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CORRELATION MATRICES WITH THE PERRON-FROBENIUS PROPERTY∗
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Abstract. This paper investigates conditions under which correlation matrices have a strictly positive dominant

eigenvector. The sufficient conditions, from the Perron-Frobenius theorem, are that all the matrix entries are positive.

The conditions for a correlation matrix with some negative entries to have a strictly positive dominant eigenvector

are examined. The special structure of correlation matrices permits obtaining of detailed analytical results for low

dimensional matrices. Some specific results for the n-by-n case are also derived. This problem was motivated by an

application in portfolio theory.
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1. Introduction. The classic Perron-Frobenius theorem provides sufficient conditions for a

real matrix to have a strictly positive dominant eigenvector. These conditions are that all the entries

of the matrix are positive. However, the positivity condition on the matrix entries is not essential

and matrices with some negative entries can have a strictly positive dominant eigenvector. Papers

that discuss this topic include Tarazaga, Raydan, and Hurman [12], Noutsos [11], Elhashash and

Szyld [5], and Berman et al. [2]. Other pertinent references include Handelman [6] and Johnson

and Tarazaga [8].

Tarazaga, Raydan, and Hurman [12] demonstrate that matrices with negative entries can have

a strictly positive dominant eigenvector. They derive a set of sufficient conditions for a symmetric

matrix to have a strictly positive dominant eigenvector. Their condition is that the sum of all the

matrix elements exceeds a multiple of the Frobenius norm of the matrix. Noutsos [11] shows that

matrices which are eventually positive possess a strictly positive dominant eigenvector. Berman et

al. [2] investigate the relation between the sign patterns of a matrix and its eventual positivity.

They establish various conditions for the sign pattern of a matrix to be potentially eventually

positive.

Our motivation to study the relationship between negative correlations and the existence of

a strictly positive dominant eigenvector arose from an application in portfolio theory. Avellaneda

and Lee [1] and Boyle [3] describe how the correlation matrix of common stock-returns can be used

to construct portfolios with desirable properties. It is well-known that most of the variation in

stock-returns can be explained by a single factor: the so-called market-factor. As a consequence
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there is one eigenvalue in the correlation matrix that is significantly larger than the remaining

eigenvalues. The dominant eigenvector associated with this eigenvalue can be used to construct

portfolios where the portfolio weights are proportional to this eigenvector. If all the elements of

the dominant eigenvector are positive, the portfolio has positive weights in each asset. If one of

the elements of the dominant eigenvector is negative, the portfolio has a negative weight (or short

position in finance parlance) in the corresponding asset. An analysis of these short positions is of

interest because in many situations, short positions are prohibited by investment regulations.

If there are negative elements in the dominant eigenvector, they must be caused by negative

entries in the correlation matrix in view of the Perron-Frobenius result. Boyle et al. [4] document

the incidence and severity of negative correlations based on actual stock-returns data. They find

that in some cases empirical correlation matrices with some negative entries have a strictly positive

dominant eigenvector. In other cases empirical correlation matrices with some negative entries do

not have a strictly positive dominant eigenvector. The characteristics of the negative entries in the

correlation matrix determine the signs of its dominant eigenvector. Hence, the connection between

the negative entries in the matrix and the positivity of the dominant eigenvector is relevant in the

context of portfolio construction.

The current paper analyzes conditions under which certain symmetric matrices have a strictly

positive dominant eigenvector. These are correlation matrices which have ones on the leading

diagonal and where the absolute value of each off-diagonal entry is less than one. We formulate

these conditions in terms of the non-diagonal entries in the matrix. Intuitively we would expect

that the more prevalent the negative entries are and the larger their absolute magnitude, the less

chance there is that the dominant eigenvector will be strictly positive. We are able to make this

intuition precise by deriving analytical results for some low dimensional cases. The special structure

of correlation matrices enables us to obtain explicit results.

It proved helpful in deriving, classifying and interpreting our results1 to focus on groups of

correlation matrices that are related as follows. If C is an n-by-n correlation matrix we can generate

a related correlation matrix, Ĉ, using a similarity transformation based on an n-by-n permutation

matrix P . The relation is Ĉ = PCP
′
. Both C and Ĉ share many key properties that are of interest

in our context. In particular both have the same eigenvalues and the dominant eigenvector of C

is a permutation of the dominant eigenvector of Ĉ. Hence, when analyzing matrices with a given

number of negative correlations we only need to consider representative members from each distinct

similarity class. For example a four-by-four correlation matrix with three negative entries in the

upper triangle has twenty possible combinations. These combinations can be divided into three

similarity classes so we can focus on three combinations instead of twenty.

Here are the main results of the paper. The two-by-two case has one independent correlation.

