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SEMIPOSITIVITY OF LINEAR MAPS RELATIVE TO PROPER CONES

IN FINITE DIMENSIONAL REAL HILBERT SPACES∗

CHANDRASHEKARAN ARUMUGASAMY† , SACHINDRANATH JAYARAMAN‡ , AND VATSALKUMAR N. MER‡

Abstract. For a proper cone K in a finite dimensional real Hilbert space V , a linear map L is said to be K-semipositive if

there exists d ∈ K◦, the interior of K, such that L(d) ∈ K◦. The aim of this manuscript is to characterize K-semipositivity of

linear maps relative to a proper cone. Among several results obtained, K-semipositivity is characterized in terms of products

of the form Y X−1 for K-positive linear maps (L(K \ {0}) ⊆ K◦) with X invertible, semipositivity of matrices relative to

the n-dimensional Lorentz cone Ln+ is characterized, semipositivity of the following three linear maps relative to the cone Sn+:

X 7→ AXB (denoted by MA,B), X 7→ AXB+BtXAt (denoted by LA,B), where A,B ∈Mn(R), and X 7→ X−AXAt (denoted

by SA, known as the Stein transformation) is characterized. It is also proved that MA,B is semipositive if and only if B = αAt

for some α > 0, the map LA,B is semipositive if and only if A(Bt)−1 is positive stable. A particular case of the new result

generalizes Lyapunov’s theorem. Decompositions of the above maps (when they are semipositive) in the form L1L
−1
2 , where

L1 and L2 are both positive and invertible (assuming A is invertible in the case of SA) are presented. Moreover, a question on

invariance of the semipositive cone KA of a matrix under A is partially answered.

Key words. Positivity and semipositivity of linear maps, Proper cones, Positive definite matrices, Positive stable matrices,

Semidefinite linear complementarity problems, Lyapunov and Stein transformations, Semipositive cone.
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1. Introduction, definitions and preliminaries. We work throughout with matrices or linear maps

over the field R of real numbers. An m × n matrix A with real entries is said to be semipositive (with

respect to the cone Rn+ of nonnegative vectors in Rn) if there exists a d > 0 such that Ad > 0, where the

inequalities are understood componentwise. Semipositivity characterizes invertible M -matrices within the

class of Z-matrices (see Chapter 6 of [7]) and was also studied in the context of stability of matrices [8]. In

[15], Fiedler and Ptak call the class of semipositive matrices as S-matrices. For interesting connections to

game theory problems, refer to the first chapter of Bapat and Raghavan’s book [4]. Semipositivity occurs

naturally in optimization problems. A brief sketch is presented in the next section. Several interesting results

have appeared recently concerning the structure as well the preserver properties of semipositive matrices (see

for instance [1, 12, 13, 23, 33]).

The following notations will be used throughout. The letter V will denote a finite dimensional real

Hilbert space. Mm,n(R) will denote the vector space of m× n matrices over R. This set will be denoted by

Mn(R) when m = n. The subspace of Mn(R) consisting of symmetric matrices will be denoted by Sn. For

A ∈Mn(R), we shall denote by λ(A) or simply λ, an eigenvalue of A. The set of all eigenvalues of A will be

denoted by σ(A).
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The organization and important results obtained in the manuscript are as follows. Section 1 is introduc-

tory, contains basic definitions, preliminaries, a brief introduction, basic facts about convex (proper) cones

and positive/semipositive operators relative to such cones, basic facts about LCPs and generalizations. The

main results are presented in Section 2. We start with a decomposition result for K-semipositive matrices,

followed by semipositivity of matrices over the Lorentz cone Ln+. Semipositivity and decomposition results

over the cone Sn+ of three specific maps MA,B , LA,B and SA are presented. These are followed by a few

remarks and examples. A brief section on the semipositive cone of a matrix A and its invariance under A

is also brought out. In Section 3 of the manuscript, we present a possible application to linear preserver

problems. The manuscript ends with a few concluding remarks.

1.1. Convex cones, positive and semipositive operators. Let us recall that a subset K of a finite

dimensional real Hilbert space V is a convex cone if K +K ⊆ K and αK ⊆ K for all α ≥ 0. K is said to be

proper if it is closed, pointed (K ∩ −K = {0}) and has nonempty interior (denoted by K◦). The dual, K∗,

is defined as K∗ = {y ∈ V : 〈y, x〉 ≥ 0 ∀x ∈ K}. When K is a convex cone in V such that K = K∗, then

we say that K is a self-dual cone in V . Our focus is when V is either Rn with the standard Euclidean inner

product or Mn(R) with inner product 〈X,Y 〉 = trace(Y tX) or Sn with inner product 〈X,Y 〉 = trace(XY ).

A cone K is said to be polyhedral if K = X(Rm+ ) for some X ∈ Mn×m(R) and simplicial if X is an

invertible matrix. Three well known examples of proper self-dual convex cones are the following:

(1) K = Rn+ = {x = (x1, . . . , xn)t ∈ Rn : xi ≥ 0 ∀ 1 ≤ i ≤ n}, the nonnegative orthant in Rn.

(2) K = Ln+ = {x = (x1, . . . , xn)t ∈ Rn : xn ≥ 0, x2n ≥
n−1∑
i=1

x2i }, the Lorentz cone in Rn.

(3) K = Sn+ = {A ∈ Sn : A is positive semidefinite}, the set of symmetric positive semidefinite matrices in

Sn.

In general, one can also consider the set Kp = {x = (x1, . . . , xn)t ∈ Rn : xn ≥ 0, xpn ≥
n−1∑
i=1

xpi } for

1 ≤ p < ∞ and for p = ∞, K∞ = {x = (x1, . . . , xn)t ∈ Rn : xn ≥ 0, xn ≥ |xi|, i = 1, . . . , n− 1}. This set

Kp, for 1 ≤ p ≤ ∞, is also an example of a proper cone, called the p-norm cone. Kp is self-dual only when

p = 2. Note that the cone K∞ in R2 is the Lorentz cone. We shall need the notion of an ellipsoidal cone later

on when we study semipositivity relative to the Lorentz cone. Let Q be a nonsingular symmetric matrix

with inertia (n − 1, 0, 1). Let λn be the single negative eigenvalue of Q with a normalized eigenvector un.

Define K := K(Q, un) = {x ∈ Rn : xtQx ≤ 0, xtun ≥ 0}. It can be seen that K(Q,±un) is a proper cone,

known as an ellipsoidal cone. The Lorentz cone Ln+ is an example of an ellipsoidal cone. This can be seen

by taking Q =

[
In−1 0

0 −1

]
and un = en, the nth unit vector in Rn. The following result from [29] will be

used later on.

