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ON THE MAXIMAL NUMERICAL RANGE OF SOME MATRICES∗

ALI N. HAMED† AND ILYA M. SPITKOVSKY‡

Abstract. The maximal numerical range W0(A) of a matrix A is the (regular) numerical range W (B) of its compression

B onto the eigenspace L of A∗A corresponding to its maximal eigenvalue. So, always W0(A) ⊆W (A). Conditions under which

W0(A) has a non-empty intersection with the boundary of W (A) are established, in particular, when W0(A) = W (A). The

set W0(A) is also described explicitly for matrices unitarily similar to direct sums of 2-by-2 blocks, and some insight into the

behavior of W0(A) is provided when L has codimension one.
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1. Introduction. Let Cn stand for the standard n-dimensional inner product space over the complex

field C. Also, denote by Cm×n the set (algebra, if m = n) of all m-by-n matrices with the entries in C. We

will think of A ∈ Cn×n as a linear operator acting on Cn.

The numerical range (also known as the field of values, or the Hausdorff set) of such A is defined as

W (A) := {x∗Ax : x∗x = 1, x ∈ Cn}.

It is well known that W (A) is a convex compact subset of C invariant under unitary similarities of A; see

e.g. [6] for this and other properties of W (A) needed in what follows.

The notion of a maximal numerical range W0(A) was introduced in [14] in a general setting of A being a

bounded linear operator acting on a Hilbert space H. In the case we are interested in, W0(A) can be defined

simply as the (usual) numerical range of the compression B of A onto the eigenspace L of A∗A corresponding

to its largest eigenvalue:

(1.1) W0(A) = {x∗Ax : x∗x = 1, x ∈ L}.

Consequently, W0(A) is a convex closed subset of W (A), invariant under unitary similarities of A.

Moreover, for A unitarily similar to a direct sum of several blocks Aj :

(1.2) W0(A) = conv{W0(Aj) : j such that ‖Aj‖ = ‖A‖};

here and below, we are using a standard notation convX for the convex hull of the set X.
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In the finite dimensional setting, property (1.2) is rather trivial; the infinite dimensional version is in [7,

Lemma 2].

Since W0(A) ⊆ W (A), two natural questions arise: (i) whether W0(A) intersects with the boundary

∂W (A) of W (A) or lies completely in its interior, and (ii) more specifically, for which A do the two sets

coincide. We deal with these questions in Section 2. These results are illustrated in Section 3 by the case

n = 2 in which a compete description of W0(A) is readily accessible. With the use of (1.2), we then (in

Section 4) tackle the case of marices A unitarily reducible to 2-by-2 blocks. The last Section 5 is devoted to

matrices with the norm attained on a hyperplane.

2. Position within the numerical range. In order to state the main result of this section, we need

to introduce some additional notation and terminology. The numerical radius w(A) of A is defined by the

formula

w(A) = max{|z| : z ∈W (A)}.

The Cauchy-Schwarz inequality implies that w(A) ≤ ‖A‖, and the equality w(A) = ‖A‖ holds if and only if

there is an eigenvalue λ of A with |λ| = ‖A‖, i.e., the norm of A coincides with its spectral radius ρ(A). If

this is the case, A is called normaloid . In other words, A is normaloid if

Λ(A) := {λ ∈ σ(A) : |λ| = ‖A‖} (= {λ ∈W (A) : |λ| = ‖A‖}) 6= ∅.

Theorem 2.1. Let A ∈ Cn×n. Then the following statements are equivalent:

(i) A is normaloid;

(ii) W0(A) ∩ ∂W (A) 6= ∅;
(iii) {λ ∈W0(A) : |λ| = ‖A‖} 6= ∅.

Proof. (i) ⇒ (iii). As was shown in [5], ρ(A) = ‖A‖ if and only if A is unitarily similar to a direct sum

cU ⊕ B, where U is unitary, c is a positive constant and the block B (which may or may not be actually

present) is such that ρ(B) < c and ‖B‖ ≤ c.

For such A we have ‖A‖ = ρ(A) = c, and according to (1.2):

(2.1) W0(A) =

{
W (cU) = conv Λ(A) if ‖B‖ < c,

conv(Λ(A) ∪W0(B)) otherwise.

Either way, W0(A) ⊃ Λ(A).