The dominant eigenvector is strictly positive if and only if this correlation is positive. A three-by-

three correlation matrix has three independent correlations because of symmetry. We derive a set

of conditions on the matrix entries for it to have a strictly positive dominant eigenvector. The most

1 We thank the referee for this suggestion.
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interesting case is when exactly one of the correlations is negative and the other two are positive. In

this case, the necessary and sufficient conditions coincide. In the case of a four-by-four correlation

matrix, we have obtained a set of necessary conditions for the dominant eigenvector to be strictly

positive. The conditions depend on the number of negative correlations and the similarity class.

We also provide specific results for five-by-five correlation matrices and show that with appropriate

modifications they hold for n-by-n matrices.

The rest of the paper is divided as follows. Section 2 provides definitions and reviews some

useful results. We also discuss similarity transformations of a correlation matrix based on a permu-

tation matrix. Section 3 analyzes two-by-two and three-by-three correlation matrices and derives

necessary and sufficient conditions for these matrices to have a strictly positive dominant eigenvec-

tor. Section 4 derives conditions for a four-by-four correlation matrix to have a strictly positive

dominant eigenvector. We discuss the case of five-by-five correlation matrices in Section 5 and we

provide some results for the general n-by-n case in Section 6. Section 7 contains a brief summary.

2. Background and notation. We assume that all the correlation matrices have a unique

largest eigenvalue. We also assume that each individual correlation is either positive or negative.

Both assumptions are reasonable in the case of portfolio applications.

2.1. Definitions.

Definition 2.1 (Correlation matrix). An n-by-n matrix C is a called a correlation matrix if

C is symmetric, cii = 1(1 ≤ i ≤ n) and cij ∈ (−1, 1) for every (i 6= j).

Note that due to the symmetry C is fully specified by N off-diagonal terms in the upper triangle,

where

N =
n(n− 1)

2
.

Our convention in this paper is to use the number of negative entries among these N correlations to

measure the number of negative entries in the matrix. If there is just one negative entry among these

N terms we will say that C has one negative correlation even though there are two negative entries

in C because of the symmetry. In essence we only count the number of independent correlations.

Definition 2.2 (The strong Perron-Frobenius property). An n-by-n matrix, A is said to

possess the strong Perron-Frobenius property if the spectral radius (i.e., dominant eigenvalue) ρ(A),

is positive, simple and A has a positive left and right eigenvector corresponding to ρ(A). When

A is symmetric, possession of a positive right eigenvector guarantees possession of a positive left

eigenvector.

In this paper, we normally use the term Perron-Frobenius property instead of the strong Perron-

Frobenius property.

Definition 2.3 (Eventually positive matrices). An n-by-n matrix B is said to be eventually

positive if there exists a positive integer k0 such that Bk > 0 for all k ≥ k0.
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Definition 2.4 (Permutation matrices). Given a permutation π ∈ Sn (Sn is the symmetric

group), the matrix P = [pij ] ∈Mn(R), defined by

pij =

{
1, j = π(i),

0, otherwise

is the permutation matrix with respect to π.

Each row of P contains a one and (n − 1) zeros. Similarly each column of P contains a one and

(n− 1) zeros. Furthermore P is orthogonal.

2.2. Relevant results. In this subsection, we will recall the Perron-Frobenius result for pos-

itive matrices and review some results that will be useful in the sequel.

Theorem 2.5 (Perron-Frobenius). A sufficient condition for the dominant eigenvector of a real

matrix B to be strictly positive is that all the elements of B are positive.

The next result concerns similar classes of correlation matrices. See (Li and Pierce [9] and Horn

and Johnson [7]).

Theorem 2.6. If C is an n-by-n correlation matrix and P is an n-by-n permutation matrix,

then

(2.1) Ĉ = PCP
′

is an n-by-n correlation matrix. Furthermore Ĉ has the same eigenvalues as C and the dominant

eigenvector of Ĉ is a permutation of the dominant eigenvector of C.

Proof. From equation (2.1), Ĉ is symmetric. It is straightforward to show that

ĉii = 1, 1 ≤ i ≤ n.

The off-diagonal elements of Ĉ represent a reordering of the off-diagonal elements of C. Hence, Ĉ

is a valid correlation matrix.

The matrix C can be expressed as

C = QΛQ
′
,

where Q is an orthogonal matrix whose columns are the eigenvectors of C and Λ is a diagonal

matrix with the eigenvalues of C on its main diagonal. Hence,

Ĉ = PCP
′

= PQΛQ
′
P
′

= PQΛ(PQ)
′
.

Note that PQ is orthogonal since it is the product of two orthogonal matrices. The last

equation shows that C and Ĉ have the same eigenvalues. It also shows that the eigenvectors of
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Ĉ are obtained by reordering the components of the corresponding eigenvectors of C. If C has a

complete row of negative correlations, then we can show that Ĉ will also have a complete row of

negative correlations.

This theorem provides a simple and effective framework to organize our results. Because of

this theorem we do not need to consider all possible combinations for a given number of negative

correlations but only representative members of certain similarity classes.