Lemma 1.1. (Lemma 2.7 of [29]) A cone K is ellipsoidal if and only if K = T (Ln+) for some invertible

matrix T .

Let K be a proper cone in V . When x ∈ K◦, we sometimes write x > 0. The following holds for any

proper cone K in V .

Lemma 1.2. Let K be a proper cone in a finite dimensional real Hilbert space V . If x ∈ K◦, y ∈ K∗ and

〈x, y〉 = 0, then y = 0.
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Let us denote by L(V1, V2), the set of all linear maps from V1 to V2. Relative to proper cones K1 and

K2 in finite dimensional real Hilbert spaces V1 and V2, respectively, we have the following notions.

Definition 1.3. L ∈ L(V1, V2) is

1. nonnegative if L(K1) ⊆ K2.

2. positive if L(K1 \ {0}) ⊆ K◦2 .

3. semipositive if there exists a d ∈ K◦1 such that L(d) ∈ K◦2 .

It is customary to denote the set of all linear maps that are nonnegative relative to two proper cones by

π(K1,K2). When K1 = K2 = K, this will be denoted by π(K). Let us also denote the set of all maps that

are semipositive relative to K1 and K2 by S(K1,K2). Once again, when K1 = K2 = K, this will be denoted

by S(K). When K1 = K2 = K, we shall use the term K-nonnegative and K-semipositive, respectively. Since

we work with proper cones, in Definition 1.3 (3), an equivalant way to define K-semipositivity is to require

that there exists a d ∈ K such that L(d) ∈ K◦. It is obvious that K-positivity implies K-semipositivity,

while the other inclusion is not true. An extensive study on the structure and properties of π(K) can be

found in [5, 6, 7, 30, 31] and the references cited therein. We state below only those results that will be used

in a later section.

Remark 1.4. When V1 = Rn, V2 = Rm, we shall work with matrix representations of L ∈ L(V1, V2)

with respespect to the standard orthonormal basis of V1 and V2, respectively, and we shall denote this

matrix by A. Moreover, throughout this manuscript, semipositivity of a matrix A will always be relative to

the nonnegative orthant Rn+ of Rn. Semipositivity relative to any other proper cone K will be written as

K-semipositive.

The following results are well known in the literature. The proofs may be found in [5, 6, 30, 31] etc.

Proposition 1.5. For proper cones K1 and K2 in V1 and V2, respectively, and L ∈ L(V1, V2), the

following hold.

1. π(K1,K2) is a proper cone in L(V1, V2).

2. L is (K1,K2)-positive if and only if L ∈ π(K1,K2)◦.

3. L ∈ π(K1,K2) if and only if Lt ∈ π(K∗2 ,K
∗
1 ).

We shall use the notion of isomorphic cones in the next section. We recall the definition below and list

a few familiar examples.

Definition 1.6. Let K1 and K2 be (proper) cones in finite dimensional real Hilbert spaces V1 and V2,

respectively. K1 and K2 are said to be isomorphic if there exists an invertible linear map T : V1 → V2 such

that T (K1) = K2. When V1 = V2 = V and K1 = K2 = K, such a map is called an automorphism of the

cone K.

We list below automorphisms of Rn+,Ln+ and Sn+.

Proposition 1.7. Let K be one of Rn+,Ln+ or Sn+ and let T be an automorphism of K. We have the

following.

1. If K = Rn+, then T is nonnegative and each row and column has exactly one nonzero entry.

2. If K = Ln+, then T tJnT = µJn for some µ > 0, where Jn = diag(−1,−1, . . . ,−1, 1).

3. If K = Sn+, then T (A) = StAS for some invertible matrix S ∈Mn(R).
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The proof of the first statement can be found in Chapter 5 of [7]. Proofs of the second and third

statements can be found in Theorem 2.4 of [27] and Theorem 2 of [26], respectively.

1.2. Linear complementarity problems. Let (V, 〈·, ·〉) be a finite dimensional real inner product

space and K be a proper cone in V with dual K∗. Given a linear transformation L : V → V and an element

q ∈ V the general linear complementarity problem LCP (L,K, q) (or LCP ) is to find a x ∈ V such that

x ∈ K, L(x) + q ∈ K∗ and 〈x, L(x) + q〉 = 0.

If such an x exists we call x as a solution to the problem LCP (L,K, q). A linear transformation L is said

to have the Q-property (globally uniquely solvable (GUS) property) if LCP (L,K, q) has a solution (unique

solution) for every q ∈ V . A linear map is said to have Z-property with respect to a proper cone K if:

[x ∈ K, y ∈ K∗ with 〈x, y〉 = 0]⇒ 〈L(x), y〉 ≤ 0.

Notice that linear maps on Rn that have the Z-property with respect to the nonnegative orthant are precisely

those n× n real matrices with nonpositive off-diagonal entries, namely, Z-matrices.

These problems were motivated by various applications to Game Theory, Semidefinite Optimization etc.,

(see for details, [11, 24]). The question of characterizing Q and GUS properties were studied extensively and

interesting connections with various positivity classes of matrices were obtained. For instance, the following

is a well known resutlt in the case when V = Rn and K = K∗ = Rn+ (this special case is called the standard

linear complementarity problem, see [11]).

Theorem 1.8. ([11]) Let A ∈Mn(R) be a Z-matrix. Then the following are equivalent.

1. There exists x ≥ 0 such that Ax > 0.

2. LCP (A,Rn+, q) is globally uniquely solvable.

Motivated by Theorem 1.8, semipositivity and its relationship with solvability of LCPs were studied in

special cases like semidefinite linear complementarity problem (SDLCP ), the second order cone LCP and

the symmetric cone LCP (see for details, [3, 16, 17, 18, 20]).

Let A ∈Mn(R). The linear maps LA, SA : Sn → Sn defined as LA(X) := AX+XAt and SA(X) := X−
AXAt are called Lyapunov and Stein transformations, respectively. The semidefinite linear complementarity

problem is the following: Given a linear map L on Sn and a Q ∈ Sn, find X ∈ Sn+ such that Y = L(X)+Q ∈
Sn+ and 〈X,Y 〉 = 0. This is usually abbreviated as SDLCP (L,Q). This problem is the special case of the

general LCP where V = Sn and K = Sn+.

The notion of semipositivity of linear maps on Sn is proved to be equivalent to the solvability of certain

SDLCP ’s and also to the asymptotic stability of certain dynamical systems. The following theorem and

the note that follows is the summary of results proved in the papers by Gowda and Song [18] and Gowda

and Parthasarathy [17] (see for details, [16]).