(iii) ⇒ (ii). Since w(A) ≤ ‖A‖, the points of W (A) (in particular, W0(A)) having absolute value ‖A‖
automatically belong to ∂W (A).

(ii) ⇒ (i). Considering A/ ‖A‖ in place of A itself, we may without loss of generality suppose that

‖A‖ = 1. Pick a point a ∈ W0(A) ∩ ∂W (A). By definition of W0(A), there exists a unit vector x ∈ Cn for

which ‖Ax‖ = 1 and x∗Ax = a. Choose also a unit vector y orthogonal to x, requiring in addition that

y ∈ Span{x,Ax} if x is not an eigenvector of A. Let C be the compression of A onto the 2-dimensional

subspace Span{x, y}. The matrix A0 :=

[
a b

c d

]
of C with respect to the orthonormal basis {x, y} then

satisfies |a|2 + |c|2 = 1. From here:

(2.2) A∗0A0 =

[
1 ab+ cd

ab+ cd |b|2 + |d|2

]
.
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But ‖A0‖ ≤ ‖A‖ = 1. Comparing this with (2.2), we conclude that

(2.3) ab+ cd = 0.

Moreover, W (A0) ⊂ W (A), and so a ∈ ∂W (A0). This implies |b| = |c|, as was stated explicitly in [16,

Corollary 4] (see also [4, Proposition 4.3]). Therefore, (2.3) is only possible if b = c = 0 or |a| = |d|.

In the former case, |a| = 1, immediately implying w(A) = 1 = ‖A‖.

In the latter case, some additional reasoning is needed. Namely, then |b|2 + |d|2 = |c|2 + |a|2 = 1 which

in combination with (2.3) means that A0 is unitary. Since W (A) ⊃ σ(A0), we see that w(A) ≥ 1. On the

other hand, w(A) ≤ ‖A‖ = 1, and so again w(A) = ‖A‖.

Note that Theorem 2.1 actually holds in the infinite-dimensional setting. For this (more general) situa-

tion, the equivalence (i) ⇔ (iii) was established in [2, Corollary 1], while (i) ⇔ (ii) is from [13]. Moreover,

the paper [2] prompted [13]. The proof in the finite-dimensional case is naturally somewhat simpler, and we

provide it here for the sake of completeness.

If the matrix B introduced in the proof of Theorem 2.1 is itself normaloid, then ‖B‖ < c and W0(A) is

given by the first line of (2.1). This is true in particular for normal A, when B is also normal. On the other

hand, if ‖B‖ = c, then Theorem 2.1 (applied to B) implies that W0(B) lies strictly in the interior of W (B).

In particular, there are no points in W (B) with absolute value c(= ‖A‖). From here we immediately obtain

Corollary 2.2. For any A ∈ Cn×n,

{λ ∈W0(A) : |λ| = ‖A‖} = Λ(A).

This is a slight refinement of condition (ii) in Theorem 2.1.

Theorem 2.3. Given a matrix A ∈ Cn×n, its numerical range and maximal numerical range coincide

if and only if A is unitarily similar to a direct sum cU ⊕B where U is unitary, c > 0, and W (B) ⊆ cW (U).

Proof. Sufficiency. Under the condition imposed on B, W (A) = cW (U). At the same time, W0(A) ⊇
W0(cU) = cW (U).

Necessity. If W (A) = W0(A), then in particular W0(A) has to intersect ∂W (A), and by Theorem 2.1 A

is normaloid. As such, A is unitarily similar to cU ⊕B with ‖B‖ ≤ c, ρ(B) < c. It was observed in the proof

of Theorem 2.1 that, if B itself is normaloid, then W0(A) = cW (U), and so we must have W (A) = cW (U),

implying W (B) ⊆ cW (U).

Consider now the case when B is not normaloid. If W (B) ⊆ cW (U) does not hold, draw a support

line ` of W (B) such that cW (U) lies to the same side of it as W (B) but at a positive distance from it.

Since W (A) = conv(cW (U) ∪ W (B)), ` is also a support line of W (A). Meanwhile W0(B) is contained

in the interior of W (B), making the distance between W0(B) and ` positive, and implying that ` is not

a support line of conv(cW (U) ∪W0(B)). According to (2.1), the latter set is the same as W0(A). Thus,

W0(A) 6= W (A), which is a contradiction.