The next result due to Mercer and Mercer [10] provides a lower bound on the dominant eigen-

value of a real symmetric matrix. The proof is based on the Cauchy interlacing theorem (see Horn

and Johnson [7, §4.3]).

Theorem 2.7. Let B = [bjk] be a real symmetric n-by-n matrix with n ≥ 2. Let λ denote its

largest eigenvalue. Then

λ ≥ 1

2
max

1≤j≤k≤n

[
(bjj + bkk) +

√
(bjj − bkk)2 + 4b2jk

]
.

In the case of correlation matrices, the lower bound simplifies leading to the following corollary.

Corollary 2.8. Let C = [cjk] be an n-by-n correlation matrix with n ≥ 2 and let λ denote its

largest eigenvalue. Then

λ ≥ 1 + max
1≤j<k≤n

|cjk|.

This last result will be used extensively in the rest of the paper.

The next theorem establishes a direct relation between the signs and positions of the negative

entries in the matrix and the existence of a positive dominant eigenvector in one particular case.

Theorem 2.9. If C = [cij ] is an n-by-n correlation matrix with a complete row of negative

correlations, then it is impossible for C to have a strictly positive dominant eigenvector.

Proof. Let λ be the dominant eigenvalue and v its associated eigenvector. Assume that all the

elements of v are positive. In view of Theorem 2.6 there is no loss of generality in assuming that

all the entries in the first row (apart from c11 = 1) are negative. We show that these assumptions

lead to a contradiction.

From Corollary 2.8, the largest eigenvalue must be greater than one. Hence,

(2.2) λ > 1

and vi > 0, 1 ≤ i ≤ n. We know that

Cv = λv.

We focus on the first row to obtain

v1 +

n∑
j 6=1

vjc1j = λv1,
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which can be rewritten as

v1(λ− 1) =

n∑
j 6=1

vj c1j .

The left hand side of this last equation is positive because of condition (2.2) and the fact that v1
is positive. The right hand side is negative because all the c1j are negative and all the v′js are

positive. This contradiction proves the result.

Theorem 2.9 is implicit in Lemma 5.5 of Berman et al. [2] but the current version is more

transparent for our purposes.

3. Two-by-two and three-by-three correlation matrices. The two-by-two case is easy

to handle since we can obtain explicit solutions for the eigenvalues and the eigenvectors. Suppose

C =

(
1 a

a 1

)
.

The two eigenvalues are (1 + a) and (1− a). The corresponding eigenvectors are
1√
2

1√
2

 and


1√
2

− 1√
2

 .
We see that C has a strictly positive dominant eigenvector if and only if a is positive. When a is

negative the result is consistent with Theorem 2.9.

We next discuss three-by-three correlation matrices. These matrices are specified by three

independent correlations. There will be either zero, one, two or three negative correlations. If there

are no negative correlations then all the correlations are positive and the dominant eigenvector

will be strictly positive from the Perron-Frobenius result. If there are either two or three negative

correlations there has to be a row of negative correlations and Theorem 2.9 tells us that it is

impossible to have a strictly positive dominant eigenvector. Hence, we are left with the case when

there is exactly one negative correlation and two positive correlations. When there is just one

negative correlation it can appear in three possible positions. The three corresponding matrices

form a single similarity class as per our recent example at the end of the last section. Hence, without

loss of generality, we can assume that the correlation in the (1,2) position is negative.

Denote the correlations by a, b and c and define

C =

 1 a b

a 1 c

b c 1

 .

Theorem 3.1. Let C be a three-by-three correlation matrix with exactly one negative correlation

(say a). Then C has a strictly positive dominant eigenvector if and only if

(3.1) |a| < min {b, c}.
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(The intuition from condition (3.1) is that the impact of the negative correlation is less important

than that of the two positive correlations.)

Proof. Let λ be the largest eigenvalue of C and let

v =

 v1
v2
v3


be its corresponding eigenvector. In addition, let κ = λ− 1.

The relationship between C, κ and v is 1 a b

a 1 c

b c 1

 v1
v2
v3

 = (κ+ 1)

 v1
v2
v3

 .

This is equivalent to

(3.2)


κv1 − av2 − bv3 = 0,

−av1 + κv2 − cv3 = 0,

−bv1 − cv2 + κv3 = 0.

We know from Corollary 2.8 that

(3.3) κ ≥ max {|a|, |b|, |c|}.

Proceed by contradiction and assume that

(3.4) |a| ≥ min {b, c},

and that all the elements of v are positive.