Theorem 1.9. Let A ∈Mn(R). Then the following are equivalent.

1. The system ẋ+Ax = 0 is asymptotically stable in Rn (that is, the trajectory of the system from any

starting point in Rn converges to the origin as t→∞).

2. A is positive stable (that is, all the eigenvalues of A lie in the open right-half plane).

3. There exists X ∈ Sn such that X and LA(X) are positive definite (that is, LA is semipositive with

respect to the cone Sn+ of positive semidefinite matrices in Sn).
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4. For every positive definite Y ∈ Sn, the equation LA(X) = Y has a positive definite solution X ∈ Sn.

5. LA has Q-property.

The equivalence of items (1)–(4) in the above theorem is Lyapunov’s theorem. For a discrete dynamical

system of the form x(k+1) = Ax(k), k = 1, 2, . . . , statements similar to the above theorem can be formulated

by replacing positive stability of A with Schur stability of A (which means that all the eigenvalues of A lie in

the open unit disk) and LA by SA (see Theorem 11 of [17]). Note that LA and SA both have Z-properties

with reference to the cone Sn+ (see for details, [16]).

Yet another motivation for us to take up this project concerns a recent result on the geometry of

semipositive matrices obtained by Tsatsomeros, one of which says that any semipositive matrix A can be

written as Y X−1 for some positive matrices X and Y (Theorem 3.1 of [33]). In fact, a decomposition of

the above form characterizes semipositivity over a general proper cone and we prove this in the next section

(Theorem 2.3).

It is well known that any linear map L on Mn(R) is of the form L(X) =

n2∑
i=1

AiXBi, where Ai, Bi ∈

Mn(R). It follows that a linear map on Sn can be expressed as L(X) =

n(n+1)
2∑
i=1

AiXBi, where Ai, Bi ∈Mn(R)

(see for instance [25]). Note that in this case

n(n+1)
2∑
i=1

AiBi is a symmetric matrix. We focus in this manuscript

only on maps of the form MA,B(X) = AXB, LA,B(X) = AXB+BtXAt, where A,B ∈Mn(R) and SA(X) =

X − AXAt. The motivation to study the map LA,B are the following: One, we obtain a generalization of

the famous Lyapunov theorem. Second, this operator has properties similar to the Lyapunov operator and

in the particular case when B is an orthogonal matrix, this operator serves as yet another example for which

the conjecture Z ∩ P = Z ∩ S holds. The general case will be taken up for future study.

2. Main results. We begin by recalling a few preliminary results on semipositive matrices over the

nonnegative orthant:

Lemma 2.1. The following statements hold.

1. (Lemma 2.1 of [23]) A ∈Mm,n(R) is semipositive if and only if there exists a d > 0 such that Ad > 0.

2. An invertible matrix A is semipositive if and only if A−1 is semipositive.

3. Every symmetric positive definite matrix is semipositive.

4. (Theorem 4.3 of [23]) Let m ≥ n. Then A ∈ Mm,n(R) is semipositive if and only if every n × n
submatrix is also semipositive.

5. Let A ∈ Mm,n(R) be semipositive. If P ∈ Mm(R) is nonnegative and nonsingular, and Q ∈ Mn(R)

is inverse nonnegative, then PAQ is semipositive. On the other hand, if P is inverse nonnegative,

and Q is nonnegative and nonsingular, then semipositivity of PAQ implies that of A.

6. (Theorem 3.1 of [33]) A ∈ Mn(R) is semipositive if and only if there exist positive matrices X and

Y with X invertible and A = Y X−1.
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2.1. Semipositivity of matrices relative to a proper cone K. We take up in this section K-

semipositivity of matrices in Rn and prove a decomposition result for such matrices relative to K. This

result is similar to what has been stated in the above lemma. Our first result in this section is the following.

Theorem 2.2. Let K1 and K2 be proper cones in Rn and Rm, respectively, and let A ∈ Mm,n(R).

Then, A ∈ S(K1,K2) if and only if there exists an invertible matrix X̃ ∈ Mn(R) that is K1-positive and

Ỹ ∈Mm,n(R) that is (K1,K2)-positive with A = Ỹ X̃−1.

Proof. The if statement is easy to prove. Suppose there exist matrices satisfying the required conditions

such that A = Ỹ X̃−1. Let u ∈ K◦1 be such that Ỹ u ∈ K◦2 . Set v := X̃u ∈ K◦1 . Then, Av = Ỹ X̃−1v = Ỹ u ∈
K◦2 , thereby proving semipositivity of A with respect to K1 and K2.

Conversely, assume that A is semipositive relative to K1 and K2. Let d ∈ K◦1 be such that Ad ∈ K◦2 .

Define X := det and Y := AX, where e is any element of (K∗1 )◦. Then for any 0 6= s ∈ K1, we have

Xs = d〈e, s〉 ∈ K◦1 and Y s = Ad〈e, s〉 ∈ K◦2 . This means X and Y are positive relative to K1 and (K1,K2),

respectively. It follows from Proposition 1.5 (2) that X and Y are interior points of π(K1) and π(K1,K2),

respectively. Since in a small enough neighbourhood of X there exist invertible matrices, one can find (by a

continuity argument) X̃ and Ỹ in the interior of π(K1) and π(K1,K2) such that X̃ is invertible and AX̃ = Ỹ .

This completes the proof.

In particular, when K1 = K2 = K is a proper cone in Rn, we have the following theorem. The proof is

skipped.

Theorem 2.3. Let K be a proper cone in Rn and A ∈Mn(R). Then A is K-semipositive if and only if

there exist X̃, Ỹ ∈Mn(R) both K-positive with X̃ invertible and A = Ỹ X̃−1.

We shall exploit decompositions of the form Y X−1 with Y semipositive and X positive, later on to

characterize semipositivity of a specific linear map over the cone Sn+. We prove next that semipositivity

relative a proper cone K1 determines semipositivity with respect to another proper cone K2 through any

invertible linear map S ∈ π(K1,K2). We shall use this result later on when we discuss semipositivity with

respect to the Lorentz cone.

Theorem 2.4. For proper cones K1,K2 in Rn, let S ∈ π(K1,K2) be an invertible linear map on Rn. If

a matrix A is K1-semipositive, then the matrix B = SAS−1 is K2-semipositive. Conversely, if the cones are

self-dual and if C is K2-semipositive, then there exists a K1-semipositive matrix A such that C = (St)−1ASt.

