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SOME GRAPHS DETERMINED BY THEIR DISTANCE SPECTRUM∗

HUIQIU LIN† AND STEPHEN DRURY‡

Abstract. Let G be a connected graph with order n. Let λ1(D(G)) ≥ · · · ≥ λn(D(G)) be the distance spectrum of G. In

this paper, it is shown that the complements of Pn and Cn are determined by their D-spectrum. Moreover, it is shown that

the cycle Cn (n odd) is also determined by its D-spectrum.
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1. Introduction. For M be a Hermitian matrix of order n we denote by pM the characteristic polyno-

mial of M defined by pM (λ) = det(λIn −M), where In is the n× n identity matrix. Its characteristic roots

are all real and will be denoted in nonincreasing order by

λ1(M) ≥ λ2(M) ≥ · · · ≥ λn(M),

where possible duplicates have not been suppressed. They are eigenvalues of M . We define SpecM the

M -spectrum by the multiset {λ1(M), λ2(M), . . . , λn(M)}. The matrices that we are interested in relate to

graphs.

All graphs considered here are simple, connected (so loops or multiple edges are not allowed), undirected

and finite. Let G = (V (G), E(G)) be a graph with vertex set V (G) = {v1, v2, . . . , vn} and edge set E(G).

For a graph G, let M = M(G) be a graph matrix defined in a prescribed way (typically M(G) = A(G) for

the adjacency matrix of G and M(G) = D(G) for the distance matrix of G). Two graphs G and H are said

to be M -cospectral if they have the same M -spectrum.

As usual, we use Pn and Cn to denote the path and cycle with order n, respectively. We denote by δ(G)

the minimum degree of G. We also denote G the complement of the graph G and we will write G ∼= H to

mean that G and H are isomorphic graphs. Other matrix notations that we use in this article are J for the

matrix in which every entry is 1, 1 the vector of ones, Adj(M) for the classical adjoint of the matrix M and

‖M‖HS for the Hilbert–Schmidt (Frobenius) norm of a matrix M .

Since we know that if G is A-cospectral with H, then G and H have the same size, it is natural to ask

the following problem.

Question 1.1. Let G and H be two connected graphs of order n with size m(G) and m(H), respectively.

When G is D-cospectral with H, does m(G) = m(H) hold?
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Unfortunately, the answer to Question 1.1 is negative. The following two graphs G1 and G2 have the

same distance characteristic polynomial

λ8 − 138λ6 − 868λ5 − 2196λ4 − 2672λ3 − 1520λ2 − 320λ,

but G1 has 10 edges and G2 has 11 edges.
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Fig. 1. The graphs G1 and G2.

We believe that this is the smallest order example of this phenomenon. The reader may consult Heysse[11]

for other examples.

Graphs G and H with the same spectrum of a graph matrix M are called M -cospectral graphs. A

graph G is said to be determined by its M -spectrum if there is no other non-isomorphic graph with the same

spectrum, that is, SpecM(H) = SpecM(G) implies H ∼= G. The following problem is very interesting but

difficult.

Problem 1.2. Which connected graphs are determined by their M -spectrum?

The background of this problem originates from chemistry. In 1956, Günthard and Primas [9] raised

this question in the context of Hückel’s theory. It is an old problem yet far from solved. For additional

remarks on this topic we refer the reader to the excellent surveys by van Dam and W.H. Haemers [5, 6]. The

following results are about the graphs which are determined by their A-spectra or D-spectra.

Jin and Zhang [13] proved that the complete multipartite graph is determined by its D-spectra which was

conjectured by Lin, Hong, Wang and Shu [15]. However, the complete multipartite graph is not determined

by its A-spectra, (C4 ∪K1 and K1,4 have the same A-spectrum).

Let Fk denote the friendship graph. Cioabă, Haemers, Vermette, Wong [3] showed that Fk (k 6= 16) is

determined by its A-spectrum. Very recently, Lu, Huang and Huang [18] proved that Fk is determined by

its D-spectrum.

Hoffman [12] showed that hypercubes are determined by their A-spectrum in dimension less than or

equal to 3 but not for higher dimensions. Koolen, Hayat and Iqbal [14] showed that the hypercubes are

determined by their D-spectrum.

Let Ks,t denote the complete bipartite graph. Cámara and Haemers [2] and Lin, Zhai and Gong [17]

showed the complement of Ks,t∨(n−s−t)K1 (s+t < n) is determined by its A-spectrum and its D-spectrum

respectively.

