥ a2 ≥ a3 > 0, b1 ≥ b2 > 0.

Let

z1 = (
√
a1b1, 0, 0,

√
a2b2, 0, 0)t, z2 = (0, 0,

√
a2b1, 0, 0,

√
a3b2)t,

z3 = (0,
√
a1b2, 0, 0,

√
a3b1, 0)t.

Then ρ = z1z
∗
1 + z2z

∗
2 + z3z

∗
3 ∈ S(σ1, σ2) is of rank 3. One can replace z1z

∗
1 by v1v

∗
1 + v2v

∗
2 with v1 =

(
√
a1b1, 0, 0, 0, 0, 0)t and v2 = (0, 0, 0,

√
a2b2, 0, 0)t to get a rank 4 matrix in S(σ1, σ2). Similarly, we can

further replace z2z
∗
2 by v3v

∗
3 + v4v

∗
4 , and z3z

∗
3 by v5v

∗
5 + v6v

∗
6 , etc. to get matrices in S(σ1, σ2) of rank 5 and

6.

Corollary 2.3. Let (σ1, σ2) ∈ Dm × Dn. There is a rank one ρ ∈ S(σ1, σ2) if and only if σ1 and σ2
have the same (multi-)set of non-zero eigenvalues, say, λ1 ≥ · · · ≥ λr.

In such a case, there exists ρ ∈ S(σ1, σ2) of rank k if and only if 1 ≤ k ≤ r2.

Proof. The first part follows from the fact that ρ = vv∗ ∈ S(σ1, σ2), where v has Schmidt decomposition∑r
j=1 sjxj ⊗ yj , if and only if σ1 =

∑r
j=1 s

2
jxjx

∗
j and σ2 =

∑r
j=1 s

2
jyjy

∗
j .

The second part follows from Theorem 2.1.

We illustrate the above Corollary by the following example.

Example 2.4. Suppose σ1 = diag(λ1, λ2, 0) and σ2 = diag(λ1, λ2) such that λ1 ≥ λ2 > 0 and λ1 +λ2 =

1. Let f1 = (
√
λ1, 0, 0, 0, 0, 0)t, f2 = (0, 0, 0,

√
λ2, 0, 0)t. Then (f1 + f2)(f1 + f2)∗ ∈ S(σ1, σ2) has rank 1, and

f1f
∗
1 + f2f

∗
2 ∈ S(σ1, σ2) has rank 2. Let

v11 = (λ1, 0, 0, 0, 0, 0)t, v12 = (0, 0, 0, λ2, 0, 0)t,

v21 = (0, 0,
√
λ2λ1, 0, 0, 0)t, v31 = (0,

√
λ1λ2, 0, 0, 0, 0)t.

Then (v11 +v12)(v11 +v12)∗+v21v
∗
21 +v31v

∗
31 ∈ S(σ1, σ2) has rank 3 and v11v

∗
11 +v12v

∗
12 ++v21v

∗
21 +v31v

∗
31 ∈

S(σ1, σ2) has rank 4.

Next, we determine the minimal rank of ρ in S(σ1, σ2). For w = (w1, . . . , wmn)t ∈ Cmn, we continue to

let W = [w] be the m×n matrix such that the ith row equals (w(i−1)n+1, . . . , win) for i = 1, . . . ,m. One can

easily construct the inverse map which converts an m×n matrix W to w = vec(W ) ∈ Cmn so that W = [w].

Note that tr1(ww∗) = W t(W t)∗ and tr2(ww∗) = WW ∗. Suppose ρ ∈ S(σ1, σ2) has rank ≤ r. Then there

exists an mn×r matrix V such that tr1 (V V ∗) = σ2 and tr2 (V V ∗) = σ1. For 1 ≤ j ≤ r, let Wj = [vj ], where

vj is the jth column of V . Then we have σ1 = W1(W1)∗+· · ·+Wr(Wr)
∗ and σ2 = W t

1 (W t
1)
∗
+· · ·+W t

r (W t
r )
∗
.