Proof. Suppose A is K1-semipositive. Consider the matrix B = SAS−1. By the definition of semiposi-

tivity, there exists a x ∈ K◦1 such that Ax ∈ K◦1 . Let y = Sx so that y ∈ S(K◦1 ) = [S(K1)]◦ ⊆ K◦2 . Then,

By = SAS−1y = SAx ∈ K◦2 .

Conversely, suppose the cones are self-dual and that C is a K2-semipositive matrix. Since S(K1) ⊆
K2, S

t(K2) ⊆ K1 as they are both self-dual cones. Therefore, K2 ⊆ (St)−1(K1). Get a x ∈ K◦2 such that

Cx ∈ K◦2 . Let y = Stx ∈ St(K◦2 ) = [St(K2)]◦ ⊆ K◦1 . Let A := StC(St)−1. Then, Ay = StC(St)−1y =

StCx ∈ K◦1 .

The following theorem, which says that semipositivity is preserved with respect to isomorphic cones,

follows from the above theorem. Notice that in this case, we do not require the cones to be self-dual.

Theorem 2.5. Let K1 and K2 be two proper cones in finite dimensional real Hilbert spaces V1 and

V2, respectively. Let T : V1 → V2 be an invertible linear map such that T (K1) = K2. If a matrix A is
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K1-semipositive, then TAT−1 is K2-semipositive. Conversely, if B is K2-semipositive, then there exists a

K1-semipositive matrix A such that B = TAT−1.

Proof. The proof follows from Theorem 2.4 as T ∈ π(K1,K2) and T−1 ∈ π(K2,K1) are invertible maps.

Alternatively, a direct proof can be given by observing that interior points are mapped to interior points

by T and T−1. If A is K1-semipositive, then there exists x ∈ K◦1 such that Ax ∈ K◦1 . Let y ∈ V2 be

such that T−1y = x. Note that y ∈ K◦2 . Then, Ax ∈ K◦1 and Ax = AT−1y. It now follows easily that

TAT−1y = TAx ∈ (K2)◦. This proves K2-semipositivity of TAT−1. Conversely, if B is K2-semipositive,

then take A = T−1BT . Then, a similar argument as above proves that A is K1-semipositive.

The following corollary is immediate.

Corollary 2.6. Let K1,K2 and T be as in Theorem 2.5. If A is K1-semipositive and has a decomposi-

tion A = Y X−1, where X,Y are K1-positive with X invertible, then TAT−1 has the decomposition Y1X
−1
1 ,

where Y1 = TY T−1 and X1 = TXT−1.

Proof. Since T is an isomorphism between K1 and K2, it follows that X1 and Y1 are K2-positive. The

rest is obvious.

2.2. Semipositivity of matrices relative to the Lorentz cone Ln+. We consider in this section

semipositivity of matrices with respect to the n-dimensional Lorentz cone Ln+ in Rn. Before proceeding with

semipositivity over the Lorentz cone, we state a classical result on characterization of nonnegativity over

the Lorentz cone due to Loewy and Schneider. Let Jn denote the diagonal matrix diag(−1,−1, . . . ,−1, 1).

Recall that for A,B ∈ Sn, A � B if and only if A − B ∈ Sn+ defines a partial order on Sn, known as the

Löwner partial order.

Theorem 2.7. (Theorem 2.2 of [27]) Let Y ∈Mn(R). If Y (Ln+) ⊆ Ln+ or −Y (Ln+) ⊆ Ln+, then Y tJnY �
µJn for some µ ≥ 0. Conversely, if rank Y 6= 1 and there is a µ ≥ 0 such that Y tJnY � µJn then

Y (Ln+) ⊆ Ln+ or −Y (Ln+) ⊆ Ln+.

Recall that L2
+ is a simplicial cone, whereas for n ≥ 3, Ln+ is non-polyhedral. We can therefore write

down the structure of an L2
+-semipositive matrix easily. We record this below. Moreover, a decomposition in

the form Y X−1 follows easily from Corollary 2.6. We then determine the structure of a semipositive matrix

relative to Ln+ for n ≥ 3 and also write down an explicit decomposition of such a matrix as a product Y X−1

with X, Y both Ln+-positive and X invertible.

Theorem 2.8. If a 2×2 matrix A is semipositive, then TAT−1 is L2
+-semipositive, where T =

[
1 −1

1 1

]
.

Conversely, if B is L2
+-semipositive, then there exists a semipositive matrix A such that B = TAT−1.

Proof. The matrix T is invertible with T−1 = (1/2)T t. Moreover, T (R2
+) ⊆ L2

+ and so T t(L2
+) ⊆ R2

+

(Refer Proposition 1.5 (3)). The rest of the proof is similar to that of Theorem 2.5.

We now characterize semipositivity over the Lorentz cone when n ≥ 3.

Theorem 2.9. Let n ≥ 3. If a matrix A is semipositive, then the matrix B = SAS−1 is Ln+-semipositive

for some invertible matrix S ∈ π(Rn+,Ln+). Conversely, if C is Ln+-semipositive, then there exists a semipos-

itive matrix A such that C = (St)−1ASt.
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Proof. Take S on Rn defined by x = (x1, x2, . . . , xn) 7→ (x1, x2, . . . , x1 + · · · + xn). This map S is an

invertible linear map and S ∈ π(Rn+,Ln+). Moreover, both these cones are self-dual. The conclusion now

follows from Theorem 2.4.

We are now ready to exhibit a decomposition of Ln+-semipositive matrices in the form Y X−1 with X,Y

Ln+-positive and X invertible.

Theorem 2.10. A ∈Mn(R) is Ln+-semipositive if and only if there exist X,Y ∈Mn(R) with X invert-

ible, X, Y Ln+-positive and A = Y X−1.

Proof. We discuss two cases here.

Case 1: rank(A) = 1. Let x ∈ Ln+ be such that Ax ∈ (Ln+)◦. In this case, we can write A =


α1

...

αn−1
1

 pt,

where


α1

...

αn−1
1

 ∈ (Ln+)◦ and p ∈ Rn. Choose β > 0 such that (βptx)2 − p21 − p22 − · · · − p2n−1 > 0 and

γ := β2(x2n − x21 − x22 − · · · − x2n−1) > 1.

Define X:=


1 0 · · · βx1

0
. . . · · · βx2

0 0 1
...

0 · · · 0 βxn

. Notice that X is invertible. Now XtJnX−Jn =


0 0 · · · 0

0 0 · · · 0

0 0
. . . 0

0 · · · 0 γ − 1

 �
0, and so by Theorem 2.7, we have X(Ln+) ⊆ Ln+. Note that X(Ln+ \ {0}) ⊆ (Ln+)◦, since µ = 1. Define

Y := AX. We have Y = uvt, where u =


α1

...