Doob and Haemers [7] proved that the complement of Pn is determined by its A-spectrum. In this paper,
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we prove that the complement of Pn is determined by its D-spectrum.

The rest of the paper is organized as follows. In Section 2, we show that the graphs Cn and Pn are

determined by their D-spectrum. In Section 3, we show that the cycle Cn (n odd) is also determined by its

D-spectrum.

2. The graphs Cn and Pn are determined by their distance spectra.

2.1. Basic facts about the D-spectra of Cn and Pn.

Lemma 2.1. (Cauchy Interlace Theorem) Let A be a Hermitian matrix with order n and let B be a

principal submatrix of A with order m. If λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A) list the eigenvalues of A and

µ1(B) ≥ µ2(B) ≥ · · · ≥ µm(B) list the eigenvalues of B, then

λn−m+i(A) ≤ µi(B) ≤ λi(A)

for i = 1, . . . ,m.

The D-spectrum of Cn is easily calculated by a discrete Fourier transform. We obtain

λ1(D(Cn)) = n+ 1

λ2j(D(Cn)) = −1 + 2 cos

(
2πj

n

)
, j = 1, . . . ,

⌊n
2

⌋
λ2j+1(D(Cn)) = −1 + 2 cos

(
2πj

n

)
, j = 1, . . . ,

⌊
n− 1

2

⌋
with most of the eigenvalues being repeated. In case n is even, we have λn(D(Cn) = −3.

The following observations are motivated by Doob and Haemers [7]. It is easily observed that D(Pn)

occurs as a principal n× n submatrix of D(Cn+1). The Cauchy Interlacing Theorem gives

λ2j(D(Pn)) = λ2j(D(Cn+1) = −1 + 2 cos

(
2πj

n+ 1

)
, j = 1, . . . ,

⌊n
2

⌋
.

For the remaining eigenvalues of D(Pn), the strict form of the Cauchy Interlacing Theorem [10] gives

λ2j−1(D(Cn+1)) > λ2j−1(D(Pn)) > λ2j(D(Cn+1))), j = 1, . . . ,

⌊
n+ 1

2

⌋
.

which implies in particular that the eigenvalues of D(Pn) are all simple.

We denote by diam(H) the diameter of the graph H.

Lemma 2.2. Let G = Cn or G = Pn, and let H be D-cospectral to G. Then diam(H) = 2 and m(H) =

m(G).

Proof. We have λn(D(H)) = λn(D(G)) > −2−
√

2. It follows from [16, Theorem 2.3] that diam(H) = 2.

Since
n∑
i=1

λ2i (D(H)) =

n∑
i=1

λ2i (D(G))
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and
n∑
i=1

λ2i (D(H)) =
∑

1≤i,j≤n

d2ij(H) = 2m(H) + 4[n(n− 1)− 2m(H)],

it follows that m(G) = m(H).

Lemma 2.3. Let A = A(H) be the adjacency matrix of a graph H with n vertices and m edges. Then

we have

tr
(
(A+ J − I)3

)
= tr(A3) + 3tr(A2J) + (3n− 6)tr(AJ)− 3tr(A2) + n3 − 3n2 + 2n

= 6m(n− 3) + n3 − 3n2 + 2n+ tr(A3) + 3

n∑
j=1

n∑
k=1

n∑
`=1

ajkak`

= 6mn+ n3 − 3n2 + 8n+ tr(A3) + 3

n∑
k=1

(dk − 1)(dk − 2),(2.1)

where dk denotes the degree of the kth vertex.

Proof. The result follows by routine calculation.

In particular, if diam(H) = 2 and m(H) = m, then D(H) = A(H) + J − I and it follows that

tr
(
D(H)3

)
= 4n3 − 6n2 + 8n− 6mn+ tr(A(H)3) + 3

n∑
k=1

(dk(H)− 1)(dk(H)− 2).

Proposition 2.4. Let G = Cn with n ≥ 4 or G = Pn, and let H be D-cospectral to G. Then H is a

disjoint union of paths and cycles.

Proof. By Lemma 2.2, we have diam(H) = 2 and m(G) = m(H). Since G and H are D-cospectral, we

have tr
(
D(G)3

)
= tr

(
D(H)3

)
. Since tr(A(G)3) = 0 and dk(G) ∈ {1, 2}, it follows that

tr(A(H)3) + 3

n∑
k=1

(dk(H)− 1)(dk(H)− 2) = 0.