When a is negative equations (3.2) can be written as

κv1 + |a|v2 = bv3,(3.5)

|a|v1 + κv2 = cv3,(3.6)

κv3 = bv1 + cv2.(3.7)

Adding (3.5) and (3.6), we obtain

(κ+ |a|)(v1 + v2) = (b+ c)v3,

which implies

v1 + v2 =

(
b+ c

κ+ |a|

)
v3.(3.8)
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From (3.7), we have

v3 =

(
b

κ

)
v1 +

( c
κ

)
v2.(3.9)

Using the last two equations and conditions (3.3) and (3.4) we obtain

v1 + v2 ≥ v3,(3.10)

v1 + v2 ≤ v3.(3.11)

These two equations provide a contradiction unless there is equality in (3.10) and (3.11). We will

show that our assumptions rule out this case. If there is equality in both equations then this implies

κ = b = c = |a| = m.

However for 0 < m < 1 the matrix

C =

 1 −m m

−m 1 m

m m 1

 ,

does not have a unique largest eigenvalue since its eigenvalues are

(1 +m), (1 +m), (1− 2m).

Throughout the paper, we assumed a unique largest eigenvalue so this case is excluded. Hence, the

assumptions that equation (3.4) is satisfied and that v is strictly positive lead to a contradiction.

This completes the necessity part. We next prove sufficiency.

The first step is to show why v3 6= 0. We proceed by contradiction. If v3 = 0, equations (3.5)

and (3.6) become

κv1 + |a|v2 = 0,

|a|v1 + κv2 = 0.

These equations show that v1 = 0 implies v2 = 0 and that v2 = 0 implies v1 = 0. Since all three

components (v1, v2, v3) cannot be zero, this means that both v1 and v2 are non zero. Hence,

v1
v2

= −|a|
κ

= − κ

|a|
.

This last equation implies that

κ = |a|.

From this result and equation (3.1), it follows

κ = |a| < min {b, c},

which contradicts Corollary 2.8.
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Since v and −v are both principal eigenvectors we can also assume that v3 > 0. Divide equations

(3.5) and (3.6) across by v3 to obtain

κw1 + |a|w2 = b,

|a|w1 + κw2 = c,

where

w1 =
v1
v3
, w2 =

v2
v3
.

By virtue of Corollary 2.8 and our assumptions, it follows

κ2 > |a|2.

Hence, w1 and w2 are given by

w1 =
κb− |a|c
κ2 − |a|2

, w2 =
κc− |a|b
κ2 − |a|2

.

The numerators in these last two expressions are both strictly positive by Corollary 2.8 and our

assumptions. Hence, both w1 and w2 are strictly positive. This implies v1, v2 and v3 are also strictly

positive.

In summary, a three-by-three correlation matrix with a single negative correlation has a strictly

positive dominant eigenvector if and only if the absolute value of the negative correlation is less

than the smaller of the two positive correlations. If there are two or three negative correlations

then it is impossible for a three-by-three correlation matrix to have a strictly positive dominant

eigenvector.

4. Four by four correlation matrices. This section examines the conditions for a four-by-

four correlation matrix to have a strictly positive dominant eigenvector. Let C be a four-by-four

correlation matrix with six independent correlations.

(4.1) C =


1 a b c

a 1 d e

b d 1 f

c e f 1

 .

As a first step we classify the matrices by the number of negative correlations. Since each

correlation can be either positive or negative and there are six correlations the total number of

combinations is 26 = 64. Table 1 shows the number of combinations that correspond to a given

number of negative correlations.

In the second step, we further classify these matrices into similarity classes. Table 2 shows the

numbers in each similarity class corresponding to a given number of negative correlations.

For example, when there are two negative correlations, there are fifteen different combinations.

These fifteen combinations can be grouped into two distinct similarity classes. Class I contains
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Table 1

Four-by-four correlation matrices: Distribution of possible combinations by number of negative correlations.

Number of negative Number of combinations

correlations that produce nc negative

nc correlations

0 1

1 6

2 15

3 20

4 15

5 6

6 1

Total 64

Table 2

Four-by-four correlation matrices: Distribution of similarity classes by number of negative correlations.

Number of negative Number Number Number Total Number

correlations in Class I in Class II in Class III in all Classes

0 1 na na 1

1 6 na na 6

2 12 3 na 15

3 12 4 4 20

4 12 3 na 15

5 6 na na 6

6 1 na na 1

Total 64

12 members and Class II contains 3 members. We only need to find conditions for representative

members from these two classes.

Let λ be the largest eigenvalue of C. Let

v =


v1
v2
v3
v4

 ,

be its corresponding eigenvector. As before κ = λ− 1.
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The four linear equations in this case are

(4.2)


κv1 − av2 − bv3 − cv4 = 0,

−av1 + κv2 − dv3 − ev4 = 0,

−bv1 − dv2 + κv3 − fv4 = 0,

−cv1 − ev2 − fv3 + κv4 = 0.

From Corollary 2.8, we have the following relation between κ and the absolute values of the six

correlations.

(4.3) κ ≥ max {|a|, |b|, |c|, |d|, |e|, |f |}.