Given C ∈ Hm, let λ(C) = (c1, . . . , cm) denote the eigenvalues of C with c1 ≥ · · · ≥ cm. Let Rm↓ =

{(xi) ∈ Rm : x1 ≥ · · · ≥ xm}. By a result of Klyachko [4, 2], the eigenvalues of a sum of Hermitian

matrices can be characterized by a set LR(m, r) of r+ 1 tuples (J0, J1, . . . , Jr), where J0, . . . , Jr are subsets

of {1, . . . ,m} . More specifically, given a = (a1, . . . , am) and cj = (c1j , . . . , cmj) ∈ Rm, 1 ≤ j ≤ r, there

exist A,C1, . . . , Cr ∈ Hn such that

A =

r∑
j=1

Cj with λ(A) = a, and λ(Cj) = cj , 1 ≤ j ≤ r

if and only if trA =
∑r
j=1 tr (Cj) and for every (J0, J1, . . . , Jr) ∈ LR(m, r), the inequality
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(2.5)
∑
i∈J0

ai ≤
r∑
j=1

∑
i∈Jj

cij

holds. We have the following.

Theorem 2.5. Suppose m ≤ n, σ1 ∈ Dm and σ2 ∈ Dn. The following conditions are equivalent:

(1) There exists ρ ∈ S(σ1, σ2) with rank ≤ r.
(2) There exist C1, . . . , Cr ∈ Hm and C̃1, . . . , C̃r ∈ Hn such that

(i) λ(C̃j) = λ(Cj ⊕On−m), (ii) σ1 =

r∑
j=1

Cj , and (iii) σ2 =

r∑
j=1

C̃j .

(3) There exists C ∈ Hm such that (2) holds with λ(Cj) = λ(C) and λ(C̃j) = λ(C ⊕ On−m) for all

1 ≤ j ≤ r.

Proof. “(1) ⇒ (2)”: Suppose there exists ρ ∈ S(σ1, σ2) with rank r. Then there exist W1, . . . ,Wr ∈
Mm,n such that

σ1 = W1(W1)∗ + · · ·+Wr(Wr)
∗ and σ2 = W t

1

(
W t

1

)∗
+ · · ·+W t

r

(
W t
r

)∗
.

Then (2) holds with Cj = WjW
∗
j and C̃j = W t

j (W t
j )∗.

“(2) ⇒ (1)” can be proven by reversing the above argument.

“(2) ⇒ (3)”: Suppose λ(σ1) = (a1, . . . , am), and λ(Cj) = (c1j , . . . , cmj) for j = 1, . . . , r. Let

(J0, J1, . . . , Jr) ∈ LR(m, r), and π = (1, 2, . . . , r) be the cyclic permutation of {1, . . . , r}, i.e., π(j) = j + 1

for 1 ≤ j < r and π(r) = 1. Then (J0, Jπk(1), . . . , Jπk(r)) ∈ LR(m, r). Since σ1 = C1 + · · ·+ Cr, by (2.5) we

have ∑
i∈J0 ai ≤

∑r
j=1

∑
i∈Jj ciσk(j) for every 0 ≤ k ≤ r − 1

⇒
∑
i∈J0 ai ≤

∑r
j=1

∑
i∈Jj ci, where ci = (ci1 + · · ·+ cir)/r

⇒ σ1 = Ĉ1 + · · ·+ Ĉr

for some Ĉ1, . . . , Ĉr ∈ Hm, where λ(Ĉj) = (c1, . . . , cm) for 1 ≤ j ≤ r. Similarly, we can choose C̃j such that

λ(C̃j) = (c1, . . . , cm, 0, . . . , 0).

Clearly, (3) ⇒ (2).

Remark 2.6. For every m,n ≥ 1, there exists a permutation matrix P ∈Mmn such that ρ ∈ S(σ1, σ2)
if and only if PρPT ∈ S(σ2, σ1). For example, let

P =



1 0 0 0 0 0

0 0 0 1 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 1 0 0 0

0 0 0 0 0 1


.