But every term on the left is nonnegative. We deduce that tr(A(H)3) = 0 and that dk(H) ∈ {1, 2} for all

k = 1, . . . , n. Hence, the result holds.

2.2. The complement of Pn is determined by its distance spectrum.

Lemma 2.5. Let G = Pn and let H be distance cospectral to G. Then H is a disjoint union of a path

and a number (possibly zero) of cycles.

Proof. This follows from Proposition 2.4 and the fact that m(G) = m(H).

Lemma 2.6. We have

p det(λI −D(Cp)) = (λ− (p+ 1))1′Adj(λI −D(Cp))1.

Proof. This is an immediate consequence of the fact that 1 is the Perron eigenvector of D(Cp) for the

Perron eigenvalue p+ 1.
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Theorem 2.7. The complement of Pn is determined by its distance spectra.

Proof. Let H be a graph cospectral with Pn. By virtue of Lemma 2.5, it will suffice to assume that H

is the disjoint union of Cp and an unknown graph Q and obtain a contradiction. Towards this, we have by

a standard Schur Complement formula

det(λI −D(H)) = det(λI −D(Cp)) det(λI −D(Q))−
(
1
′Adj(λI −D(Cp))1

) (
1
′Adj(λI −D(Q))1

)
.

By Lemma 2.6, the polynomial 1′Adj(λI −D(Cp))1 is a factor of det(λI −D(H)) = det(λI −D(Pn)), and

hence, det(λI − D(Pn)) has all the roots of det(λI − D(Cp)) (counted according to multiplicity) with the

exception of the Perron root p+ 1. But this forces D(Pn) to have at least one multiple characteristic root,

a contradiction.

2.3. The complement of Cn is determined by its distance spectrum.

Lemma 2.8. Let G = Cn and let H be D-cospectral to G. Then H is a disjoint union of a number of

cycles.

Proof. This follows from Proposition 2.4 and the fact that m(G) = m(H).

The following result is a case of Weyl’s Inequality [1, Theorem III.2.1].

Lemma 2.9. [19] Let A and B be n× n Hermitian matrices and C = A+B. Then

λk(C) ≥ λj(A) + λk−j+n(B) (n ≥ j ≥ k ≥ 1).

Lemma 2.10. Let G = Cn and let H be D-cospectral to G. Then H does not contain the union of two

disjoint cycles.

Proof. If not, we may suppose that H contains the union of two disjoint cycles, then λ2(A(H)) ≥ 2.

Note that D(H) = Jn − In +A(H). Then by Lemma 2.9, we have

λ2(D(G)) = λ2(D(H)) ≥ λ2(A(H)) + λn(Jn − In) ≥ 1,

a contradiction.

Theorem 2.11. The complement of Cn is determined by its distance spectra.

Proof. For n = 3, the proof is by direct calculation. We assume n ≥ 4. Let H be a graph cospectral

with Cn. By virtue of Lemma 2.8, H is a disjoint union of cycles. By Lemma 2.10, H is a single cycle.

Remark 2.12. An interesting situation arises when G is the complement of the union of C6 and an

isolated vertex and H is the complement of the graph obtained by taking three disjoint copies of P3 and

identifying a pendent vertex from each copy. These graphs are D-cospectral. Their complements have

seven vertices and six edges. All the vertices of the complements except one have degree one or two. The

exceptional vertex of G has degree 0 and that of H has degree 3. Thus, the identity

tr(A(G)3) + 3

n∑
k=1

(dk(G)− 1)(dk(G)− 2) = tr(A(H)3) + 3

n∑
k=1

(dk(H)− 1)(dk(H)− 2)

holds.
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3. The graph Pn is determined by its distance spectrum.

Theorem 3.1. Let G be a connected graph with n vertices. Then ‖D(G)‖2HS ≤
n4 − n2

6
with equality if

and only if G is a path. In particular Pn is determined by its distance spectrum.

Proof. The proof is by induction on the number n of vertices. Since the theorem is easy to check for

small n, induction starts.