If none of the correlations is negative, then by the Perron-Frobenius theorem, the matrix has a

strictly positive dominant eigenvector. It is convenient to present the results according to the

number of negative correlations.

4.1. One negative entry. When there is just one negative entry in a four-by-four correlation

matrix we are able to derive both necessary and sufficient conditions. In this case, there is just one

similarity class with six members. Without loss of generality we can assume the negative correlation

occupies the (1, 3) position so that b is negative. The next theorem gives the necessary condition.

Theorem 4.1 (4-by-4 matrix with one negative entry: Necessary Condition). Let C be a four-

by-four correlation matrix with exactly one negative correlation (say b). A necessary condition for C

to have a strictly positive, dominant eigenvector is that the sum of the six independent correlations

is positive i.e

(4.4) a+ b+ c+ d+ e+ f > 0.

Proof. Proceed by contradiction. Assume that

(4.5) a+ b+ c+ d+ e+ f ≤ 0,

and that v is strictly positive.

We have

(4.6) κ ≥ |b| ≥ a+ c+ d+ e+ f.

From (4.2), we have

(4.7)


κv1 + |b|v3 = av2 + cv4,

κv2 = av1 + dv3 + ev4,

|b|v1 + κv3 = dv2 + fv4,

κv4 = cv1 + ev2 + fv3.

Adding these four equations we obtain

[κ+ |b| − (a+ c)]v1 + [κ− (a+ d+ e)]v2 + [κ+ |b| − (d+ f)]v3 + [κ− (c+ e+ f)]v4 = 0.

Each term in square brackets is positive by equation (4.6) and if all the v′s are positive this last

equation gives the required contradiction.
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We now turn to the sufficient condition.

Theorem 4.2 (4-by-4 matrix with one negative entry: Sufficient Condition). Let C be a four-

by-four correlation matrix with exactly one negative correlation (say b). A sufficient condition for

C to have a strictly positive, dominant eigenvector is that

(4.8) |b| < min {a, c, d, e, f}.

Proof. The four linear equations in this case are given by the system (4.7). Since the eigenvector

cannot be zero it must have at least one component that is not zero. Say it is v2. We can assume

v2 > 0. Dividing each equation in the system (4.7) by v2 we obtain

(4.9)


κw1 + |b|w2 = a+ cw3,

κ = aw1 + dw2 + ew3,

|b|w1 + κw2 = d+ fw3,

κw3 = cw1 + e+ fw2,

where

w1 =
v1
v2
, w2 =

v3
v2
, w3 =

v4
v2
.

Using the first and third equations in (4.9) to eliminate w1 we obtain

(4.10) w2 =

(
κf − |b|c
κ2 − |b|2

)
w3 +

(
κd− a|b|
κ2 − |b|2

)
.

Note that the denominator, (κ2−|b|2) is strictly positive and that the terms in the large parentheses

are also positive by (4.8) and (4.3).

In the same way, we can also use the first and third equations in (4.9) to eliminate w2 to obtain

(4.11) w1 =

(
κc− |b|f
κ2 − |b|2

)
w3 +

(
κa− |b|d
κ2 − |b|2

)
.

Once again the terms in the large parentheses are positive.

We use the last equation in (4.9) together with (4.10) and (4.11) to derive the following expres-

sion for w3

(4.12) w3 =

(
e(κ2 − |b|2) + c(κa− |b|d) + f(κd− a|b|)

κ3 − κ(b2 + c2 + f2)− 2bcf

)
.

The numerator of this expression is positive and we will now show that the denominator is also

positive. Note that the matrix  1 b c

b 1 f

c f 1

 ,
is a submatrix of C with characteristic equation.

φ(y) = y3 − y(b2 + c2 + f2)− 2bcf.
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Because of the Cauchy interlacing theorem and our assumptions φ(κ) > 0. This means that the

denominator of (4.12) is positive. Hence, w3 is positive. By virtue of (4.10) and (4.11), both w1 and

w2 are also positive. Since v2 > 0 this means that C has a strictly positive dominant eigenvector

and the proof is complete.

We now discuss the case when two of the six correlations are negative.

4.2. Two negative correlations. From Table 2, there are two similarity classes. The first

similarity class contains 12 combinations and the pair (a, c) is a representative combination. The

second similarity class contains 3 combinations and the pair (a, f) is a representative combination.

Theorem 4.3 (4-by-4 matrix with two negative correlations, Class I). Let C be a four-by-

four correlation matrix with two negative correlations that belongs to the first similarity class. We

assume the negative pair is (a, c). Then a necessary condition for C to have a strictly positive,

dominant eigenvector is that the sum of the six independent correlations is positive

(4.13) a+ b+ c+ d+ e+ f > 0.

Proof. Proceed by contradiction. Assume that all the elements of v are positive and assume

that

(4.14) |a|+ |c| ≥ b+ d+ e+ f.