3. 2-by-2 matrices. A 2-by-2 matrix A is normaloid if and only if it is normal. The situation is

then rather trivial: denoting σ(A) = {λ1, λ2} with |λ1| ≤ |λ2|, we have W (A) = [λ1, λ2] (the line segment
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connecting λ1 with λ2), and

W0(A) =

{
{λ2} 6= W (A) if |λ1| < |λ2| ,
[λ1, λ2] = W (A) otherwise.

So, the only interesting case is that of a non-normal A. The eigenvalues of A∗A are then simple, and W0(A)

is therefore a point. According to Theorem 2.1, this point lies inside the ellipse W (A). Our next result is

the formula for its exact location.

Theorem 3.1. Let A ∈ C2×2 be not normal but otherwise arbitrary. Then W0(A) = {z0}, where

(3.1) z0 =
(t0 − |λ2|2)λ1 + (t0 − |λ1|2)λ2

2t0 − trace(A∗A)
,

λ1, λ2 are the eigenvalues of A, and

(3.2) t0 =
1

2

(
trace(A∗A) +

√
(trace(A∗A))2 − 4 |detA|2

)
.

Note that an alternative form of (3.1),

(3.3) z0 =
t0 · traceA− (detA) · traceA

2t0 − trace(A∗A)
,

without λj explicitly present, is sometimes more convenient.

Proof. Since both the value of z0 and the right-hand sides of formulas (3.1)–(3.3) are invariant under

unitary similarities, it suffices to consider A in the upper triangular form

A =

[
λ1 c

0 λ2

]
, c > 0.

Then

A∗A− tI =

[
|λ1|2 − t cλ1
cλ1 c2 + |λ2|2 − t

]
,

so the maximal eigenvalue t0 of A∗A satisfies

(3.4) c2 |λ1|2 = (t0 − |λ1|2)(t0 − |λ2|2 − c2)

and is thus given by formula (3.2). Choosing a respective eigenvector as

x =
[
cλ1, t0 − |λ1|2

]T
,

we obtain successively

‖x‖2 = c2 |λ1|2 + (t0 − |λ1|2)2,

Ax =
[
ct0, (t0 − |λ1|2)λ2

]T
,

x∗Ax = c2t0λ1 + (t0 − |λ1|2)2λ2,
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and so finally,

(3.5) z0 =
x∗Ax

‖x‖2
=
c2t0λ1 + (t0 − |λ1|2)2λ2

c2 |λ1|2 + (t0 − |λ1|2)2
.

To put this expression for z0 in form (3.1), we proceed as follows. Due to (3.4), the denominator in the

right-hand side of (3.5) is nothing but

(3.6) (t0 − |λ1|2)
(

(t0 − |λ2|2 − c2) + (t0 − |λ1|2)
)

= (t0 − |λ1|2)(2t0 − trace(A∗A)).

On the other hand, also from (3.4),

c2t0 = (t0 − |λ1|2)(t0 − |λ2|2),

and the numerator in the right-hand side of (3.5) can be rewritten as

(3.7) (t0 − |λ1|2)(t0 − |λ2|2)λ1 + (t0 − |λ1|2)λ2 = (t0 − |λ1|2)
(

(t0 − |λ2|2)λ1 + (t0 − |λ1|2)λ2

)
.

It remains to divide (3.7) by (3.6).

To interpret formula (3.1) geometrically, let us rewrite it as

z0 = t1λ1 + t2λ2,

where

t1 =
t0 − |λ2|2

2t0 − trace(A∗A)
and t2 =

t0 − |λ1|2

2t0 − trace(A∗A)
.

According to (3.2), the denominator of these formulas can be rewritten as√
(trace(A∗A))2 − 4 |detA|2 =

√
(|λ1|2 + |λ2|2 + c2)2 − 4 |λ1λ2|2

=

√
(|λ1|2 − |λ2|2)2 + 2c2(|λ1|2 + |λ2|2) + c4

> 0.

Also, t0 ≥ c2 + max{|λ1|2 , |λ2|2}, and

(t0 − |λ1|2) + (t0 − |λ2|2) = 2t0 − trace(A∗A) + c2 > 2t0 − trace(A∗A).

Consequently, t1, t2 > 0 and t1+t2 > 1, implying that in case of non-collinear λ1, λ2 (equivalently, λ1λ2 /∈ R)

z0 lies in the sector spanned by λ1, λ2 and is separated from the origin by the line passing through λ1, λ2.