Then for every σ1 ∈ D2 and σ1 ∈ D3, ρ ∈ S(σ1, σ2) if and only if PρPT ∈ S(σ2, σ1). Thus, there is no loss

of generality in the restriction of m ≤ n in Theorem 2.5.
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Example 2.7. Suppose m = 2, n = 3, ρ =
1

12


3 −2 1 1 2 −1

−2 2 0 0 −2 2

1 0 1 1 0 1

1 0 1 1 0 1

2 −2 0 0 2 −2

−1 2 1 1 −2 3

. Then ρ ∈ S(σ1, σ2) with

σ1 =
1

12

[
6 −3

−3 6

]
, σ2 =

1

12

 5 1 4

1 2 1

4 1 5

. Let

C1 =
1

12

[
2 1

1 2

]
, C2 =

1

12

[
4 −4

−4 4

]
,

C̃1 =
1

12

 1 1 0

1 2 1

0 1 1

 , C̃2 =
1

12

 4 0 4

0 0 0

4 0 4

 .
We have:

(i) λ(C1) =
1

12
(3, 1), λ(C̃1) =

1

12
(3, 1, 0), λ(C2) =

1

12
(8, 0), λ(C̃2) =

1

12
(8, 0, 0).

(ii) σ1 = C1 + C2.

(iii) σ2 = C̃1 + C̃2.

Let c1 =
1

2

(
3

12
+

8

12

)
=

11

24
and c2 =

1

2

(
1

12
+ 0

)
=

1

24
. Then we can choose

C ′1 =
1

24

[
2 −3

−3 10

]
, C2 =

1

24

[
10 −3

−3 2

]
,

Ĉ1 =
1

24


5 + 4

√
2
57

1− 14
√

2
57

4 + 4
√

2
57

1− 14
√

2
57

2− 8
√

2
57

1− 14
√

2
57

4 + 4
√

2
57

1− 14
√

2
57

5 + 4
√

2
57

 ,
and

Ĉ2 =
1

24


5− 4

√
2
57

1 + 14
√

2
57

4− 4
√

2
57

1 + 14
√

2
57

2 + 8
√

2
57

1 + 14
√

2
57

4− 4
√

2
57

1 + 14
√

2
57

5− 4
√

2
57

 .

Then we have σ1 = C ′1+C ′2, σ2 = Ĉ1+Ĉ2 with λ(C ′1) = λ(C ′2) = (c1, c2) and λ(Ĉ1) = λ(Ĉ2) = (c1, c2, 0).

When n = rm, we have the following corollary of Theorem 2.5.

Corollary 2.8. Suppose n = rm, σ1 ∈ Dm and σ2 ∈ Dn. The following conditions are equivalent:

(a) There exists ρ ∈ S(σ1, σ2) with rank ≤ r.
(b) There exists C = (Cij) ∈ Hn with Cij ∈ Mm such that λ(C) = λ(σ2) and λ (C11 + · · ·+ Crr) =

λ(σ1).

(c) Condition (b) holds with λ (C11) = · · · = λ (Crr).
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Proof. “(a) ⇒ (b)”: Suppose (a) holds. Let Cj and C̃j , 1 ≤ j ≤ r, be as given by condition (2) in Theo-

rem 2.5. For each 1 ≤ j ≤ r, there exists an n×n unitary matrix Uj such that C̃j = Uj
(
Cj ⊕O(r−1)m

)
U∗j .

Let Vj ∈ Mn,m be formed by the first m columns of Uj . Let Rj = VjC
1/2
j and R = [R1| · · · |Rr]. Set

C = R∗R. Then

λ(C) = λ(R∗R) = λ(RR∗) = λ

 r∑
j=1

C̃j

 = λ(σ2)

and

λ (C11 + · · ·+ Crr) = λ

 r∑
j=1

R∗jRj

 = λ

 r∑
j=1

Cj

 = λ(σ1) .

Therefore, C = R∗R will satisfy condition (b).