From (4.2), with a and c negative, we have

(4.15)


κv1 + |a|v2 + |c|v4 = bv3,

|a|v1 + κv2 = dv3 + ev4,

κv3 = bv1 + dv2 + fv4,

|c|v1 + κv4 = ev2 + fv3.

Adding the first two equations and the last one, we get

(κ+ |a|+ |c|)v1 + (κ+ |a| − e)v2 + (κ+ |c| − e)v4 = (b+ d+ f)v3.

Hence, we have

(4.16) v3 =

(
κ+ |a|+ |c|
b+ d+ f

)
v1 +

(
κ+ |a| − e
b+ d+ f

)
v2 +

(
κ+ |c| − e
b+ d+ f

)
v4.

Based on our assumptions the coefficient of v1 is greater than one. The coefficient of v2 is greater

than or equal to one as is the coefficient of v4. Hence,

(4.17) v3 > v1 + v2 + v4.

From the third equation of the system (4.15), we obtain

v3 =

(
b

κ

)
v1 +

(
d

κ

)
v2 +

(
f

κ

)
v4.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 34, pp. 240-268, May 2018.

253 Correlation Matrices With the Perron-Frobenius Property

Since each term in the big parentheses is positive and less than or equal to one and all the v′s

are assumed positive, we have

(4.18) v3 ≤ v1 + v2 + v4.

Equations (4.17) and (4.18) provide a contradiction. This completes the proof.

Now we deal with the second similarity class that contains three combinations.

Theorem 4.4 (4-by-4 matrix with two negative correlations, Class II). Let C be a four-by-

four correlation matrix with two negative correlations that belongs to the second similarity class.

We assume the negative pair is (a, f). Then a necessary condition for C to have a strictly positive,

dominant eigenvector is that

(4.19) max {(c+ e), (b+ d), (b+ c), (d+ e)} > |a|+ |f |.

Proof. Proceed by contradiction. Assume that all the elements of v are positive and assume

that

(4.20) |a|+ |f | ≥ max{(c+ e), (b+ d), (b+ c), (d+ e)}.

From (4.2), with a and f negative, we have

(4.21)


κv1 + |a|v2 = bv3 + cv4,

|a|v1 + κv2 = dv3 + ev4,

κv3 + |f |v4 = bv1 + dv2,

|f |v3 + κv4 = cv1 + ev2.

Adding the first two equations and dividing across by (κ+ |a|) we obtain

(v1 + v2) =
(b+ d)

(κ+ |a|)
v3 +

(c+ e)

(κ+ |a|)
v4.

This implies that

(4.22) v1 + v2 ≤ v3 + v4.

Adding the last two equations and dividing across by (κ+ |f |) we obtain

(v3 + v4) =
(b+ c)

(κ+ |f |)
v1 +

(c+ e)

(κ+ |f |)
v2.

This implies that

(4.23) v3 + v4 ≤ v1 + v2.

The contradiction proof goes through unless there is an equality sign in both equations (4.22) and

(4.23). We can rule this out by noting that if both have an equality sign, this implies

|a| = b = c = d = e = |f | = m.
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The corresponding matrix

C =


1 −m m m

−m 1 m m

m m 1 −m
m m −m 1

 ,

has eigenvalues

(1 +m), (1 +m), (1 +m), (1− 3m),

and this is ruled out by our assumption that there is a unique largest eigenvalue.

It is instructive to compare the necessary conditions in Theorem 4.3 with the necessary con-

ditions in Theorem 4.4. Condition (4.13) which assumes the sum of all the correlations is positive

implies condition (4.19). There is a sense in which condition (4.19) is more informative. Note that

if a necessary condition is satisfied the matrix may or may not have a strictly positive dominant

eigenvector, whereas if a necessary condition is violated we know that the matrix does not have a

strictly positive dominant eigenvector. The following numerical example illustrates this point. We

simulated one million random (four-by-four) correlation matrices where a and f are negative and

b, c, d, e are positive. Table 3 provides the numbers which satisfy and the numbers which do not

satisfy each of the two conditions.

Table 3

Simulation results of 1,000,000 four-by-four correlation matrices where a and f are negative and b, c, d, e are

positive. The table shows how many matrices satisfy and how many matrices do not satisfy each of the two conditions.

Number of matrices Number of matrices

Condition that satisfy that do not satisfy

the condition the condition

b+ c+ d+ e > |a|+ |f | 919,430 80,570

max{(c+ e), (b+ d), (b+ c), (d+ e)} > |a|+ |f | 733,362 266,638

Table 3 shows that if the first condition is violated there are 80,481 matrices that do not

have a strictly positive dominant eigenvector. However if the second condition is violated there

are 266,038 matrices that do not have a strictly positive dominant eigenvector. In this sense, the

second condition is more informative than the first.

