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A NOTE ON THE MATRIX ARITHMETIC-GEOMETRIC MEAN INEQUALITY∗

TENG ZHANG†

Abstract. This note proves the following inequality: If n = 3k for some positive integer k, then for any n positive definite

matrices A1,A2, . . . ,An, the following inequality holds:

1

n3

∥∥∥ n∑
j1,j2,j3=1

Aj1Aj2Aj3

∥∥∥ ≥ (n− 3)!

n!

∥∥∥ n∑
j1,j2,j3=1,

j1, j2, j3 all distinct

Aj1Aj2Aj3

∥∥∥,
where ‖ · ‖ represents the operator norm. This inequality is a special case of a recent conjecture proposed by Recht and Ré

(2012).
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1. Introduction. The classical arithmetic-geometric mean inequality asserts that when a1, a2, . . . , an
are positive numbers, then 1

n (
∑n

i=1 ai) ≥ (
∏n

i=1 ai)
1
n . This inequality has been generalized from the case of

n positive scalars to the case of n positive-definite matrices in various works (see [1, 2, 3, 6, 7]).

Recently, Recht and Ré [8] conjectured another generalization of the arithmetic-geometric mean in-

equality, which is formulated differently from the inequalities proved in previous works. The conjecture is

as follows: For n positive definite matrices {Ai}ni=1, the following inequality holds:

(1.1)
1

nm

∥∥∥ n∑
j1,...,jm=1

Aj1Aj2 · · ·Ajm

∥∥∥ ≥ (n−m)!

n!

∥∥∥ n∑
j1,...,jm=1,

j1, . . . , jm all distinct

Aj1Aj2 · · ·Ajm

∥∥∥.
Here ‖ · ‖ represents the operator norm, i.e., the largest singular value. Recht and Ré showed that, if this

inequality holds, then the randomized coordinate descent algorithm without replacement sampling converges

faster than the version with replacement sampling for both least mean squares and randomized Kaczmarz

algorithms.

While the conjecture has been proved in [8, Proposition 3.2] for the special case n = m = 2, to the best

of our knowledge, the conjecture for other cases remains open.

Inspired by the analysis of randomized algorithm, a very similar conjecture was proposed in [4], which

is formulated as

1

nm

n∑
j1,...,jm=1

∥∥∥Aj1Aj2 · · ·Ajm

∥∥∥ ≥ (n−m)!

n!

n∑
j1,...,jm=1,

j1, . . . , jm all distinct

∥∥∥Aj1Aj2 · · ·Ajm

∥∥∥.
For this conjecture, the case m = 3 has been proved recently in [5]. However, the conjecture is different from
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(1.1) since both LHS and RHS are the sum of operator norms, and the technique used in the proof is not

extendable to the proof of (1.1).

The main contribution of this note is a proof of the conjecture (1.1) when m = 3 and n = 3k for any

integer k > 1. The rest of the paper is organized as follows. In Section 2, we prove the conjecture for

n = m = 3. Section 3 generalizes the result to the case m = 3 and n = 3k. Section 4 discusses other settings

such as m = 4 and some interesting open problems related to the conjecture.

2. The proof of the conjecture when n,m = 3.

2.1. Reduction of the conjecture. In the note, we write A ≥ B or B ≤ A if A − B is positive

semidefinite. To prove

(2.2)
1

n3

∥∥∥ n∑
j1,j2,j3=1

Aj1Aj2Aj3

∥∥∥ ≥ (n− 3)!

n!

∥∥∥ n∑
j1,j2,j3=1,

j1, j2, j3 all distinct

Aj1Aj2Aj3

∥∥∥,
WLOG we may assume ‖

∑n
j=1 Aj‖ = 1, which implies

(2.3)

n∑
j=1

Aj ≤ I.

Then the LHS of (1.1) is 1/nm and it suffices to prove

(2.4) − 1

nm
I ≤ E[Ai1Ai2 · · ·Aim ] ≤ 1

nm
I,

where E[Ai1Ai2 · · ·Aim ] represents the expected value of Ai1Ai2 · · ·Aim in the probability space that the

n-tuple {i1, i2, . . . , in} is sampled randomly from all permutations of {1, 2, . . . , n}.

2.2. Proof of the upper bound. In this section, we will prove the second inequality in (2.4) when

n,m = 3, i.e., the upper bound of E[Ai1Ai2 · · ·Aim ]. The proof is based on the following lemmas, and their

proofs are deferred to Sections 2.4 and 2.5.

Lemma 2.1. For symmetric matrices A, B ∈ Rp×p, and any positive semidefinite matrix C ∈ Rp×p,

ACA + BCB ≥ ACB + BCA.