If, on the other hand, λ1 and λ2 lie on the line passing through the origin, the point z0 also lies on this

line. More specifically, the following statement holds.
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Corollary 3.2. Let A be a non-normal 2-by-2 matrix, with the maximal numerical range W0(A) =

{z0}. Then the point z0:

(i) is collinear with the spectrum σ(A) = {λ1, λ2} if and only if λ1λ2 ∈ R;

(ii) coincides with one of the eigenvalues of A if and only if the other one is zero;

(iii) lies in the open interval with the endpoints λ1, λ2 if and only if λ1λ2 < 0;

(iv) is the midpoint of the above interval if and only if traceA = 0;

(v) lies on the line passing through λ1 and λ2 but outside of the interval [λ1, λ2] if and only if λ1λ2 > 0.

Proof. Part (i) follows from the discussion preceding the statement. When proving (ii)–(v) we may

therefore suppose that λ1λ2 ∈ R holds. Since all the statements in question are invariant under rotations of

A, without loss of generality even λ1, λ2 ∈ R. Then z0 ∈ R as well. Using formula (3.5) for z0:

z0 − λ2 =
c2λ1(t0 − λ1λ2)

c2λ21 + (t0 − λ21)2
,

and so the signs of z0 − λ2 and λ1 are the same. Relabeling the eigenvalues of A (which of course does

not change z0) we thus also have that the signs of z0 − λ1 and λ2 are the same. Statements (ii)–(v) follow

immediately.
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Figure 1. A =

[
0.5i −1

0 1 + i

]
; z0 is not collinear with the spectrum.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 34, pp. 288-303, June 2018.

Ali N. Hamed and Ilya M. Spitkovsky 294

-0.5 0 0.5 1 1.5

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Figure 2. A =

[
1 i

0 0

]
; z0 coincides with one of the eigenvalues since the other is zero.
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Figure 3. A =

[
−2 2

0 1

]
; z0 is collinear with the spectrum and lies inside the interval connecting it.
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Figure 4. A =
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1 0.8
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]
; z0 is the midpoint of the line connecting the eigenvalues.

0.8 1 1.2 1.4 1.6 1.8 2 2.2

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 5. A =

[
2 0.75

0 1

]
; z0 is collinear with the spectrum and lies outside the interval connecting it.
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4. Matrices decomposing into small blocks. A straightforward generalization of Theorem 3.1,

based on property (1.2), is the description of W0(A) for matrices A unitarily similar to direct sums of 2-by-2

and 1-by-1 blocks.

Theorem 4.1. Let A be unitarily similar to

diag[λ1, . . . , λk]⊕A1 ⊕ · · · ⊕Am,

with Aj ∈ C2×2, j = 1, . . . ,m. Denote

(4.1) tj =
1

2

(
trace(A∗jAj) +

√
(trace(A∗jAj))

2 − 4 |detAj |2
)
,

(4.2) zj =
tj · traceAj − (detAj) · traceAj

2tj − trace(A∗A)
, j = 1, . . . ,m,

t0 = max{tj , |λi|2 : i = 1, . . . , k; j = 1, . . . ,m},

and let I (resp., J) stand for the set of all i (resp., j) for which |λi|2 (resp., tj) equals t0. Then

(4.3) W0(A) = conv{λi, zj : i ∈ I, j ∈ J}.

According to (4.3), in the setting of Theorem 4.1, W0(A) is always a polygon.

Consider in particular A unitarily similar to

(4.4)

[
a1In1

X

Y a2In2

]
,

with X ∈ Cn1×n2 and Y ∈ Cn2×n1 such that XY and Y X are both normal. As was shown in the proof of

[1, Theorem 2.1], yet another unitary similarity can be used to rewrite A as the direct sum of min{n1, n2}
two-dimensional blocks

(4.5) Aj =

[
a1 σj
δj a2

]
and max{n1, n2} −min{n1, n2} one-dimensional blocks equal either a1 or a2.

Here σj are the s-numbers of X, read from the diagonal of the middle term in its singular value decom-

position X = U1ΣU∗2 , while δj are the respective diagonal entries of the matrix ∆ = U∗2Y U1, which can also

be made diagonal due to the conditions imposed on X,Y .

Since ‖Aj‖ ≥ max{|a1| , |a2|}, for matrices (4.4) (or unitarily similar to them) formula (4.3) implies that

W0(A) is the convex hull of zj given by (4.2) taken over those j only which deliver the maximal value of

‖Aj‖.