Replacing G by a spanning tree of G increases the distance matrix elementwise. Hence, without loss of

generality, we may assume that G is a tree. Select a pendent vertex v of G and let H be the tree obtained

by removing v from G. Then, by the induction hypothesis,

‖D(H)‖2HS ≤
(n− 1)2(n− 2)n

6
,

with equality only if H is a path. Now clearly,

∑
u 6=v

dG(u, v)2 ≤
n−1∑
k=1

k2 =
n(2n− 1)(n− 1)

6
,

with equality if and only if there is a vertex u of G such that dG(u, v) = n− 1. It now follows that

‖D(G)‖2HS ≤ ‖D(H)‖2HS + 2
∑
u6=v

dG(u, v)2 ≤ (n− 1)2(n− 2)n

6
+
n(2n− 1)(n− 1)

3
=
n4 − n2

6
,

with equality implying diam(G) = n− 1 and forcing G to be a path. This completes the induction step.

4. The graph Cn (n odd) is determined by its distance spectrum. In [16], it is shown that

D(G)1 ≤ λ1(D(Cn))1 for every 2-connected graph G of order n. Using much the same methods, we will

establish the following theorem.

Theorem 4.1. For every 2-edge connected graph G of order n, ‖D(G)‖HS ≤ ‖D(Cn)‖HS with equality

only if G ∼= Cn.

Lemma 4.2. Let G be a 2-connected graph of order n and v any vertex. Then the following hold:

1.
∑n
k=1 dv,k ≤ α1(n) =

{
n2−1

4 if n is odd,
n2

4 if n is even.

2.
∑n
k=1 d

2
v,k ≤ α2(n) =

{
n3−n
12 if n is odd,

n3+2n
12 if n is even.

Proof. We note that part 1 is already established in [16]. We let d = max
1≤k≤n

dv,k and let Si be the set of

vertices at exactly distance i from v for i = 0, . . . , d. Lin et al. note that Si is a cut set for i = 1, . . . , d− 1

and deduce that |Si| ≥ 2 in the same range. Starting from

n∑
k=1

d2v,k =

d∑
i=1

|Si|i2, n− 1 =

d∑
i=1

|Si|,

we find

(n− 1)d2 −
d∑
i=1

|Si|i2 =

d∑
i=1

|Si|(d2 − i2) ≥
d∑
i=1

2(d2 − i2) =
4

3
d3 − d2 − 1

3
d.
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Therefore,
n∑
k=1

d2v,k ≤ (n− 1)d2 − 4

3
d3 + d2 +

1

3
d.

This quantity attains its maximum value of n3−n
12 when d = n−1

2 or d = n+1
2 if n is odd and n3+2n

12 at d = n
2

if n is even. It is easy to see that these values are attained for G = Cn and if equality obtains, then |Si| = 2

for i = 1, . . . , n−12 (case n odd) and for i = 1, . . . , n−22 (case n even). Thus, G ∼= Cn.

Corollary 4.3. Let G be a 2-connected graph of order n. Then ‖D(G)‖HS ≤ ‖D(Cn)‖HS with equality

only if G ∼= Cn.

The proof is immediate.

Lemma 4.4. Let G be a 2-edge connected graph of order n and v any vertex. Then

1.
∑n
k=1 dv,k ≤ β1(n) =

{
n2−n

3 if n ∼= 0 or 1 (mod 3),
n2−n−2

3 if n ∼= 2 (mod 3).

2.
∑n
k=1 d

2
v,k ≤ β2(n) =


4n3−6n2

27 if n ∼= 0 (mod 3),
4n3−6n2+2

27 if n ∼= 1 (mod 3),
4n3−6n2−24n+40

27 if n ∼= 2 (mod 3).

Proof. Using the same notations as before, we note that |S1| ≥ 2 and that for i = 1, . . . , d − 1, either

|Si| ≥ 2 or |Si+1| ≥ 2 since if both |Si| = 1 and |Si+1| = 1, then removal of the unique edge joining Si to

Si+1 will disconnect the graph. In obtaining a lower bound for
∑d
i=1 |Si|(d− i), we see that the worst case

scenario is when |Si| = 2 for i odd and |Si| = 1 for i even. Thus, we obtain

(n− 1)d−
d∑
i=1

|Si|i =

d∑
i=1

|Si|(d− i) ≥
3

4
d2 − 1

2
d− 1

8
+

1

8
(−1)d,

and hence,
n∑
k=1

dv,k ≤ (n− 1)d− 3

4
d2 +

1

2
d+

1

8
− 1

8
(−1)d.