“(b) ⇒ (a)”: Suppose (b) holds. Let C = R∗R where R = [R1| · · · |Rr], with Rj ∈ Mn,m. Then

Cii = R∗iRi and λ(C) = λ(RR∗). Hence, we have

λ(σ1) = λ (R∗1R1 + · · ·+R∗rRr) and λ(σ2) = λ (R∗1R1 + · · ·+R∗rRr) .

Since λ(R∗iRi) = λ
(
RiR

∗
i ⊕O(r−1)m

)
, the result follows from condition (2) in Theorem 2.5.

“(b) ⇔ (c)” follows from “(2) ⇔ (3)” in Theorem 2.5.

Applying Theorem 2.5, we have the following algorithm for finding the minimal rank r of matrices in

S(σ1, σ2).

Algorithm 2.9. Suppose σ1 ∈ Dm and σ2 ∈ Dn, with n ≥ m. Let

λ(σ1) = (a1, . . . , am) and λ(σ2) = (b1, . . . , bn).

Step 1. If bi = ai for 1 ≤ i ≤ m, then r = 1. If not, r > 1, then go to step 2.

Step 2. For r > 1, suppose the previous steps shows that the minimal rank is ≥ r. Let

Pr(a1, . . . , am) =

c ∈ Rm↓ : c1, . . . , cm ≥ 0,

m∑
j=1

cj = 1/r,

∑
i∈J0

ai ≤
r∑
j=1

∑
i∈Jj

ci for all (J0, J1, . . . , Jr) ∈ LR(m, r)

 ,

Qr(b1, . . . , bn) =

c ∈ Rm↓ : c1, . . . , cm ≥ 0,

m∑
j=1

cj = 1/r,

∑
i∈J0

bi ≤
r∑
j=1

∑
i∈Jj

ĉi for all (J0, J1, . . . , Jr) ∈ LR(n, r)

 ,

where in Qr(b1, . . . , bn), ĉi = ci for 1 ≤ i ≤ m and ĉi = 0 for m+ 1 ≤ i ≤ n.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 34, pp. 331-342, July 2018.

Chi-Kwong Li, Yiu-Tung Poon, and Xuefeng Wang 338

If S = Pr(a1, . . . , am) ∩Qr(b1, . . . , bn) is non-empty, then the minimal rank of ρ in S(σ1, σ2) is r.

Otherwise, the minimal rank is larger than r and we have to repeat Step 2 with r increased by 1.

By Theorem 2.1, Algorithm 2.9 will terminate for some

r ≤ max{rank (σ1), rank (σ2)}.

In fact, we can focus on σ1 ∈ Dm and σ2 ∈ Dn with rank m and n, respectively.

The set Pr(a1, . . . , am) and Qr(b1, . . . , bn) are polyhedral. There are standard linear programming

packages for checking whether S = Pr(a1, . . . , am)∩Qr(b1, . . . , bn) is empty. Actually, we have the following.

Proposition 2.10. Let S = Pr(a1, . . . , am) ∩ Qr(b1, . . . , bn) be defined as in Algorithm 2.9. Then the

set S is non-empty if and only if a1, . . . , am, b1, . . . , bn satisfy a finite set of linear inequalities.

Proof. Because (a1/r, . . . , am/r) ∈ Pr(a1, . . . , am), and Pr(a1, . . . , am) is governed by a finite set of

inequalities, it is a non-empty polyhedron. Thus, there are finitely many extreme points expressed as linear

combinations of a1, . . . , am. Now, Qr(b1, . . . , bn) is determined a finite set of inequalities, say, vtjx ≤ βj for

j = 1, . . . , N , where v1, . . . , vN ∈ Rn with entries in {b1, . . . , bn} and β1, . . . , βN ∈ R. If all the extreme points

of Pr(a1, . . . , am) lies in the complement of the half space defined by vt1x ≤ β1, then S is empty. Otherwise,

the intersection of Pr(a1, . . . , am) and the half space defined by vt1x ≤ β1 is a non-empty polytope, and has

a finite number of extreme points expressed as linear combinations of a1, . . . , am, b1, . . . , bn. We can repeat

the argument to this new polytope and the half space vt2x ≤ β2. We may conclude either the set and the

half space has empty intersection or non-empty intersection. Repeating the process, we get a finite set of

inequalities involving a1, . . . , am, b1, . . . , bn, such that any one of them being violated will imply that S = ∅,
and S 6= ∅ if all the inequalities are satisfied.

