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AVERAGE MIXING MATRIX OF TREES∗

CHRIS GODSIL† , KRYSTAL GUO‡ , AND JOHN SINKOVIC§

Abstract. The rank of the average mixing matrix of trees with all eigenvalues distinct, is investigated. The rank of the

average mixing matrix of a tree on n vertices with n distinct eigenvalues is bounded above by dn/2e. Computations on trees

up to 20 vertices suggest that the rank attains this upper bound most of the times. An infinite family of trees whose average

mixing matrices have ranks which are bounded away from this upper bound, is given. A lower bound on the rank of the average

mixing matrix of a tree, is also given.
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1. Introduction. We investigate the rank of the average mixing matrix of continuous time quantum

walks on trees with all simple eigenvalues.

The continuous-time quantum walk is a universal computational primitive [4]. Since their introduction

in [7], many properties of quantum walks have been studied. Some topics include state transfer [5, 11, 14, 16]

and uniform mixing [1, 3, 13].

Let X be a graph and let A be the adjacency matrix of X. The transition matrix of a continuous-time

quantum walk on X is a matrix-valued function in time, denoted U(t), and is given as follows:

U(t) = exp(itA).

Unlike a classical random walk on a connected graph, a continuous quantum walk does not reach a stationary

distribution. For example, the transition of the complete graph Kn is a periodic function of t. The average

mixing matrix is, intuitively, a distribution that the quantum walk adheres to, on average, over time, and

thus, may be thought of as a replacement for a stationary distribution. The average mixing matrix has been

studied in [2, 6, 12]. We will now proceed with a few preliminary definitions.

The mixing matrix M(t) of the quantum walk, given by

M(t) = U(t) ◦ U(t).

where ◦ denotes the Schur (also known as the Hadamard or element-wise product) of two matrices. The

average mixing matrix, denoted M̂ , is defined as follows:

(1.1) M̂ = lim
T→∞

1

T

∫ T

0

M(t) dt.
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A tree is a connected graph with no cycles. The class of trees is a natural class of graphs to study, since

it is a smaller class of graphs with well-understood combinatorial properties and eigenvalues. Trees have

the desirable property of being sparse and initial data for the rank of the average mixing matrix prompted

further study of the class. The rank of the average mixing matrix of a tree on n vertices with n distinct

eigenvalues is at most dn/2e, see [6]. We computed the rank of the average mixing matrix of all trees up to 20

vertices; the computational results suggest that the rank of M̂ of a tree with all simple eigenvalues attains

the upper bound most of the time. We give an infinite family of trees whose average mixing matrices have

ranks which are bounded away from this upper bound.

Theorem 1.1. For every positive real number c, there exists a tree T on n vertices with all simple

eigenvalues such that

⌈n
2

⌉
− rk(M̂(T )) > c.

We then give the following lower bound on the rank of the average mixing matrix of a tree:

Theorem 1.2. If T is a tree with all simple eigenvalues on at least four vertices and is not isomorphic

to P4, then rk(M̂(T )) ≥ 3.

We give some preliminary results about the average mixing matrix in Section 2. We also find the ranks

and traces of the average mixing matrices of star graphs, as an example. In Section 3, we define the rooted

product of graphs and we find the average mixing matrix of the rooted product of X and Y = {K2, . . . ,K2}
in terms of the eigenprojectors of X. We use this result in Section 4 to give a family of trees whose average

mixing matrices have ranks which are upper-bounded away from the maximum. In Section 5, we prove the

lower bound on the ranks of the average mixing matrices of trees which are not isomorphic to the path on

four vertices.

2. Preliminaries and examples. Let X be a graph on n vertices and let A be the adjacency matrix of

X. Let θ1, . . . , θd be the distinct eigenvalues of A and, for r = 1, . . . , d, let Er be the idempotent projection

onto the θr eigenspace of A; the spectral decomposition of A is as follows:

A =

d∑

r=1

θrEr.

The following is an important theorem as it allows us to understand the average mixing matrix.