αn−1
1

 and v =


p1
...

pn−1
βptx

. Since v, v ∈ (Ln+)◦, it follows that

Y (Ln+ \ {0}) ⊆ (Ln+)◦.

Case 2: rank(A) > 1. Let A ∈ Mn(R) be an Ln+-semipositive matrix. Let x ∈ Ln+ be such that

y = Ax ∈ (Ln+)◦. Let us a take the vector jt = (0, . . . , 0, 1) ∈ Ln+. Define X := xjt + εI, where ε > 0. Notice

that X =


ε 0 · · · x1
0 ε · · · x2
...

...
. . .

...

0 · · · 0 ε+ xn

 is an invertible matrix since the columns of X are linearly independent. If

z ∈ Ln+, Xz = xjtz + εz. Since jtz = zn ≥ 0 and Ln+ is convex cone, Xz ∈ Ln+. Thus, X is Ln+-nonnegative.

In fact, X maps the interior of Ln+ into itself. Let Y := AX. It can be verified that Y = yjt + εA. Define a

map f : R→ Mn(R) by f(ε) = (yjt + εA)tJn(yjt + εA)− µJn, where 0 < µ < (y2n − y21 − y22 − · · · − y2n−1).

Since f is continuous and f(0) � 0, there exists δ > 0 such that for all β ∈ (0, δ), f(β) � 0. Choose one

such ε ∈ (0, δ), so that f(ε) � 0. We then have Y (Ln+) ⊆ Ln+. Note that Y (Ln+ \ {0}) ⊆ (Ln+)◦.
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The proof of the converse is similar to that of Theorem 2.3.

Theorem 2.11. A ∈ Mn(R) is Ln+-semipositive if and only if there exists a proper ellipsoidal cone

K1 ⊆ Ln+ and a closed cone K2 ⊆ (Ln+)◦ ∪ {0} such that A(K1) = K2.

Proof. Let A be Ln+-semipositive. Consider matrices X, Y as in the proof Theorem 2.10 such that

A = Y X−1. Let K1 = X(Ln+) and K2 = Y (Ln+). Since X is invertible, it follows from Lemma 1.1 that

K1 is an ellipsoidal cone. Moreover, it follows from X(Ln+ \ {0}) ⊆ (Ln+)◦, that K1 is proper and contained

in Ln+. Again, as Y (Ln+ \ {0}) ⊆ (Ln+)◦, we see that K2 is a closed cone in (Ln+)◦ ∪ {0}. Finally, we have

A(K1) = Y X−1X(Ln+) = Y (Ln+) = K2.

Conversely, suppose there exists a proper ellipsoidal cone K1 ⊆ Ln+ and a closed cone K2 ⊆ (Ln+)◦ ∪ {0}
such that AK1 = K2. Since K1 ⊆ Ln+ is proper and A(K1) = K2, there is x ∈ K◦1 such that Ax ∈ K2 \ {0}.
Thus, A is Ln+-semipositive.

Remark 2.12. It follows from Lemma 1.1 and Theorem 2.5 that the results presented in this section

hold for any ellipsoidal cone.

2.3. Semipositivity of maps relative to Sn+. Let us observe that if L(X) =

n(n+1)
2∑
i=1

AiXBi is such

that

n(n+1)
2∑
i=1

AiBi is positive definite, then by taking X = I, it follows that L is semipositive. Observe that

the cone S2+ is isomorphic to the Lorentz cone L3
+ in R3. The following map gives an isomorphism between

these cones. Define F : R3 → S2 as follows:

x = (x1, x2, x3)t 7→ A =

[
x3 − x1 x2
x2 x3 + x1

]
.

It can be easily seen that F is an invertible linear map such that F (L3
+) = S2+. In other words, S2+ is an

ellipsoidal cone. Using this map F and Theorem 2.5 one can easily characterize semipositivity of any linear

map L on S2 relative to S2+. We shall use this idea in Example 2.28 later on. We now take up semipositivity

of three specific maps on Sn.

2.4. Semipositivity of the maps MA,B , LA,B and SA. The following theorem characterizes semi-

positivity of the map MA,B .

Theorem 2.13. Let A,B ∈ Mn(R). Then MA,B is Sn+-semipositive if and only if B = αAt for some

α > 0. Consequently, the map MA,B is semipositive if and only if it is an automorphism of the cone Sn+.

Proof. The if part follows from the previous paragraph about general linear maps on Sn. For the only

if part, observe that Sn+-semipositivity of the map implies that both A and B are invertible. Now consider

C := A(Bt)−1. Since the map is defined on Sn, we have AXB = BtXAt for every X ∈ Sn. From this, it

follows that CX = XCt for all X ∈ Sn. By varying X, we see that C = αI and so B = αAt. Thus, the

map is of the form MA,B(X) = MA,αAt(X) = αAXAt for all X ∈ Sn. Once again using semipositivity of

the map, we conclude that α > 0. The second statement follows from Proposition 1.7 (3) (see also Theorem

2 of [26]).

We now move on to semipositivity of the map LA,B(X) = AXB + BtXAt for A,B ∈ Mn(R). The

motivation to study this map has already been mentioned earlier. Let us call a square matrix A ∈ Mn(R)
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generalized positive definite if A+At is positive definite. It was proved by Duan and Patton that a matrix

A is positive stable if and only if A = GP , where G is a generalized positive definite matrix and P is a

(symmetric) positive definite matrix. The proof can be found in Theorem 3.1 of [14]. We then have the

following result.

Theorem 2.14. Consider the map LA,B on Sn, where A is generalized positive definite and B is sym-

metric positive definite. Then, LA,B is Sn+-semipositive.

Proof. Take X = B−1 and see that L(X) = A+At, which is positive definite.

Our next result concerning semipositivity of the map X 7→ AXB +BtXAt is the following. We record

a useful observation that will be used below.

Observation 2.15. If the map LA,B is semipositive, then A and B are invertible matrices. Moreover,

LA,B = LCL
−1
2 , where LC is the Lyapunov map induced by C = A(Bt)−1 and L−12 (X) = BtXB.

Proof. If there exists a positive definite X0 such that LA,B(X0) is positive definite, then AX0B is positive

stable, thereby proving invertibility of A and B. The rest is easy computation.

Theorem 2.16. Consider the map LA,B , A,B ∈ Mn(R), where AB = BA,B ∈ Sn. Assume further

that A has only real eigenvalues. Then AB is positive stable, if and only if LA,B is Sn+-semipositive.