Here are some particular cases in which all zj , λi contributing to W0(A) happen to coincide. Then W0(A)

is a singleton, as it was the case for 2-by-2 matrices A different from scalar multiples of a unitary matrix.

Proposition 1. Let, in (4.4), a1 = −a2. Then W0(A) = {0}.

Proof. Indeed, in this case traceAj = 0, and formula (4.2) implies that zj = 0 for all j, in particular for

those with maximal ‖Aj‖ is attained.
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Recall that a continuant matrix is by definition a tridiagonal matrix A ∈ Cn×n such that its off-diagonal

entries satisfy the requirement

ak,k+1 = −ak+1,k, k = 1, . . . , n− 1.

Such a matrix can be written as

(4.6) C =



a1 b1 0 · · · 0

−b1 a2 b2
. . .

...

0 −b2 a3
. . . 0

...
. . .

. . .
. . . bn−1

0 · · · 0 −bn−1 an


.

Proposition 2. Let C be the continuant matrix (4.6) with a 2-periodic main diagonal: a1 = a3 = . . . ,

a2 = a4 = . . . Then W0(C) is a singleton.

Proof. Let T be the matrix with the columns e1, e3, . . . , e2, e4, . . ., where {e1, . . . , en} is the standard

basis of Cn. It is easy to see that a unitary similarity performed by T transforms the continuant matrix

(4.6) with the 2-periodic main diagonal into the matrix (4.4) for which

X =


b1
b2 b3

b4 b5
. . .

. . .

 , Y = −X∗.

So, in (4.5) we have δj = −σj , and thus, ‖Aj‖ depends monotonically on σj . The block on which the

maximal norm is attained is therefore uniquely defined (though might appear repeatedly), and the respective

maximal value of σj is nothing but ‖X‖.

It is clear from the proof of Proposition 2 how to determine the location of W0(C): it is given by formulas

(4.1), (4.2) with traceAj , trace(A∗jAj) and detAj replaced by a1+a2, |a1|2+|a2|2+2 ‖X‖2, and a1a2+‖X‖2,

respectively.

Finally, let A be quadratic, i.e., having the minimal polynomial of degree two. As is well known (and

easy to show), A is then unitarily similar to a matrix

(4.7)

[
λ1In1

X

0 λ2In2

]
.

This fact was used e.g. in [15] to prove that for such matrices W (A) is the same as W (A0), where A0 ∈ C2×2

is defined as

A0 =

[
λ1 ‖X‖
0 λ2

]
,

and thus, W (A) is an elliptical disk.

The next statement shows that the relation between A unitarily similar to (4.7) and A0 persists when

maximal numerical ranges are considered.
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Proposition 3. Let A ∈ Cn×n be quadratic and thus unitarily similar to (4.7). Then W0(A) is a

singleton {z0}, where

z0 =
(‖A0‖2 − |λ2|2)λ1 + (‖A0‖2 − |λ1|2)λ2

2 ‖A0‖2 − (|λ1|2 + |λ2|2 + ‖X‖2)
.

Proof. Observe that (4.7) is a particular case of (4.4) in which Y = 0 and aj = λj , j = 1, 2. So, the

normality of XY and Y X holds in a trivial way and, moreover, δj = 0 for all the blocks Aj appearing in the

unitary reduction of A. Similarly to the situation in Proposition 2, the norms of Aj depend monotonically

on σj , and thus, the maximum is attained on the blocks (of which there is at least one) coinciding with A0.

It remains only to invoke formula (3.1), keeping in mind that t0 = ‖A0‖2 and trace(A∗0A0) = |λ1|2 + |λ2|2 +

‖X‖2.

In general, however, there is no reason for the set (4.3) to be a singleton. To illustrate, let A =

A1 ⊕A2 ⊕A3, where

(4.8) A1 =

[
−1 1

1− i 2

]
, A2 =

[
−1 1 + i

1 2

]
, A3 =

[
−1

√
3+3
√
6

5

0 2

]
.

Then ‖Aj‖ =
√

4 +
√

6 for each j = 1, 2, 3, while W0(Aj) = {zj}, with

(4.9) z1,2 ≈ 1.93∓ 0.20i, z3 ≈ 1.45.
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Figure 6. A is the direct sum of Aj given by (4.8). The maximal numerical range is the triangle with the vertices zj
given by (4.9).