Theorem 2.1. [12] Let X be a graph and let A be the adjacency matrix of X. Let A =
∑d
r=1 θrEr be

the spectral decomposition of A. The average mixing matrix of X is

M̂ =

d∑

r=1

Er ◦ Er.

As an example, we find the average mixing matrix of the star and deduce that it always has full rank.

Lemma 2.2. The average mixing matrix of the star graph K1,n has full rank and has

tr(M̂) =
2n2 − 3n+ 3

2n
.
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Proof. We will proceed by finding an explicit expression for M̂(K1,n). Observe that the eigenvalues of

K1,n are ±
√
n and 0 with multiplicity n− 1. We give the spectral idempotent matrices as follows:

E√n =
1

2

(
1 1√

n
1T

1√
n
1 1

nJ

)
, E−

√
n =

1

2

(
1 − 1√

n
1T

− 1√
n
1 1

nJ

)

and

E0 =

(
0 0

0 I − 1
nJ

)
,

where I is the n× n identity matrix and J is the n× n all ones matrix. Note that I − 1
nJ always has rank

n. Thus we have that

M̂(K1,n) = E◦2√n + E◦2−
√
n + E◦20

=
1

2

(
1 1

n1
T

1
n1

1
n2 J

)
+

(
0 0

0 (1− 2
n )I + 1

n2 J

)

=

(
1
2

1
2n1

T

1
2n1

3
2n2 J + (1− 2

n )I

)
.

We can now observe that this matrix has full rank; we can easily see that the lower n × n matrix does not

have 0 as an eigenvalue and adding the first row and column does not introduce any linear dependencies.

P6 E6 D̂5

rk(M̂) = 3

rk(M̂) = 5 rk(M̂) = 6

D6 T K1,5

Figure 1. All trees on 6 vertices, organized by the rank of their average mixing matrices.

The path graphs P2 and P3 are the only trees on two and three vertices, respectively. There are six trees

on six vertices; three of them have all simple eigenvalues and rank 3, two have rank 4 and one graph (the

star graph) of full rank. They are shown in Figure 1.
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3. Rooted products. Let X be a graph with vertices {v1, . . . , vn} and let Y be a disjoint union of

rooted graphs Y1, . . . , Yn, rooted at y1, . . . , yn, respectively. The rooted product of X and Y , denoted X(Y ),

is the graph obtain by identifying vi with the root vertex of Yi. The rooted product was first introduced

by Godsil and McKay in [8]. Let φ(Yi, t) denote the characteristic polynomial of Yi and let B(X,Y ) be the

matrix given as follows:

B(X,Y )i,j =





φ(Yi, t), if i = j;

−φ(Yi \ yi, t), if i ∼ j;
0, otherwise.

Theorem 3.1. [8] φ(X(Y ), t) = det(B).

In particular, we will consider the special case where Y is a sequence of n copies of K2. In this case,

we will write X(K2) to denote the rooted product and the following is found in [8] as a consequence of the

above theorem

(3.2) φ(X(K2), t) = tnφ

(
H, t− 1

t

)
.

The following lemma follows directly from (3.2).

Lemma 3.2. Let X be a graph with all simple eigenvalues. The rooted product X(K2) also has all simple

eigenvalues which are roots of

t2 − λt− 1 = 0,

for λ an eigenvalue of X.

Lemma 3.3. Let X be a graph with all simple eigenvalues and let {v1, . . . ,vn} be an orthonormal eigen-

basis of A(X) with eigenvalues λ1, . . . , λn, respectively. For i = 1, . . . , n, let µi and νi be the two roots of

t2 − λit− 1 = 0. Then

{
1√
µ2
i + 1

(
µivi
vi

)
,

1√
ν2i + 1

(
νivi
vi

)
| i = 1, . . . , n

}

is an orthonormal eigenbasis for X(K2).

Proof. We may write the adjacency matrix of X(K2) as follows:

A(X(K2)) =

(
A(X) I

I 0

)
.