By the above proposition, one can determine whether

S = Pr(a1, . . . , am) ∩Qr(b1, . . . , bn) 6= ∅

by checking a finite set of inequalities in terms of a1, . . . , am, b1, . . . , bn. Using this result, one may determine

the set

Sr(m : σ2) = {σ ∈ Dm : there is ρ ∈ S(σ, σ2) with rank at most r}

for a given σ2 ∈ Dn; and

Sr(σ1 : n) = {σ ∈ Dn : there is ρ ∈ S(σ1, σ) with rank at most r}

for a given σ1 ∈ Dm. We have the following.

Proposition 2.11. Suppose σ2 ∈ Dn has eigenvalues b1 ≥ · · · ≥ bn. Then σ ∈ Sr(m : σ2) if and only if

σ has eigenvalues a1 ≥ · · · ≥ am such that Pr(a1, . . . , am) ∩Qr(b1, . . . , bn) 6= ∅.

Suppose σ1 ∈ Dm has eigenvalues a1 ≥ · · · ≥ am. Then σ ∈ Sr(σ1 : n) if and only if σ has eigenvalues

b1 ≥ · · · ≥ bm such that Pr(a1, . . . , am) ∩Qr(b1, . . . , bn) 6= ∅.

Although one can determine whether the set S = Pr(a1, . . . , am) ∩ Qr(b1, . . . , bn) is non-empty by

checking a finite set of inequalities, the number of inequalities involved may be very large. For low dimension
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case, the inequalities may be reduced to a smaller set after the redundant inequalities are removed. We

illustrate this in the following proposition with a direct proof. It would be nice if one can give a description of

non-redundant inequalities governing the eigenvalues of the reduced states of a bipartite state with prescribed

rank.

Given a = (a1, . . . , an) and b = (b1, . . . , bn) ∈ Rn, we say that a is majorized by b, denoted by a ≺ b,

if for 1 ≤ k ≤ n− 1 the sum of the k largest components of a is less than or equal to that of b. By Horn’s

result [3], a is the diagonal of some B ∈ Hn with eigenvalues b1, . . . , bn if and only if a ≺ b.

Proposition 2.12. Suppose σ1 ∈ D3 has eigenvalues a1 ≥ a2 ≥ a3 and σ2 ∈ D6 has eigenvalues

b1 ≥ · · · ≥ b6. Then σ1 ∈ S2(3 : σ2) if and only if a1, a2, a3 satisfying
∑3
i=1 ai =

∑6
j=1 bj and the following

inequalities:

b3 + b6, b4 + b5 ≤ a1 ≤ b1 + b2,

(2.6)
b3 + b4 + b5 + b6

2
≤ a2 ≤

b1 + b2 + b3 + b4
2

,

b5 + b6 ≤ a3 ≤ b1 + b4, b2 + b3.

Proof. Suppose σ2 ∈ D6 has eigenvalues b1 ≥ · · · ≥ b6 and σ1 ∈ S2(3 : σ2) has eigenvalues a1 ≥ a2 ≥ a3.

Then by Corollary 2.8, there exists a unitary matrix U ∈M6 such that U∗σ2U = (Cij)1≤i,j≤2 with

λ(C11) = λ(C22) = (c1, c2, c3) and λ(C11 + C22) = (a1, a2, a3).

Then there exist c1 ≥ c2 ≥ c3 and 3×3 unitary matrices V1 and V2 such that diag (V ∗i CiiVi) = (c1, c2, c3)

for i = 1, 2. Hence, (c1, c1, c2, c2, c3, c3) ≺ (b1, . . . , b6) [3], and we have:

1. a1 ≤ 2c1 ≤ b1 + b2.

2. a2 ≤ c1 + c2 ≤
b1 + b2 + b3 + b4

2
.