The maximum value of this quantity is obtained with d = 2n
3 even when n ∼= 0 (mod 3), d = 2n−2

3 even

when n ∼= 1 (mod 3) and d = 2n−1
3 odd when n ∼= 2 (mod 3). A moment’s thought shows that in case n ∼= 2

(mod 3), d = 2n−1
3 is unattainable. It is not difficult to see that the largest value is obtained from |Si| = 1

for i = 0, 2, 4, . . . , d − 2 and |Si| = 2 for i = 1, 3, . . . , d − 3, d − 1, d, where d = 2n−4
3 is even. The second

assertion follows in the same way after finding

n∑
k=1

d2v,k ≤
1

4
d(4dn− 2d− 4d2 + 1− (−1)d)

and arguing as above.

Lemma 4.5. If G is a 2-edge connected graph that is not 2-connected, then there exists a vertex v whose

removal disconnects G and such that there is a 2-connected subgraph K of G and a 2-edge connected subgraph

H of G with vertex sets meeting only in v.

Proof. Consider the set M of maximal 2-connected induced subgraphs of G. Since G is not 2-connected,

M has at least two elements. Clearly two such subgraphs are either vertex disjoint or meet in a single
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vertex. Thus, we may define a graph on the vertex set M . Two vertices of M are adjacent if and only if the

intersection of the vertex sets of the corresponding subgraphs is a singleton. Clearly this graph is connected

and cannot have a cycle since this would contradict the maximality of at least one of the graphs in M . So,

the graph is a tree. We choose one of the subgraphs corresponding to a leaf of this tree. This is the graph

K and it links to exactly one element of M at a vertex v. The union of the remaining subgraphs is H. Then

K and H meet only in v and H is 2-edge connected since G is.

Proposition 4.6. If G is a 2-edge connected graph that is not 2-connected, then

‖D(G)‖HS < ‖D(Cn)‖HS.

Proof. We prove this by induction on n. For small values of n it is easily verified. We apply Lemma 4.5

and use the induction hypothesis to deduce

‖D(H)‖2HS ≤ qα2(q) = ‖D(Cq)‖2HS,

where q is the order of H. We find an upper bound for the square of the Hilbert–Schmidt norm of G by

‖D(G)‖2HS = ‖D(K)‖2HS + ‖D(H)‖2HS + 2
∑

k∈V (K)\{v}

∑
`∈V (H)\{v}

(dv,k + dv,`)
2

since for k ∈ V (K) and ` ∈ V (H), dk,` = dv,k + dv,`. We may assume that K has p ≥ 3 vertices and H has

q ≥ 3 vertices. Then

‖D(G)‖2HS = ‖D(K)‖2HS + ‖D(H)‖2HS + 2(q − 1)
∑

k∈V (K)

d2v,k

+ 2(p− 1)
∑

`∈V (H)

d2v,` + 4

 ∑
k∈V (K)

dv,k

 ∑
`∈V (H)

dv,`

 .

Therefore, we wish to show

pα2(p) + qα2(q) + 2(q − 1)α2(p) + 2(p− 1)β2(q) + 4α1(p)β1(q) < nα2(n)

where n = p+ q− 1. For moderate values of n (say n ≤ 10) this can be done by checking all possible values

of p and q. For large n, we use the worst case estimates for the quantities. Explicitly we need to check that

1

12
p2(p2 + 2) +

1

12
q2(q2 + 2) +

1

6
(q − 1)p(p2 + 2) +

2

27
(p− 1)(4q3 − 6q2 + 2) +

p2

3

(
q2 − q

)
<
n2(n2 − 1)

12
.

for n = p+ q − 1, p, q ≥ 3 and p+ q > 11. This amounts to showing that

1

6
p3q +

1

6
p2q2 +

1

27
pq3 − 1

6
p3 − 2

3
p2q − 5

9
pq2 − 1

27
q3 +

1

4
p2 − 7

36
q2 +

1

2
pq − 1

6
q +

1

54
p+

4

27
> 0

in the same range. This is a lengthy exercise in differential calculus which we omit.

Proof of Theorem 4.1. If G is 2-connected, the result follows from Corollary 4.3, if not, then from Propo-

sition 4.6.

Furthermore, we have:

Proposition 4.7. For n odd, the coefficient of λ in the characteristic polynomial det(λI − D(Cn)) is

odd.
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Proof. The coefficient of λ in the characteristic polynomial det(λI −D(Cn)) is the sum of n principal

minors of oder n−1. All these minors are equivalent, so it suffices to show that a typical such minor written

with coefficients in GF (2) has determinant 1. One reduces such a minor by applying row operations in the

central four rows in such a way that the central two rows and the first and last columns can be removed.