Proof. Let us first observe that the map can be assumed to be of the form LT,D(X) = TXD +DXT t,

where T is an upper triangular matrix and D is a diagonal matrix, both with real entries. This can be proved

as follows: Commutativity and symmetry of B ensures that both A and B have the same set of eigenvalues

that are also real. Now, simultaneously orthogonally triangularize A and B and once again use symmetry

of B to get the required form.

Since AB is positive stable, so is TD, which implies that all the diagonal entries of the upper triangular

matrix TD are positive. Choose positive real numbers x1, . . . , xn such that x1 > x2 · · · > xn and set

X0 = diag(x1, x2, . . . , xn). It can be verified by induction that all the principal minors of the symmetric

matrix L(X0) are positive (by the choice of xis). This proves semipositivity of the map LT,D and hence that

of LA,B relative to Sn+.

Conversely, if LT,D is semipositive with respect to Sn+, then T and D are invertible matrices. Then,

Observation 2.15, that L2(X) = DXD (as in Observation 2.15) is an automorphism of Sn+ and equivalence

of items (2) and (3) of Theorem 1.9 imply that C = TD−1 is positive stable. Since AB = BA, we see that

TD = DT . It now follows that TD is positive stable. This is the same as saying that AB is positive stable.

The following is a more general result and different from Theorem 2.16 on semipositivity of the above

map, without any assumptions on A and B.

Theorem 2.17. The map LA,B is semipositive with respect to the cone Sn+ if and only if A(Bt)−1 is

positive stable.

Proof. Suppose LA,B is semipositive. Then, Observation 2.15, that L2 (as in Observation 2.15) is an

automorphism of Sn+ and equivalence of items (2) and (3) of Theorem 1.9 imply that C = A(Bt)−1 is positive

stable.

Conversely, suppose C := A(Bt)−1 is positive stable. Then, there exists a positive definite matrix Y

such that CY + Y Ct is positive definite. Let X be a positive definite matrix such that Y = BtXB. Then,

it is easy to verify that LA,B(X) = AXB +BtXAt = CY + Y Ct, which is positive definite.
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The following corollaries are immediate.

Corollary 2.18. Consider the map LA,B. Assume that either A or B is orthogonal. Then, the map

LA,B is semipositive with respect to Sn+ if and only if AB is positive stable.

Corollary 2.19. Let A,B ∈Mn(R) with A or B orthogonal. Then the following are equivalent.

1. AB is positive stable.

2. The Lyapunov map LAB = ABX +X(AB)t is Sn+-semipositive.

3. For each positive definite Q ∈ Sn, there exists a positive definite X ∈ Sn such that LAB(X) = Q.

4. The map LA,B(X) = AXB +BtXAt is Sn+-semipositive.

5. For each positive definite Q ∈ Sn, there exists a positive definite X ∈ Sn such that LA,B(X) = Q.

Proof. We only need to prove the equivalence of the first and last statements. AB is positive stable if

and only if there exists X (symmetric) positive definite such that LAB(X) = Q for each positive definite Q.

Then, Q = ABX +XBtAt = AY B +BtY At, where Y = BXBt is symmetric and positive definite.

A few remarks are in order.

Remark 2.20.

1. Taking C = A(Bt)−1 and Y = BtXB, we see that AXB+BtXAt = CY +Y Ct = LC , the Lyapunov

map induced by C. In this context, it is pertinent to point out the following result due to Loewy

(Theorem 1, [26]) concerning ranges of real Lyapunov mappings. Loewy proved that if the equation

AS + SAt = DSCt + CSDt holds for all S ∈ Sn and real matrices A,C,D, then in the event that

the left hand side of the above equation (which is the Lyapunov map induced by A) is invertible,

either C or D is a scalar matrix.

2. Notice that LA,B(Y ) = CY − Y (−Ct). Thus, LA,B is a special case of the Sylvester equation

S(X) = AX −XB. Then LA,B is invertible if and only if σ(C) ∩ σ(−Ct) = ∅ (see Section 2.4.4 of

[21]), which is the same as saying that C does not have any pair of eigenvalues that are negatives of

each other. In particular, if C is positive stable, the map LA,B is an invertible map. We thus have

the following theorem.

Theorem 2.21. If the map LA,B is semipositive with respect to Sn+, then it is an invertible map on

Sn. The converse is not true.

Proof. Semipositivity of the map LA,B implies it is invertible (see the previous remark). That the

converse is not true follows from Example 2.26 given below.

3. In Theorem 2.17, if BA is also symmetric, then AB is positive stable. Note that BA = BA(B−1)tBt

and that A(B−1)t is symmetric if and only if BA is symmetric. It follows that both BA and

BA(B−1)tBt will have the same eigenvalues. Since A(B−1)t is positive stable, we see that BA, and

hence, AB is positive stable.

4. Any matrix X and its transpose have the same set of eigenvalues. It follows that if LA,B is semi-

positive, then both A(Bt)−1 and B−1At are positive stable. However, A(Bt)−1 + B−1At need not

be positive definite. There are pairs of matrices A,B such that AB is positive stable, but the map

LA,B is not semipositive (Example 2.26) and there are also pairs of matrices A,B such that LA,B is

semipositive but AB is not positive stable (Example 2.27).

We now take up semipositivity of the map SA (also known as the Stein transformation) on Sn defined

by SA(X) = X − AXAt, A ∈Mn(R). It is obvious that if I − AAt is positive definite, then the map SA is
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semipositive. The converse, however, is not true. This can be seen by considering the Stein transformation

on S2 induced by the matrix A =

[
0 2

0 0

]
. It is easy to see that I − AAt is not positive definite. Now,

SA(X0) = I, where X0 =

[
5 0

0 1

]
. Semipositivity of the Stein transformation was characterized by Gowda

and Parthasarathy in Theorem 11 of [17].

2.5. Decompositions of semipositive maps relative to Sn+. We now discuss decomposition results

for the above three maps with respect to the cone Sn+. It is obvious that the map MA,B can be written as a

product L1L
−1
2 , where both L1 and L2 are positive and invertible. For the map LA,B , a decomposition was

already there in the proof of Theorem 2.17. We make this explicit below. The following result will be used

in the theorem that follows.

Theorem 2.22. Let K be a proper cone in V and L ∈ L(V ). Then L is K-semipositive if and only if

there exist L1, L2 ∈ L(V ) both K-positive with L1 invertible and L = L2L
−1
1 .

Proof. Suppose L is K-semipositive. Let d ∈ K◦ be such that L(d) ∈ K◦. Let L1(s) = d〈e, s〉, s ∈ V be

the rank one operator on V , where e ∈ (K∗)◦. Let L2 = LL1. Rest of the proof follows similar to that of

Theorem 2.2 with K1 = K2 = K.