3. a3 ≤ 2c2 = (b1+b2+b3+b4+b5+b6)−2(c1+c3) ≤ (b1+b2+b3+b4+b5+b6)−(b2+b3+b5+b6) = b1+b4,

and (b1 + b2 + b3 + b4 + b5 + b6)− (b1 + b4 + b5 + b6) = b2 + b3.

Here, 2(c1 + c3) ≥ b2 + b3 + b5 + b6, b1 + b4 + b5 + b6 follows from the fact that [2]

({2, 3, 6, 7}, {1, 3, 4, 5}, {1, 3, 4, 5}), ({1, 4, 5, 6}, {1, 3, 4, 5}, {1, 3, 4, 5}) ∈ LR(6, 2) .

The other inequalities can be deduced by looking at 2µI3−diag(a1, a2, a3) and µI6−diag(b1, . . . , b6), where

µ = (b1 + · · ·+ b6)/6.

Given b1 ≥ · · · ≥ b6, let S be the set of (a1, a2, a3) satisfying a1 ≥ a2 ≥ a3,
∑3
i=1 ai =

∑6
i=1 bi = 6µ

and (2.6). Then S is a convex polyhedron in R3. If S is non-empty, we can choose an extreme point

(a1, a2, a3) of S. Therefore, among the inequalities a1 ≥ a2 ≥ a3 and (2.6), at least two equalities hold. If

a1 = a2 = a3 = 2µ, then from (2.6) we have

b3 + b6, b4 + b5 ≤ 2µ ≤ b1 + b4, b2 + b3,

b5 ≤ 2µ− b4 ≤ b1 and b6 ≤ 2µ− b3 ≤ b2.

Thus, diag(b1, b5) is unitarily similar to B1 with diagonal entries 2µ − b4, b and diag(b2, b6) is unitarily

similar to B2 with diagonal entries 2µ − b3, c; see [3]. Thus, B = diag(b1, . . . , b6) is unitarily similar
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to diag(b3, b4) ⊕ B1 ⊕ B2. There exists a permutation matrix P such that P ∗BP = (Dij) with D11 =

diag(b3, 2µ− b4, b) and D22 = diag(2µ− b3, b4, c). By the trace condition, we see that b+ c = 2µ. The result

follows from Corollary 2.8.

Suppose either a1 > a2 or a2 > a3. Then at least one of the equalities in (2.6) holds. Consider the

following cases:

1. a1 = b1 + b2. Then we have
b3 + b4 + b5 + b6

2
≤ a2 = (b3 + b4 + b5 + b6)− a3 ≤ b3 + b4. Therefore,

(a2, a3) ≺ (b3 + b4, b5 + b6). So there exists a 2× 2 unitary matrix U1 such that U∗1 diag(b3 + b4, b5 +

b6)U1 = (a2, a3). Let U2 = U1diag(1,−1). Let

B1 =
1

2

[
b3 + b4 b3 − b4
b3 − b4 b3 + b4

]
and B2 =

1

2

[
b5 + b6 b5 − b6
b5 − b6 b5 + b6

]
.

Then B = diag(b1, b2) ⊕ B1 ⊕ B2 has eigenvalues b1, . . . , b6. There exists a permutation matrix P

such that P ∗BP = (Dij) with

D11 =
1

2
diag(2b1, b3 + b4, b5 + b6) and D22 =

1

2
diag(2b2, b3 + b4, b5 + b6).

Let U = P ([1]⊕ U1 ⊕ [1]⊕ U2). Then U∗BU will satisfy condition (2) in Corollary 2.8.

2. a2 =
b1 + b2 + b3 + b4

2
. Then a1+a2 ≥ 2a2 = b1+b2+b3+b4 ⇒ a3 ≤ b5+b6. Therefore, a3 = b5+b6

and (a1, a2) ≺ (b1 + b2, b3 + b4). Thus, the result follows as in the previous case.