5. Matrices with the norm attained on a hyperplane. Generically, the eigenvalues of A∗A are

all distinct, and W0(A) is therefore a singleton. In more rigorous terms, the set of n-by-n matrices A with

W0(A) being a point has the interior dense in Cn×n.
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An opposite extreme is the case when A∗A has just one eigenvalue. This happens if and only if A is a

scalar multiple of a unitary matrix – a simple situation, covered by Theorem 2.3.

If n = 2, these are the only options, which is of course in agreement with the description of W0(A)

provided for this case in Section 3. Starting with n = 3, however, the situation when the maximal eigenvalue

of A∗A has multiplicity n− 1 becomes non-trivial. We here provide some additional information about the

shapes of W (A),W0(A) in this case.

The only way in which such matrices A can be unitarily reducible is if they are unitarily similar to

cU ⊕ B, with U unitary and ‖B‖ = c attained on a subspace of codimension one. Therefore, it suffices to

consider the case of unitarily irreducible A only.

To state the pertinent result, we need to recall one more notion. Namely, Γ is a Poncelet curve (of rank

m with respect to a circle C) if it is a closed convex curve lying inside C and such that for any point z ∈ C
there is an m-gon inscribed in C, circumscribed around Γ, and having z as one of its vertices.

Theorem 5.1. Let A ∈ Cn×n be unitarily irreducible, with the norm of A attained on an (n − 1)-

dimensional subspace. Then ∂W (A) and ∂W0(A) both are Poncelet curves (of rank n+1 and n, respectively)

with respect to the circle {z : |z| = ‖A‖}.

Proof. Considering A/ ‖A‖ in place of A, we may without loss of generality suppose that C is the unit

circle T, the matrix in question is a contraction with ‖A‖ = 1 and rank(I − A∗A) = 1. Also, ρ(A) < 1

since otherwise A would be normaloid and thus unitarily reducible. In the notation of [3] (adopted in later

publications), A ∈ Sn, and the result follows directly from [3, Theorem 2.1].

Moving to W0(A), consider the polar form UR of A. Since the statement in question is invariant under

unitary similarities, we may suppose that the positive semi-definite factor R is diagonalized. Condition

rank(I − A∗A) = 1 then implies that R = diag[1, . . . , 1, c], where 0 ≤ c < 1. In agreement with (1.1),

W0(A) = W (U0), where U0 is the matrix obtained from U by deleting its last row and column. Note that U

has no eigenvectors with the last coordinate equal to zero, since otherwise they would also be eigenvectors

of R, implying unitary reducibility of A. In particular, the eigenvalues of U are distinct. The statement now

follows by applying [11, Theorem 1] to W (U0).

Note that the matrix U0 constructed in the second part of the proof actually belongs to Sn−1. The properties

of W (T ) for T ∈ Sn stated in [3, Lemma 2.2] thus yield:

Corollary 5.2. In the setting of Theorem 5.1, both ∂W (A) and ∂W0(A) are smooth curves, with each

point generated by exactly one (up to a unimodular scalar multiple) vector.

The above mentioned uniqueness of the generating vectors implies in particular that ∂W (A), ∂W0(A)

contain no flat portions.

To illustrate, consider the Jordan block Jn ∈ Cn×n corresponding to the zero eigenvalue. Then Jn ∈
Sn, with the norm of Jn attained on the span L of the elements e2, . . . , en of the standard basis of Cn.

Consequently, the compression of Jn onto L is Jn−1, and W0(Jn) = W (Jn−1) is the circular disk {z : |z| ≤
cos πn}, while W (Jn) is the (concentric but strictly larger) circular disk {z : |z| ≤ cos π

n+1}.

Finally, let us concentrate on the smallest size for which the situation of this Section is non-trivial,

namely n = 3.
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Proposition 4. A matrix A ∈ C3×3 is unitarily irreducible with the norm attained on a 2-dimensional

subspace if and only if it is unitarily similar to

(5.1) ω

λ1
√

(1− |λ1|2)(1− |λ2|2) −λ2
√

(1− |λ1|2)(1− |λ3|2)

0 λ2

√
(1− |λ2|2)(1− |λ3|2)

0 0 λ3

 ,
where ω ∈ C \ {0}, −1 < λ2 ≤ 0, and |λj | < 1, j = 1, 3.