Theorem 2.23. Consider the map LA,B(X) = AXB + BtXAt, A,B ∈ Mn(R). If LA,B is Sn+-

semipositive, then there exist maps T1 and T2, both Sn+-positive with T2 invertible such that L = T1T
−1
2 .

Proof. Recall that LA,B is semipositive with respect to Sn+ if and only if A(Bt)−1 is positive stable.

Moreover, by taking C = A(Bt)−1, L1(X) = LC(X), L−12 (X) = BtXB, we see that LA,B = L1L
−1
2 . Notice

that L1 is semipositive as C is positive stable and positivity of L2 is obvious (both with respect to the

cone Sn+). Since C is positive stable, the map L1 is an invertible map. Using Theorem 2.22, we can write

LC = L3L
−1
4 , where L3 and L4 are both Sn+-positive with L4 invertible. Now set T1 = L3 and T2 = L2L4

and note that T2 is a Sn+-positive.

Remark 2.24.

1. Notice that in Theorem 2.23, the map L1, which is the Lyapunov map induced by C = A(Bt)−1, is

invertible. Moreover, L−1C is a positive map. This is because LC has the Z-property (see for instance

[16, 19]). It is however not an automorphism of the cone Sn+.

2. A linear map L on Sn is said to have the P-property relative to the cone Sn+ if X and L(X) commute

and XL(X) negative semidefinite implies X = 0 (see Definition 2 of [18, page 578]). It can be proved

that the Lyapunov map LC induced by a matrix C has the P-property if and only if C is positive

stable (Theorem 5 of [18]). We also know that the map LC is Sn+- semipositive if and only if C is

positive stable. Now consider the map LA,B , with B an orthogonal matrix. We know that LA,B
can be decomposed as LCL

−1
2 , where LC is the Lyapunov map induced by C = A(Bt)−1 = AB

and L−12 (X) = BtXB, an automorphism of Sn+. Since the map LC has the Z-property relative to

the cone Sn+, it is easy to verify that the map LA,B also has the Z-property when B is orthogonal.

It follows from the above comments and the results proved earlier that when B is an orthogonal

matrix such that C = AB is positive stable, the map LA,B is yet another example of an instance

where the conjecture Z ∩ P = Z ∩ S holds.

Now consider the Stein transformation SA induced by a matrix A. We have the following decomposition

of SA.
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Theorem 2.25. Consider the Stein transformation SA induced by an invertible matrix A. Suppose SA
is semipositive with respect to the cone Sn+. Then, there exist positive maps L1 and L2 (relative to Sn+) with

L2 invertible and SA = L1L
−1
2 .

Proof. Define L1(X) = AXAt. Then, L1 is a positive map on Sn. We know from Theorem 11 of [17] that

semipositivity of SA is equivalent to ρ(A) < 1. A well known result of Stein says that the transformation

(SA)−1 maps the set of positive definite matrices into itself if and only if ρ(A) < 1. Now define L2 =

(SA)−1L1, so that SA = L1L
−1
2 . Since both L1 and (SA)−1 map the set of positive definite matrices into

itself, it follows that L2 also maps the set of positive definite matrices into itself. Invertibility of the map L2

is obvious. Note that we can actually write down the map L−12 as L−12 (X) = A−1X(A−1)t −X.

2.6. Examples. We present a few examples of our results.

Example 2.26. Let A =

[
−1 0

−3 −1

]
and B =

[
1 −2

0 1

]
. Note that σ(AB) = {0.2679, 3.7320} and

σ(A(Bt)−1) = {−1,−1}, which implies that A(Bt)−1 is not positive stable. It therefore follows from

Theorem 2.17 that LA,B is not semipositive. It is also easy to see that the map LA,B(X) is given by

X 7→
[
−2x1 −x1 − 2x2

−x1 − 2x2 12x1 − 2x2 − 2x3

]
, where X =

[
x1 x2
x2 x3

]
. This is clearly not semipositive. Note that

neither A nor B is orthogonal, AB 6= BA,BA is not symmetric.

Example 2.27. Let A =

[
−1 0

−1 1

]
and B =

[
−1 2

0 1

]
. It can be easily computed that the eigenvalues

of AB are ±i, whereas the eigenvalues of A(Bt)−1 is 1 repeated twice. Thus, AB is not positive stable and

A(Bt)−1 is positive stable, thereby proving that the map LA,B is semipositive. Once again, one can see that

LA,B(X) =

[
2x1 −x1 − 2x2

−x1 − 2x2 −4x1 + 2x2 + 2x3

]
. By taking X0 =

[
1 0

0 10

]
, we see that L(X0) =

[
2 −1

−1 16

]
is

positive definite.

In our next example, we write down an explicit decomposition of a semipositive map of the form LA,B
as a product L1L

−1
2 with L1 and L2 positive (all of these relative to the cone Sn+).

Example 2.28. Consider the map LA,B in Example 2.27 and let F : R3 → S2 be the map x =

(x1, x2, x3)t 7→
[
x3 − x1 x2
x2 x3 + x1

]
. We know that F is an isomorphism between L3

+ and S2+. Consider the

matrix representation Y (with respect to the standard basis) of the linear map F−1LA,BF on R3. By taking

x0 = (9/2, 0, 11/2)t ∈ (L3
+)◦, we see that Y x0 ∈ (L3

+)◦, thereby proving that Y is L3
+-semipositive. Now form

the matrices X̃ = x0j
t+I, and Ỹ = Y X̃, where jt = (0, 0, 1). We know from the proof of Theorem 2.10 that

X̃ is L3
+-positive and also invertible. Consequently, the matrix Ỹ is an invertible matrix (recall that LA,B is

an invertible map as it is semipositive). It is also L3
+-positive as (Ỹ )tJ3Ỹ −14J3 =

 1 0 −4

0 10 8

−4 8 56

 is positive

definite (see Theorem 2.7). Set L1 = FY F−1 and L2 = FXF−1, where X and Y are the linear maps corre-

sponding to the matrices X̃ and Ỹ , respectively. Then, L1 and L2 are S2+-positive, L2 invertible and by con-

struction LA,BL2 = L1. It can be seen that L1(X) =

[
3x1 + x2 −1.5x1 − 2x2 − 0.5x3

−1.5x1 − 2x2 − 0.5x3 4x1 + 2x2 + 10x3

]
and

L2(X) =

[
1.5x1 + 0.5x3 x2

x2 5x1 + 6x3

]
.
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2.7. The semipositive cone and related questions. We discuss in this section briefly the semipos-

itive cone of a matrix relative to a proper cone K in Rn. Most of the results are similar to those proved

recently by Sivakumar and Tsatsomeros over the nonnegative orthant (see for instance Theorem 3.3 and

Corollaries 3.4 and 3.5 of [28]), and can be proved for any proper cone K, possibly self-dual. The proofs

are therefore omitted. Nevertheless, we give a partial answer to a question raised by Sivakumar and Tsat-

someros as to when the semipositive cone will be invariant under A (so that KA will contain an eigenvector

corresponding to the spectral radius of A).