4.3. Three negative entries. We saw in Table 2 that a four-by-four correlation matrix with

three negative entries has twenty possible combinations that divide into three similarity classes.

• Class I. The four triplets in Class I are abc, ade, bdf and cef . They all have a complete

row of negative correlations.

• Class II . The four triplets in Class II are def , bcf , ace and abd. They are the complements

of Class I.

• Class III. The twelve remaining combinations. A representative triplet in Class III is abe.

Hence, we analyze these three separately.
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Each of the four members of Class I has a complete row of negative correlations. By virtue of

Theorem 2.9, none of them will have a strictly positive dominant eigenvector.

We now turn to Class II. The necessary condition in this case is that the sum of the six

correlations is positive.

Theorem 4.5 (Three negative entries: Class II). Let C be a four-by-four correlation matrix

belonging to Class II with three negative correlations (say a, c, e). A necessary condition for C to

have a strictly positive, dominant eigenvector is that the sum of the six correlations is positive

(4.24) a+ b+ c+ d+ e+ f > 0.

Proof. Proceed by contradiction. Assume that

(4.25) |a|+ |c|+ |e| ≥ b+ d+ f,

and assume that v is strictly positive.

From (4.2), we have

(4.26)


κv1 + |a|v2 + |c|v4 = bv3,

|a|v1 + κv2 + |e|v4 = dv3,

κv3 = bv1 + dv2 + fv4,

|c|v1 + |e|v2 + κv4 = fv3.

Adding the first, second and last equation yields

(κ+ |a|+ |c|)v1 + (κ+ |a|+ |e|)v2 + (κ+ |c|+ |e|)v4 = (b+ d+ f)v3.

This means that

v3 =

(
κ+ |a|+ |c|
b+ d+ f

)
v1 +

(
κ+ |a|+ |e|
b+ d+ f

)
v2 +

(
κ+ |c|+ |e|
b+ d+ f

)
v4.

Using the same logic as before this last equation implies

(4.27) v3 ≥ v1 + v2 + v4.

From the third equation of the system (4.26), we have

v3 =

(
b

κ

)
v1 +

(
d

κ

)
v2 +

(
f

κ

)
v4,

and using (4.3), we obtain

(4.28) v3 ≤ v1 + v2 + v4.

Equation (4.27) and equation (4.28) provide a contradiction unless both hold as equalities. We can

rule out this possibility with the same approach we used in the proof of the last theorem. This

completes the proof.
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We now turn to Class III. We consider the case where a, b, e are negative.

Theorem 4.6 (Three negative entries: Class III). Let C be a four-by-four correlation matrix

belonging to Class III with three negative correlations (say a, b, e). A necessary condition for C to

have a strictly positive, dominant eigenvector is that at least one of the following conditions are

satisfied

(4.29) (d+ f) > (κ1 + |b|), (c+ f) > (κ1 + |e|),

where

κ1 = max{|a|, |b|, c, d, |e|, f}.

Proof. We assume this condition is false so that both of the following conditions are satisfied

(4.30) (κ1 + |b|) ≥ (d+ f), (κ1 + |e|) ≥ (c+ f),

and that v is strictly positive.

We have from (4.3)

(4.31) κ ≥ max(|a|, |b|, c, d, |e|, f) = κ1.

From the system (4.2), we have

(4.32)


κv1 + |a|v2 + |b|v3 = cv4,

|a|v1 + κv2 + |e|v4 = dv3,

|b|v1 + κv3 = dv2 + fv4,

|e|v2 + κv4 = cv1 + fv3.

Adding the four equations, we get

[κ+ |a|+ |b| − c]v1 + [κ+ |a|+ |e| − d]v2 + [κ+ |b| − (d+ f)]v3 + [κ+ |e| − (c+ f)]v4 = 0.(4.33)

The coefficients of v1 and v2 are obviously positive and the coefficients of v3 and v4 are non negative

from (4.30) and (4.31). Hence, the left hand side of the expression is positive. This establishes a

contradiction and completes the proof.

4.4. Four negative entries. When a four-by-four correlation matrix has four negative entries,

we will show that it is impossible for it to have a strictly positive dominant eigenvector. Twelve

of the fifteen combinations belong to Class I and they all have a complete negative row and hence

cannot have a strictly positive dominant eigenvector. The remaining three combinations belong to

Class II. To illustrate this point we derive the result for the case where a, b, e and f are the negative

correlations.

Theorem 4.7 (4-by-4 matrix with four negative entries). Let C be a four-by-four correlation

matrix belonging to Class II with four negative correlations (say a, b, e, f). It is impossible for C to

have a strictly positive, dominant eigenvector.
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Proof. The proof follows the usual approach.

When a, b, e and f are negative we get from the system (4.2)

(4.34)


κv1 + |a|v2 + |b|v3 = cv4,

|a|v1 + κv2 + |e|v4 = dv3,

|b|v1 + κv3 + |f |v4 = dv2,

|e|v2 + |f |v3 + κv4 = cv1.