This results in a minor of a similar type, so that the result follows by an induction hypothesis.

As an example, consider the case n = 9. Then

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 1 0 0 1 0

1 0 1 0 1 0 0 1

0 1 0 1 0 1 0 0

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

0 0 1 0 1 0 1 0

1 0 0 1 0 1 0 1

0 1 0 0 1 0 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 1 0 0 1

0 1 0 1 0 0

1 0 1 0 1 0

0 1 0 1 0 1

0 0 1 0 1 0

1 0 0 1 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
in GF (2) by applying the row operations R4 → R4 −R3 and R5 → R5 −R6.

Proposition 4.8. For G a graph which is not 2-edge connected, the coefficient of λ in the characteristic

polynomial det(λI −D(G)) is even.

Lemma 4.9. Let A be a symmetric n× n matrix with coefficients in GF (2) with zero diagonal. Then if

n is odd, det(A) = 0. If n is even, then det(A) =
∑∏n

2
j=1 apj ,qj where the sum is over all sets of n

2 disjoint

pairs (pj , qj).

Proof. Consider the expansion det(A) =
∑
σ∈Sn

∏n
j=1 aj,σ(j). The term corresponding to σ in this

expansion is the same as the term corresponding to σ−1. So, if σ 6= σ−1 the terms cancel. Since only

permutations σ with no fixed points can make a contribution, the result follows.

Corollary 4.10. Let A be a symmetric n×n matrix with coefficients in GF (2). Suppose that a1,k = 1

for k = 2, . . . , n, a1,1 = 0 and aj,j = λ for j = 2, . . . , n. Then the coefficient of λ in det(A) is zero.

Proof. The coefficient of λ in det(A) is
∑n
k=2 det(Ak), where Ak is the matrix obtained by striking out

the kth row and column from A and setting the diagonal elements to zero. If n is even, then det(Ak) = 0 for

all k. If n is odd, then det(Aj) =
∑∏n

2
j=1 apj ,qj where the sum is over all sets of n−2

2 disjoint pairs (pj , qj)

from {2, . . . , n} \ {k}. It is easy to see that each such set of pairs occurs exactly twice.

Proof of Proposition 4.8. The characteristic polynomial of D(G) where G can be disconnected by the

removal of an edge e has the form modulo GF (2)

∣∣∣∣∣∣∣∣
λI +A x 1 + x Z

x′ λ 1 1
′ + y′

1
′ + x′ 1 λ y′

Z ′ 1 + y y λI +B

∣∣∣∣∣∣∣∣ ,

where x and y are column vectors and A and B are symmetric matrices with zero diagonal. The second and

third row and columns correspond to the vertices adjoining the edge e. After applying a simultaneous row
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and column operation, this becomes∣∣∣∣∣∣∣∣
λI +A x 1 Z

x′ λ 1− λ 1
′ + y′

1
′ 1− λ 2(λ− 1) −1′

Z ′ 1 + y −1 λI +B

∣∣∣∣∣∣∣∣ .
Clearly, we may replace 2(λ− 1) with zero and the contribution to the coefficient of λ of the λ term in the

(2,3) entry is the same as that in the (3,2) entry. Therefore, the determinant∣∣∣∣∣∣∣∣
λI +A x 1 Z

x′ λ 1 1
′ + y′

1
′ 1 0 1

′

Z ′ 1 + y 1 λI +B

∣∣∣∣∣∣∣∣
will have the same coefficient of λ modulo 2. The result now follows from Corollary 4.10.

Theorem 4.11. For n odd, the graph Cn is uniquely determined by its distance spectrum.

Proof. Let G be a graph with the same order and distance spectrum as Cn. Then if G is 2-edge connected,

the result follows from Theorem 4.1, if not, then from Propositions 4.7 and 4.8.

5. Concluding remarks. Suppose that G is D-cospectral with H, we know that m(G) is not always

equal to m(H). So we have the following problem.

Problem 5.1. Suppose that G is D-cospectral with H. Under which condition, we have m(G) = m(H)?

From the paper, we know that if both G and H have diameter 2, then m(G) = m(H). But when the

diameter is greater than 3, then the size is not always equal. So it is interesting to consider the connected

graphs with larger diameter, such as Cn. In the paper, when n is odd, we show that Cn is determined by

its D-spectra, but when it comes to n even, we leave the following problem.

Problem 5.2. For n even, is the graph Cn uniquely determined by its distance spectrum?
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