For i ∈ [n] and µ ∈ {µi, νi}, we see that µ 6= 0 and µ2 = λµ+ 1. We obtain that

(
A(X) I

I 0

)(
µvi
vi

)
=

(
λiµvi + vi

µvi

)
=

(
µ2vi
µvi

)
= µ

(
µvi
vi

)
,

and the lemma follows.
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Theorem 3.4. Let X be a graph with all simple eigenvalues and let F1, . . . , Fn the orthogonal projections

onto the eigenspaces of A(X) with corresponding eigenvalues λ1, . . . , λn. Then

M̂(X(K2)) =

(
M̂(X)−N N

N M̂(X)−N

)
,

where

N =

n∑

i=1

(
2

λ2i + 4

)
(Fi ◦ Fi).

Proof. Following the notation of the previous lemma, we see that Fi = viv
T
i . For i ∈ [n], let µ ∈ {µi, νi}.

The orthogonal projection Eµ onto the µ eigenspace of A(X(K2) is given by

1

µ2+1

(
µvi
vi

)(
µvTi vTi

)
=

1

µ2+1

(
µ2viv

T
i µviv

T
i

µviv
T
i viv

T
i

)
=

1

µ2+1

(
µ2Fi µFi
µFi Fi

)
.

Thus,

Eµi ◦ Eµi + Eνi ◦ Eνi =




(
µ4
i

(µ2
i+1)

2 +
ν4
i

(ν2
i+1)

2

)
(Fi◦Fi)

(
µ2
i

(µ2
i+1)

2 +
ν2
i

(ν2
i+1)

2

)
(Fi◦Fi)

(
µ2
i

(µ2
i+1)

2 +
ν2
i

(ν2
i+1)

2

)
(Fi◦Fi)

(
1

(µ2
i+1)

2 + 1

(ν2
i+1)

2

)
(Fi◦Fi)


 .

Observe that µi + νi = −λi and µiνi = −1, and so

µ2
i + ν2i = (µi + νi)

2 − 2µiνi = λ2i + 2

and

µ4
i + ν4i = λ4i + 4µ2

i + 4ν2i − 6 = λ4i + 4λ2i + 2.

We obtain that

µ4
i

(µ2
i +1)

2 +
ν4i

(ν2i +1)
2 =

µ4
i

(
ν2i +1

)2
+ ν4i

(
µ2
i +1

)2

(µ2
i +1)

2
(ν2i +1)

2 =
λ4i + 6µ2

i + 6ν2i − 4

(λ2i + 4)
2 =

λ2i + 2

λ2i + 4
,

µ2
i

(µ2
i +1)

2 +
ν2i

(ν2i +1)
2 =

µ2
i

(
ν2i +1

)2
+ ν2i

(
µ2
i +1

)2

(µ2
i +1)

2
(ν2i +1)

2 =
2λ2i + 8

(λ2i + 4)
2 =

2

λ2i + 4

and

1

(µ2
i +1)

2 +
1

(ν2i +1)
2 =

(
ν2i +1

)2
+
(
µ2
i +1

)2

(µ2
i +1)

2
(ν2i +1)

2 =
λ2i + 2

λ2i + 4
.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 34, pp. 269-282, May 2018.

Chris Godsil, Krystal Guo, and John Sinkovic 274

Thus,

Eµi
◦ Eµi

+ Eνi ◦ Eνi =



(
λ2
i+2

λ2
i+4

)
(Fi ◦ Fi)

(
2

λ2
i+4

)
(Fi ◦ Fi)(

2
λ2
i+4

)
(Fi ◦ Fi)

(
λ2
i+2

λ2
i+4

)
(Fi ◦ Fi)


 .

Let

N =

n∑

i=1

(
2

λ2i + 4

)
(Fi ◦ Fi).

We can see that

M̂(X(K2)) =

(
M̂(X)−N N

N M̂(X)−N

)
,

and the lemma follows.

We observe that N and M̂ have the same kernel.

4. Trees with all simple eigenvalues with rk(M̂) bounded away from dn/2e . The following

lemma is found in [6].

Lemma 4.1. [6] If X is a bipartite graph on n vertices with n distinct eigenvalues, then rk(M̂(X)) ≤
dn/2e.