Definition 2.29. Let A ∈Mn(R). The semipositive cone of A is the set

KA = {x ∈ K : Ax ∈ K}.

Notice that KA = K ∩A−1(K), where A−1(K) = {x : Ax ∈ K}. As in [28], when K = Rn+, this set will

be denoted by KA.

Theorem 2.30. Let A ∈ Mn(R) be K-semipositive. If rank(A) = 1, then A = yxt for some y ∈ K◦
and x ∈ Rn. In this case, A(KA) ⊆ KA if and only if xty ≥ 0.

Proof. Suppose A is a rank one K-semipositive matrix. Then A = pqt for some p, q ∈ Rn. Choose a

vector u ∈ K◦ such that Au = pqtu ∈ K◦. If qtu > 0, then p ∈ K◦. In this case, take y = p and x = q. If

qtu < 0, then −p ∈ K◦. Now take y = −p and x = −q. This proves the first statement.

Assume that A(KA) ⊆ KA. There exists u ∈ KA such that Au ∈ K◦, since A is K-semipositive.

Now, Au = (yxt)u = (xtu)y ∈ K◦. Since y ∈ K◦, xtu > 0 so that (xtu)y, and hence, y ∈ KA. Finally,

Ay = yxty ∈ KA implies that xty ≥ 0.

Conversely, suppose xty ≥ 0. Then Ay = (yxt)y = (xty)y ∈ K. It follows that y ∈ KA. Let u ∈ KA, so

that u ∈ K with Au ∈ K. Now, Au = (yxt)u = (xtu)y. Since Au ∈ K and y ∈ KA, we must have xtu ≥ 0.

Therefore, Au ∈ KA.

We now discuss the case when A is an invertible matrix.

Theorem 2.31. Let A ∈ Mn(R) be invertible and let K be a proper cone in Rn. If A2(K) ⊆ K, then

A(KA) ⊆ KA. The converse is not true.

Proof. If A2(K) ⊆ K, then A(K) ⊆ A−1(K), which then implies that K ∩ A(K) ⊆ K ∩ A−1(K). Now

A(KA) = A(K ∩ A−1(K)) ⊆ A(K) ∩ A(A−1(K)) = K ∩ A(K). Thus, A(KA) ⊆ KA. That the converse

fails to hold follows from by taking K = R2
+ and A =

[
0 −1

−1 1

]
. The cone KA = {0} and so obviously,

A(KA) ⊆ KA. However, A2 � 0.

Suppose A ∈ Mn(R) is a semipositive matrix. We know that the cone KA and its dual K∗A are proper

polyhedral cones. Let KA = P (Rn+) and K∗A = Q(Rn+). We then have the following.

Theorem 2.32. Let A ∈Mn(R) be semipositive. Then, A(KA) ⊆ KA if and only if QtAP is a nonneg-

ative matrix, where P and Q are generating matrices for KA and K∗A, respectively.

Proof. The proof follows from Theorem 4.1 of [9], and that both KA as well as K∗A are proper polyhedral

cones.

3. An application. We end with an interesting application. For a field F and the set Mm,n(F) of

m×n matrices over F, a linear preserver φ is a linear map φ : Mm,n(F) −→Mm,n(F) that preserves a certain
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property or a relation. Instead of looking at linear maps on Mm,n(F), one can also look at linear preservers

on Sn; in particular, we can look at linear preservers of Sn+. This problem, to our knowledge, is still open in

its full generality. The following result was proved recently (Theorem 11 of [32]).

Theorem 3.1. If L1 defined on Sn is such that L1(Sn+) ⊆ Sn+ and rank(L1(Eii)) = 1 for all i, then

L1(X) = W (H ◦ X)W t for all X ∈ Sn+ for some invertible matrix W ∈ Mn(R) and some H ∈ Sn+ with

diag(H) = diag(I) (the notation ◦ denotes the Hadamard product).

We thus have the following result on the structure of semipositive maps of the form L1L
−1
2 (the map L1

is positive, L2 is invertible and positive) with the assumption that rank(L1(Eii)) = 1 for all i. The proof

follows easily from Theorem 3.1 and we skip it.

Theorem 3.2. Let L1 and L2 be maps defined on Sn such that (1) Li(Sn+) ⊆ Sn+ for i = 1, 2, (2)

rank(L1(Eii)) = 1 for i = 1, . . . , n and (3) L2 invertible. Then any map L on Sn of the form L1L
−1
2 (and

hence is semipositive relative to Sn+) can be written as L(X) = W (H ◦L−12 (X))W t for some invertible matrix

W and some H ∈ Sn+ with diag(H) = diag(I).

4. Concluding remarks. We have studied in this paper K-semipositivity for a proper cone K in a

finite dimensional real Hilbert space V and have characterized K-semipositivity in terms of products of the

form Y X−1 with X and Y K-positive and X invertible. We also focus our attention to two frequently

used cones in the optimization literature, namely, the Lorentz cone Ln+ in Rn and the cone of symmetric

positive semidefinite matrices Sn+ in the space of real symmetric matrices Sn. Semipositivity of matrices

over the Lorentz cone is completely characterized, in addition to an explicit product decomposition of

the form Y X−1 with positive matrices (relative to this cone). Over the cone Sn+, we defer characterizing

semipositivity of linear maps for a future study, although a decomposition of the form L1L
−1
2 certainly exists

with both L1 and L2 being positive maps. We however consider three specific maps over Sn and characterize

their semipositivity. These maps are MA,B , LA,B and SA and write down explicit decompositions of the

above form. Interesting connections to the optimization literature such as the Lyapunov theorem and the

Z ∩ S = Z ∩ P conjecture are pointed out. We end by pointing out the following interesting result of the

authors obtained recently.

Theorem 4.1. (Theorem 2.3 of [2]) Let A ∈ Mm,n(R) and let K1, K2 be proper cones in Rn and Rm,

respectively. If A+B ∈ S(K1,K2) for every B ∈ S(K1,K2) then A ∈ π(K1,K2).
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