Proof. According to Schur’s lemma, we can put any A ∈ C3×3 in an upper triangular form

(5.2) A0 =

λ1 x y

0 λ2 z

0 0 λ3

 .
Further multiplication by an appropriate non-zero complex number w allows us without loss of generality to

suppose that ‖A‖ = 1 and xyz ≥ 0. An additional (diagonal) unitary similarity can then be used to arrange

for x, y, z all to be non-negative. Being an irreducible contraction, the matrix (5.2) has to satisfy |λj | < 1

(j = 1, 2, 3) and xz 6= 0. Rewriting the rank-one condition for I − A∗0A0 as the collinearity of its columns

and solving the resulting system of equations for x, y, z yields

x =

√
(1− |λ1|2)(1− |λ2|2),

y = −λ2
√

(1− |λ1|2)(1− |λ3|2),(5.3)

z =

√
(1− |λ2|2)(1− |λ3|2).

In particular, λ2 has to be non-positive, due to the non-negativity of y.

Setting ω = w−1, we arrive at representation (5.1).

A straightforward verification shows that the converse is also true, i.e., any matrix of the form (5.1) is

unitarily irreducible with a norm attained on a 2-dimensional subspace.

Note that the form (5.1) can also be established by invoking [11, Theorem 4], instead of solving for x, y, z

in terms of λj straightforwardly.

In the setting of Proposition 4, the set W0(A) is the numerical range of a 2-by-2 matrix, and in agreement

with Corollary 5.2 is an elliptical disk. By the same Corollary 5.2, W (A) also cannot have flat portions on

its boundary (this of course can also be established by applying the respective criteria for 3-by-3 matrices

from [8, Section 3] or [12]). According to Kippenhahn’s classification of the shapes of numerical ranges in

the n = 3 case [9] (see also the English translation [10]), W (A) can a priori be either an elliptical disk or

an ovular figure bounded by a convex algebraic curve of degree 6. As it happens, both options materialize.

The next result singles out the case in which W (A) is elliptical; in all other cases it is therefore ovular.

Theorem 5.3. Let A be given by formula (5.1), with λj as described by Proposition 4. Then W (A) is

an elliptical disk if and only if

(5.4) λi = λj
1− |λk|2

1− |λjλk|2
+ λk

1− |λj |2

1− |λjλk|2

for some reordering (i, j, k) of the triple (1, 2, 3).
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Proof. According to [8, Section 2], for a unitarily irreducible matrix (5.2) to have an elliptical numerical

range it is necessary and sufficient that

λ =
λ3 |x|2 + λ2 |y|2 + λ1 |z|2 − xyz

|x|2 + |y|2 + |z|2

coincides with one of the eigenvalues λj . Plugging in the values of x, y, z from (5.3), we may rewrite λ as

λ1(1− |λ2|2)(1− |λ3|2) + λ2(1− |λ1|2)(1− |λ3|2) + λ3(1− |λ1|2)(1− |λ2|2)

2− |λ1|2 − |λ2|2 − |λ3|2 + |λ1λ2λ3|2
.

Now it is straightforward to check that λ = λi if and only if (5.4) holds.

Proposition 4 and Theorem 5.3 both simplify greatly if A is singular.

Theorem 5.4. A singular 3-by-3 matrix A is unitarily irreducible with the norm attained on a 2-

dimensional subspace if and only if it is unitarily similar to

(5.5) B = ω

0

√
1− |λ|2 −λ

√
1− |µ|2

0 λ

√
(1− |λ|2)(1− |µ|2)

0 0 µ

 ,
where ω 6= 0, −1 < λ ≤ 0 and |µ| < 1. Its numerical range W (A) is an elliptical disk if and only if µ = ±λ,

and has an ovular shape otherwise.

Note that for matrices (5.5) L = Span{e2, e3}, and so W0(B) is nothing but the numerical range of the

right lower 2-by-2 block of B. The next three figures show the shape of W0(B) and W (B) for B given by

(5.5) with ω = 1 for several choices of λ, µ.
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Figure 7. µ = λ = −2/5. The numerical range and maximal numerical range are both circular discs.
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Figure 8. µ = −λ = 3/4. The numerical range and maximal numerical range are both elliptical discs.
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Figure 9. µ = 1/3, λ = −7/8. The numerical range is an ovular disc, and the maximal numerical range is an elliptical disc.
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