In this section, we will give a construction for trees on n vertices with all simple eigenvalues where rk(M̂)

is bounded away from dn/2e. A computer search finds that for n = 1, . . . , 17, 19, 20, every tree on n vertices

with all simple eigenvalues has rk(M̂) = dn/2e. Up to isomorphism, there is one tree T ∗ on 18 vertices such

that rk(M̂(T ∗)) = 8, which is given in Figure 2. We will retain the notation of T ∗ to denote this for the rest

of this section.

17

0

9

10

11

12

13

14

15

16

1

2

3

4

5

6

7

8

Figure 2. The tree T ∗ on 18 vertices such that M̂(T ∗) = 8.
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We will need the following technical lemma.

Lemma 4.2. Let X be a graph with adjacency matrix A. Suppose the spectral decomposition A(X) =∑d
r=0 θrEr. Let M̂ be the average mixing matrix of X. We have that

ker(M̂) =

d⋂

r=0

ker(Er ◦ Er).

Proof. Let v ∈ ker(M̂). We see that

0 = vTMv =

d∑

r=0

vTEr ◦ Erv.

Since Er ◦ Er is a principal submatrix of Er ⊗ Er and is hence positive semi-definite, we see that

vTEr ◦ Erv ≥ 0

for all r. Since the sum of non-negative real number is equal to zero, every term must be zero, and thus,

ker(M̂) ⊆
d⋂

r=0

ker(Er ◦ Er).

Containment in the other direction is clear.

We will use Lemma 4.2 to bound the rank of iterated rooted products of T ∗ with K2. We note that

Lemma 4.2 implies that vertices u and v are strongly cospectral in X if and only if M̂eu = M̂ev, which is

also proven in [12].

The characteristic polynomial of T ∗ is

φ(T, x) =(x− 1)(x+ 1)
(
x2 − x− 1

) (
x2 + x− 1]

) (
x3 − x2 − 2x+ 1

)

·
(
x3 + x2 − 2x− 1

) (
x6 − 8x4 + 12x2 − 1

)
,

which has all simple roots.

Let X0 = T ∗ and Xi+1 = Xi(K2) for i > 0.

Lemma 4.3. For i ≥ 0, the graph Xi has all simple eigenvalues and

rk(M̂(Xi)) ≤ 2i+3.

Proof. We proceed by induction on i. We computed that rk(M̂(T ∗)) = 8 and T ∗ has all simple eigen-

values. Suppose the statement is true for i > 1. By Lemma 3.2, the graph Xi+1 has all simple eigenvalues.

For simplicity, let n = 2i18, the number of vertices of Xi. Let F1, . . . , Fn be the orthogonal projections onto

the eigenspaces of A(Xi) with corresponding eigenvalues λ1, . . . , λn. Theorem 3.4 gives that

M̂(Xi+1) =

(
M̂(Xi)−N N

N M̂(Xi)−N

)
,
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where

N =

n∑

j=1

(
2

λ2j + 4

)
(Fj ◦ Fj).

Let v ∈ ker(M̂(Xi)). By Lemma 4.2, we see that v ∈ ker(Fj ◦ Fj) for all j, and thus, Nv = 0. Let 0m
denote the m dimensional all zero vector. We have

M̂(Xi+1)

(
v

0n

)
=

(
M̂(Xi)−N N

N M̂(Xi)−N

)(
v

0n

)
= 02n

and

M̂(Xi+1)

(
0n
v

)
=

(
M̂(Xi)−N N

N M̂(Xi)−N

)(
0n
v

)
= 02n.

Thus, if {vk}k is an orthogonal basis for ker(M̂(Xi)), then

{(
vk
0n

)
,

(
0n
vk

)}

k

is a set of 2 dim ker(M̂(Xi)) vectors in ker(M̂(Xi+1)), and the statement follows.

Theorem 4.4. For every positive real number c, there exists a tree T with all simple eigenvalues such

that

⌈
|V (T )|

2

⌉
− rk(M̂(T )) > c.

Proof. Note that Xi as constructed above is a tree on 2i18 vertices such that

⌈
|V (Xi)|

2

⌉
− rk(M̂(Xi)) ≥ 2i−118− 2i8 = 2i.