3. a3 = b1 + b4. Then

(b1 + b2 + b3 + b4 + b5 + b6) = a1 + a2 + a3 ≥ 3a3

= 3(b1 + b4) ≥ (b1 + b2 + b3 + b4 + b5 + b6)

⇒ a1 = a2 = a3 = b1 + b4 = b2 + b5 = b3 + b6

⇒ C = diag(b1, . . . , b6) will satisfy (2) in Corollary 2.8

.

4. a3 = b2 + b3. Then a1 + a2 = b1 + b4 + b5 + b6 and a2 ≥ a3 ≥ b5 + b6. Therefore, (a1, a2) ≺
(b1 + b4, b5 + b6). Thus, the result follows as in the Case 2.

The proof for the other equalities are similar.

Note that the same set of inequalities (2.6) will determine whether σ ∈ D6 with eigenvalues b1 ≥ · · · ≥ b6
lying in S2(σ1 : 6) for a given σ1 ∈ D3 with eigenvalues a1 ≥ a2 ≥ a3.

In case a3 = 0, then b5 = b6 = 0, and the set of inequalities reduce to:

(b3 + b4)/2 ≤ a2 and a1 ≤ b1 + b2.

These inequalities will determine σ ∈ S2(σ1 : 4) with eigenvalues b1 ≥ · · · ≥ b4 for a given σ1 ∈ D2 with

eigenvalues a1 ≥ a2. The same set of inequalities will also determine σ ∈ S2(2 : σ2) with eigenvalues a1 ≥ a2
for a given σ2 ∈ D4 with eigenvalues b1 ≥ · · · ≥ b4.
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Note that a satisfies (2.6) if and only if (c1, c2, c3) ≺ a ≺ (b1 + b2, b3 + b4, b5 + b6), where

c =



(
b4 + b5,

b1 + b2 + b3 + b6
2

,
b1 + b2 + b3 + b6

2

)
if

1

3
≤ b4 + b5,

(
1

3
,

1

3
,

1

3

)
if b4 + b5 ≤

1

3
≤ b2 + b3,

(
b1 + b4 + b5 + b6

2
,
b1 + b4 + b5 + b6

2
, b2 + b3

)
if b2 + b3 ≤

1

3
.

3. Quantum channels. Recall that quantum channels are completely positive linear maps Φ :Mm →
Mn that admit the operators sum representation

(3.7) φ(A) =

r∑
j=1

FjAF
∗
j ,

for some n × m matrices F1, . . . , Fj such that
∑r
j=1 F

∗
j Fj = Im; see [1, 6]. By the result in [1], Φ is a

quantum channel if and only if the Choi matrix C(Φ) = (Φ(Eij)) ∈ Mm(Mn) is positive semidefinite and

tr Φ(Eij) = δij . Thus, the set of quantum channels can be identified with the set

QC(m,n) = {P = (Pij) ∈Mm(Mn) : P is positive semidefinite, (tr(Pij)) = Im}
= {mρ ∈ Dmn : tr2(ρ) = Im/m} .

Consequently, the set of quantum channels Φ : Mm → Mn satisfying Φ(Im/m) = ρ2 ∈ Dn can be identified

with S(Im/m, ρ2). In particular, S(In/n, In/n) can be identified with the set of unital quantum channels

from Mn to Mn.

For a quantum channel Φ, its Choi rank is defined as the rank of its Choi matrix C(Φ). Moreover, it

is known that Φ has Choi rank r if and only if r is the minimum number of matrices F1, . . . , Fr required in

the operator sum representation of Φ. By Theorem 2.3, we have the following.

Proposition 3.1. There is ρ ∈ S(In/n, In/n) of rank k if and only if 1 ≤ k ≤ n2. Equivalently, there

is a unital quantum channel with Choi rank k if and only if 1 ≤ k ≤ n2.

By the result in the previous section, we have the following.

Proposition 3.2. Let ρ2 ∈ Dn. There is a quantum channel Φ : Mm → Mn with Choi rank k and

Φ(Im/m) = ρ2 if and only if there is a rank k element in S(Im/m, ρ2). As a result, the value k can be any

value between the minimum value r determined by Algorithm 2.9 and the maximum value rank (ρ) ·m.
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