Lemma 2.2. If A, B and C are symmetric matrices of the same size and A ≤ B, then

CAC ≤ CBC.

To prove the upper bound of E[Ai1Ai2Ai3 ], first we apply Lemma 2.1 and obtain

(2.5) Ai1Ai2Ai3 + Ai3Ai2Ai1 ≤ Ai1Ai2Ai1 + Ai3Ai2Ai3 .

Applying (2.5), we have

E[Ai1Ai2Ai3 ] =
1

2
E[Ai1Ai2Ai3 + Ai3Ai2Ai1 ]

≤ 1

4
E[Ai1Ai2Ai3 + Ai3Ai2Ai1 + Ai1Ai2Ai1 + Ai3Ai2Ai3 ]

=
1

4
E[(Ai1 + Ai3)Ai2(Ai1 + Ai3)],(2.6)
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where the inequality is obtained by taking the expectation to both LHS and RHS of (2.5).

On the other hand, since Ai1 + Ai3 ≤ I−Ai2 (which follows from (2.3)), Lemma 2.2 implies

(2.7) (Ai1 + Ai3)Ai2(Ai1 + Ai3) ≤ (Ai1 + Ai3)
(
I− (Ai1 + Ai3)

)
(Ai1 + Ai3).

Since Ai1 + Ai3 and I− (Ai1 + Ai3) are simultaneously diagonalizable and their eigenvalues are between 0

and 1, applying max0≤a≤1 a
2(1− a) = 4/27, we have

(2.8) (Ai1 + Ai3)
(
I− (Ai1 + Ai3)

)
(Ai1 + Ai3) ≤ 4

27
I.

The upper bound of E[Ai1Ai2Ai3 ] in (2.4) is then proved by combining (2.6), (2.7), and (2.8).

2.3. Proof of the lower bound. In this section, we will prove the first inequality in (2.4) when

n,m = 3, i.e., the lower bound of E[Ai1Ai2 · · ·Aim ].

To prove the lower bound of E[Ai1Ai2Ai3 ] in (2.4), we apply Lemma 2.1 by plugging in A = Ai1 ,B =

−Ai3 , and C = Ai2 :

(2.9) −Ai1Ai2Ai3 −Ai3Ai2Ai1 ≤ Ai1Ai2Ai1 + Ai3Ai2Ai3 .

Similar to (2.6), applying (2.9) we have

E[−Ai1Ai2Ai3 ] =
1

2
E[−Ai1Ai2Ai3 −Ai3Ai2Ai1 ]

≤ 1

4
E[−Ai1Ai2Ai3 −Ai3Ai2Ai1 + Ai1Ai2Ai1 + Ai3Ai2Ai3 ]

=
1

4
E[(Ai1 −Ai3)Ai2(Ai1 −Ai3)].(2.10)

Therefore, to prove the lower bound in (2.4), it suffices to show

(2.11) E[(Ai1 −Ai3)Ai2(Ai1 −Ai3)] ≤ 4

27
I.

To prove (2.11), we let D = (I−A1 −A2 −A3)/3 and Ãi = Ai for i = 1, 2, 3. Then by Lemma 2.2,

(2.12) E[(Ai1 −Ai3)Ai2(Ai1 −Ai3)] ≤ E[(Ãi1 − Ãi3)Ãi2(Ãi1 − Ãi3)].

Since

(Ãi1 − Ãi3)Ãi2(Ãi1 − Ãi3) = 2Ãi1Ãi2Ãi1 + 2Ãi3Ãi2Ãi3 − (Ãi1 + Ãi3)Ãi2(Ãi1 + Ãi3)

and

E[2Ãi1Ãi2Ãi1 + 2Ãi3Ãi2Ãi3 ] = E[2Ãi2(Ãi1 + Ãi3)Ãi2 ],

we have

E[(Ãi1 − Ãi3)Ãi2(Ãi1 − Ãi3)]

=E[2Ãi1Ãi2Ãi1 + 2Ãi3Ãi2Ãi3 − (Ãi1 + Ãi3)Ãi2(Ãi1 + Ãi3)]

=E[2Ãi2(Ãi1 + Ãi3)Ãi2 − (Ãi1 + Ãi3)Ãi2(Ãi1 + Ãi3)](2.13)
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Applying the fact that Ã1 + Ã2 + Ã3 = I, we have

E[2Ãi2(Ãi1 + Ãi3)Ãi2 − (Ãi1 + Ãi3)Ãi2(Ãi1 + Ãi3)]

=E[2Ãi2(I− Ãi2)Ãi2 − (I− Ãi2)Ãi2(I− Ãi2)]

=E[−Ãi2 + 4Ã2
i2 − 3Ã3

i2 ] =
4

27
I + E

[
−13

9
Ãi2 + 4Ã2

i2 − 3Ã3
i2

]
,(2.14)

where the last step applies E[Ãi2 ] = 1
3I. Since max0≤x≤1− 13

9 x + 4x2 − 3x3 = 0 and the eigenvalues of Ãi

lie in [0, 1], we have

−13

9
Ãi2 + 4Ã2

i2 − 3Ã3
i2 ≤ 0.