For any c > 0, we pick i such that 2i > c, and the result follows.

5. Lower bound on rank. We denote by X \u the graph obtained from X by deleting vertex u. The

coefficient matrix of a graph X is the matrix C with rows indexed by the vertices of X and columns indexed

by integers [n] such that the (u, r) entry of C is the coefficient of tr−1 in the characteristic polynomial

φ(X\u, t). We will see that for graphs with all simple eigenvalues, the coefficient matrix is useful in studying

the average mixing matrix. The following lemma appears in the proof of [12, Theorem 3.2].

Lemma 5.1. [12] Let X be a graph on n vertices with n distinct eigenvalues θ1, . . . , θn. Let ∆ be the

n× n diagonal matrix whose r-th diagonal entry is φ′(X, θr). Let V be the n× n Vandermonde matrix with

ij-entry equal to θi−1j . Then

M̂(X) = CV∆−2V TCT .

From this, we derive the following corollary as a direct consequence.
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Corollary 5.2. If X is a graph with all simple eigenvalues, then rk(M̂(X)) is equal to the rank of the

coefficient matrix.

We will also use this standard fact, which can be found in [10], for example.

Lemma 5.3. If T is a tree, then the characteristic polynomial of T is equal to the matching polynomial

of T .

Lemma 5.4 is Corollary 8.9.2 in [9].

Lemma 5.4. [9] If A is a symmetric matrix of rank r, then it has a principal submatrix of full rank. �

Corollary 5.5 follows from Lemma 5.4 and the fact that a tree has a perfect matching if and only if its

adjacency matrix has full rank.

Corollary 5.5. If T is a tree with all simple eigenvalues, then either T has a perfect matching or there

exists a vertex v such that T \v has a perfect matching.

Proof. If T is a tree with all simple eigenvalues, then zero can have multiplicity at most one. If the

multiplicity of zero is zero, then T has a perfect matching. If the multiplicity of zero is one, then the rank of

A(T ) is |T | − 1. Thus, by Lemma 5.4, A(T ) has (|T | − 1)× (|T | − 1) principal submatrix of full rank. Thus,

there exists a vertex v such that A(T \v) has full rank. It follows that T \v has a perfect matching.

Lemma 5.6. If T is a tree with all simple eigenvalues, and |T | ≥ 3, then T has a leaf adjacent to a vertex

of degree two.

Proof. The path on three vertices satisfies the conclusion of the lemma. Let T be a tree with all simple

eigenvalues and |T | ≥ 4. Consider a diametrical path P = {v0, . . . , vd} of T . Since the star on n ≥ 4 vertices

does not have all simple eigenvalues, d ≥ 3.

Since P is a diametrical path of length at least three, v1 and vd−1 are distinct and adjacent to exactly one

non-leaf vertex of T . If either v1 or vd−1 has degree two, then we are done. Suppose by way of contradiction,

that both vertices have degree greater than two. Deleting v1 and vd−1 from T yields a graph with at least

four isolated vertices. As each isolated vertex contributes a zero eigenvalue, the multiplicity of zero is at

least four. Since the eigenvalues of induced subgraphs interlace, the multiplicity of the zero eigenvalue of T

is at least 2. This contradicts that T has all simple eigenvalues.

Theorem 5.7. If T is a tree with all simple eigenvalues on at least four vertices and is not isomorphic

to P4, then rk
(
M̂(T )

)
≥ 3.

Proof. In light of Corollary 5.2, it is sufficient to show that the rank of the coefficient matrix of a tree

is at least three. By Lemma 5.6, T has a leaf u adjacent to a vertex v of degree two. Let w be the non-leaf

neighbor of v with deg(w) = `. Let mα(T ) denote the number of matchings of size α in T . By Lemma 5.3,

the ith row of the coefficient matrix of T can be expressed in terms of mα(T \i) for the appropriate value of

α.

Case 1: T has a perfect matching.

As T has a perfect matching, n = |T | is even. The only tree on four vertices with a perfect matching is

P4. It has two pairs of cospectral vertices, and thus, rk(M̂(P4)) = 2. For the remainder of this case, assume

that n ≥ 6. Consider the 3×3 submatrix C1 of the coefficient matrix of T with rows corresponding to u, v, w
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and columns corresponding to t, tn−3, and tn−1. For simplicity in the notation let k = n/2. Then

C1 =




(−1)k−1mk−1(T \u) −m1(T \u) m0(T \u)

(−1)k−1mk−1(T \v) −m1(T \v) m0(T \v)

(−1)k−1mk−1(T \w) −m1(T \w) m0(T \w)


 .

As m0(T \ i) is defined to be 1 and m1(T \ i) is the number of edges in T \ i, it remains to determine the

values of the first column.

In T \u, the set of matchings of size k − 1 can be partitioned into two sets: the k − 1 matchings which

use edge vw and those that do not. Thus

mk−1(T \u) = mk−2(T \{u, v, w}) +mk−1(T \{u, v}).

Since T has a perfect matching and every perfect matching of T contains the edge uv, we have that

T \{u, v} also contains a perfect matching. Thus mk−1(T \{u, v}) = 1. Similarly, mk−1(T \v) = 1.

Since T \w has uv as a component and any matching of size k − 1 uses uv, we see that

mk−1(T \w) = mk−2(T \{u, v, w}.

Letting q = mk−2(T \{u, v, w}), we obtain

C1 =




(−1)k−1(q + 1) −(n− 2) 1

(−1)k−1 −(n− 3) 1

(−1)k−1q −(n− `− 1) 1




and

detC1 = (−1)k−1(1 + q(1− `)).

Note that detC1 = 0 if and only if ` = 1 + 1/q. As ` ∈ N, this occurs if and only if q = 1 and ` = 2. We

claim that if ` = 2, then q ≥ 2. Let y be the other neighbor of w. Since T has a perfect matching, so does

T \ {u, v, w, y}. Thus mk−2(T \ {u, v, w, y}) = 1 and T \ {u, v, w} has a k − 2 matching which uses no edge

incident to y. Since n ≥ 6, deg(y) ≥ 2. Thus T \ {u, v, w} has at least one k − 2 matching which uses an

edge incident to y. Therefore q = mk−2(T \ {u, v, w} ≥ 2. Further detC1 6= 0 and the coefficient matrix of

T has rank at least 3.

Case 2: T does not have a perfect matching.

There are two possibilities to consider; either T \u has a perfect matching or it does not.

In the case that T \u has a perfect matching, n = |T | is odd and so |T | ≥ 5. Consider the 3×3 submatrix

C2 of the coefficient matrix of T with rows corresponding to u, v, w and columns corresponding to t0, tn−3,

and tn−1. For simplicity in the notation let (n−1)/2 = j. Then
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C2 =




(−1)jmj(T \u) −m1(T \u) m0(T \u)

(−1)jmj(T \v) −m1(T \v) m0(T \v)

(−1)jmj(T \w) −m1(T \w) m0(T \w)


 .

As stated in Case 1, m0(T \ i) = 1 and m1(T \ i) is the number of edges in T \ i. Matchings of size

j = (n−1)/2 are perfect matchings in a graph on n− 1 vertices. Further since T \u has a perfect matching so

does T \w. Lastly, T \v does not have a perfect matching as u is isolated by deleting v. Thus,

C2 =




(−1)j −(n− 2) 1

0 −(n− 3) 1

(−1)j −(n− `− 1) 1


 .

Note that detC2 = (−1)j(`− 1). Since deg(w) = ` ≥ 2, C2 has full rank and so the coefficient matrix of T

has rank at least three.

We now consider the other possibility mentioned at the start of this case. Assume that T \u does not

have a perfect matching. By Corollary 5.5 there exists a vertex z of degree f such that T − z has a perfect

matching. Thus, n = |T | is odd and n ≥ 5. Consider the 3 × 3 submatrix C3 of the coefficient matrix of

T with rows corresponding to u, v, z and columns corresponding to t0, tn−3, and tn−1. For simplicity in the

notation let (n−1)/2 = j. Then

C3 =




(−1)jmj(T \u) −m1(T \u) m0(T \u)

(−1)jmj(T \v) −m1(T \v) m0(T \v)

(−1)jmj(T \z) −m1(T \z) m0(T \z)


 .