Combining it with (2.12), (2.13) and (2.14), (2.11) is proved and therefore the lower bound in (2.4) is proved.

2.4. Proof of Lemma 2.1. The difference of its LHS and RHS can be written as the product of a

matrix with its transpose:

ACA + BCB−ACB−BCA = (A−B)C(A−B) =
(

(A−B)C0.5
)(

(A−B)C0.5
)T

,

which is clearly positive semidefinite.

2.5. Proof of Lemma 2.2. Since B −A is positive semidefinite, we can assume B −A = HHT for

some matrix H. Then CBC−CAC = C(B−A)C = (CH)(CH)T is also positive semidefinite.

3. Generalization to n = 3k. It is possible to extend the proof from the case n = m = 3 to the cases

where m = 3 and n = 3k for any positive integer k. The proof follows directly from the following lemma.

Lemma 3.1. If (2.4) holds for (n,m) = (n0,m0), then it also holds for (n,m) = (k n0,m0) with any

positive integer k.

Proof. If n = kn0 and m = m0, then

E[Ai1Ai2 · · ·Aim ] =
1

km
E
[ k∑
j=1

Aij ·
2k∑

j=k+1

Aij ·
3k∑

j=2k+1

Aij · · ·
mk∑

j=(m−1)k+1

Aij

]

=
1

km
E
[
El1,l2,...,ln0

[ l1k∑
j=(l1−1)k+1

Aij ·
l2k∑

j=(l2−1)k+1

Aij ·
l3k∑

j=(l3−1)k+1

Aij · · ·
lmk∑

j=(lm−1)k+1

Aij

]]
,(3.15)

where {l1, l2, . . . , ln0
} is a random permutation of {1, 2, . . . , n0}.

Apply (2.4) with (n,m) = (n0,m0) to n0 positive definite matrices {
∑lk

j=(l−1)k+1Aij}
n0

l=1, we have

(3.16) − 1

nm
0

I ≤ El1,l2,...,ln0

[ l1k∑
j=(l1−1)k+1

Aij ·
l2k∑

j=(l2−1)k+1

Aij ·
l3k∑

j=(l3−1)k+1

Aij · · ·
lmk∑

j=(lm−1)k+1

Aij

]
≤ 1

nm
0

I.

Combining (3.15) and (3.16), we proved (2.4) for (n,m) = (k n0,m0).

We remark that since the conjecture for (n,m) = (2, 2) has been proved in [8, Proposition 3.2], Lemma 3.1

also implies that the conjecture when (n,m) = (2k, 2), i.e., when n is even and m = 2.
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4. Discussion. Having proved the case n = m = 3, a natural next step is to prove the case n = m = 4.

The basic idea in this paper is to divide
∑n

j1,...,jm=1,
j1, . . . , jm all distinct

Aj1Aj2 · · ·Ajm into several parts and find the

bounds of each parts. For example, in Section 2.2, we prove the upper bound in (2.4) by finding the upper

bounds of A2A1A3 + A3A1A2, A1A2A3 + A3A2A1 and A2A3A1 + A1A3A2 separately. Based on this

idea, we have the following conjecture, which would implies (1.1) when n,m = 4.

Conjecture 1. For positive semi-definite matrices A, B, C, and D, the following inequality holds:

‖A(BC + CB)D + D(BC + CB)A‖ ≤ 1

64
‖A + B + C + D‖4.

While simulations seem to imply the correctness of this conjecture, the difficulty lies in the construction

of an equivalent version of Lemma 2.1 for the product of four matrices.

Another interesting open conjecture is to extend the case n = m = 3 to other unitarily invariant norms.

That is, can we prove that for all positive definite matrices A, B and C, the following inequality holds:

9|||ABC + ACB + BAC + BCA + CAB + CBA||| ≤ 2|||A + B + C|||3,

where |||.||| denotes every unitarily invariant norm? While the simulations seem to indicate its correctness,

and the approach in this paper only applies to the operator norm.
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