As in the other cases, the entries of the last two columns are easily filled. The entries in the first column

are determined by whether T \ i has a perfect matching. Thus,

C3 =




0 −(n− 2) 1

0 −(n− 3) 1

(−1)j −(n− f − 1) 1


 .

Note that detC3 = (−1)j+1 6= 0. Thus, C3 has full rank and so the coefficient matrix of T has rank at least

three.

6. Computational data. Computations of average mixing matrices of trees on up to 20 were carried

out, using Sage Mathematics Software [15]. The results are recorded in Tables 1 and 2. For each order n and

rank r, we record the number of trees on n vertices whose average mixing matrix has rank r and, amongst

those, the number with n distinct eigenvalues.
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n rank # trees # simple

eigenvalues

2 1 1 1

3 2 1 1

4 2 1 1

4 1 0

5 3 2 2

5 1 0

6 3 3 2

5 2 0

6 1 0

7 4 5 5

5 1 0

6 4 0

7 1 0

8 4 5 4

5 4 0

6 8 0

7 4 0

8 2 0

9 5 19 18

6 3 0

7 15 0

8 7 0

9 3 0

10 4 1 0

5 14 11

6 19 0

7 30 0

8 21 0

9 16 0

10 5 0

n rank # trees # simple

eigenvalues

11 5 1 0

6 64 62

7 18 0

8 79 0

9 40 0

10 26 0

11 7 0

12 5 1 0

6 44 37

7 106 0

8 129 0

9 119 0

10 93 0

11 48 0

12 11 0

13 6 2 0

7 264 250

8 107 0

9 411 0

10 223 0

11 186 0

12 87 0

13 21 0

14 6 4 0

7 146 116

8 552 0

9 591 0

10 694 0

11 622 0

12 341 0

13 172 0

14 37 0

Table 1

Ranks of average mixing matrices of trees on 2 to 14 vertices.

7. Open problems. In Section 5, we give a constant lower on the rank of the average mixing matrix

of trees with all simple eigenvalues on at least 4 vertices. Table 3 shows the minimum ranks among the

average mixing matrices of trees of n vertices.
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n rank # trees # simple

eigenvalues

15 7 4 0

8 1117 1041

9 663 0

10 2173 0

11 1365 0

12 1328 0

13 719 0

14 309 0

15 63 0

16 7 7 0

8 543 465

9 2926 0

10 2834 0

11 4265 0

12 3881 0

13 2650 0

14 1494 0

15 600 0

16 120 0

17 8 11 0

9 4889 4452

10 4325 0

11 11653 0

12 8340 0

13 9347 0

14 5724 0

15 3002 0

16 1146 0

17 192 0

18 7 2 0

8 25 1

9 2108 1727

10 15306 0

n rank # trees # simple

eigenvalues

18 11 14829 0

12 26545 0

13 24194 0

14 19249 0

15 12980 0

16 6019 0

17 2242 0

18 368 0

19 8 2 0

9 25 0

10 22159 19884

11 26204 0

12 64701 0

13 53492 0

14 63220 0

15 43183 0

16 27389 0

17 12603 0

18 4259 0

19 718 0

20 8 5 0

9 43 0

10 8641 7055

11 81498 0

12 79080 0

13 165082 0

14 153019 0

15 139556 0

16 102182 0

17 58113 0

18 26098 0

19 8405 0

20 1343 0

Table 2

Ranks of average mixing matrices of trees on 15 to 20 vertices.

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

min rank 1 2 2 3 3 4 4 5 4 5 5 6 6 7 7 8 7 8 8

Table 3

The minimum ranks of the average mixing matrices of trees on n vertices, for n = 2, . . . , 20.
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Finally, we are motivated by the computational data to ask the following question:

Conjecture 7.1. For any k, the number of trees T such that the rank of the average mixing matrix of

T is at most k is finite.
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