By adding the first equation to the last one, we obtain

(4.35) (κ− c)(v1 + v4) + (|a|+ |e|)v2 + (|b|+ |f |)v3 = 0.

We know from equation (4.3) that κ ≥ c . Hence, this last equation provides a contradiction. There-

fore, when a, b, e and f are the only negative correlations, we have shown that the corresponding

correlation matrix C cannot have a strictly positive dominant eigenvector. This completes the

proof.

When a four-by-four correlation matrix has five or six negative correlations, each of the possible

combinations will give a rise to a complete row of negative correlations. In this case, it is impossible

to have a strictly positive dominant eigenvector because of Theorem 2.9 . Combining this with the

results of Theorem 4.7 we can state that if a four-by-four correlation matrix has four or more

negative correlations it cannot have the Perron-Frobenius property.

We conclude this section with a short summary. We studied the impact of negative correlations

on the positivity of the dominant eigenvector for four-by-four correlation matrices. We derived

necessary and sufficient conditions for the existence of a strictly positive dominant eigenvector when

there is one negative correlation. When there are two or three negative correlations the necessary

conditions vary with the similarity class. If the matrix has four or more negative correlations it

cannot have a strictly positive dominant eigenvector. In this case, the magnitude of the negative

entries is immaterial.

5. Five by five correlation matrices. This section examines the conditions for a five-by-five

correlation matrix to have a strictly positive dominant eigenvector. The nature of these conditions

varies with the number of negative correlations and also with the similarity class. Let C be a

five-by-five correlation matrix with ten independent correlations.

C =


1 a b c d

a 1 e f g

b e 1 h i

c f h 1 j

d g i j 1

 .

Table 4 provides summary information on five-by-five correlation matrices. We provide a two

stage classification of these matrices. First we classify them by the numbers of negative correlations.
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There are ten correlations and each correlation can be positive or negative. Hence, there are

1024 = 210,

different possible combinations. To interpret Table 4 consider the fourth row. It corresponds to the

case of three negative correlations, and therefore, seven positive correlations. There are a total of

120 different possible combinations with three positive correlations and seven negative correlations

since (
10

3

)
=

10!

(7!)(3!)
= 120.

These 120 combinations can be organized into four different similarity classes. The numbers in

these similarity classes are 60, 30, 20 and 10 making up the 120 combinations.

The entire set of 1024 combinations can be divided into 34 different similarity classes and in

general the conditions for each similarity class to have a strictly positive dominant eigenvector are

different. Hence, we only consider a few important cases. These correspond to the case where

there is only one negative correlation at one extreme and cases where there are sufficient negative

correlations to form a complete row at the other.

Table 4

Analysis of 5-by-5 correlation matrix by number of negative correlations and by number of similarity classes.

Number of Number of combinations Number of

negative that produce nc similarity

correlations nc negative correlations classes

0 1 1

1 10 1

2 45 2

3 120 4

4 210 6

5 252 6

6 210 6

7 120 4

8 45 2

9 10 1

10 1 1

Totals 1024 34

We now turn to the case when there is just one negative correlation. There is just one similarity

class containing ten combinations. Without loss of generality we can assume a is negative and all

the other correlations are positive. The necessary condition in this case is given in the next theorem.

Theorem 5.1 (5-by-5 matrix with one negative entry: Necessary Condition). Let C be a five-

by-five correlation matrix with exactly one negative correlation (say a). A necessary condition for C

to have a strictly positive, dominant eigenvector is that the sum of the ten independent correlations
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is positive.

(5.1) a+ b+ c+ d+ e+ f + g + h+ i+ j > 0.

Proof. Proceed by contradiction and assume

(5.2) |a| ≥ b+ c+ d+ e+ f + h+ i+ j.

From the usual equations, we have

(5.3)



κv1 + |a|v2 = bv3 + cv4 + dv5,

|a|v1 + κv2 = ev3 + fv4 + gv5,

κv3 = bv1 + ev2 + hv4 + iv5,

κv4 = cv1 + fv2 + hv3 + jv5,

κv5 = dv1 + gv2 + iv3 + jv4.

Adding these five equations we obtain

(5.4) ψ1v1 + ψ2v2 + ψ3v3 + ψ4v4 + ψ5v5 = 0.

From our assumptions, all the ψ′s are positive, and if we assume that all the v′s are also positive,

we obtain a contradiction.

The sufficient condition when a is the only negative correlation is given in the next theorem.

Theorem 5.2 (5-by-5 matrix with one negative entry: Sufficient Condition). Let C be a five-

by-five correlation matrix with exactly one negative correlation (say a). A sufficient condition for C

to have a strictly positive, dominant eigenvector is that the absolute value of the negative correlation

is less than the smallest of the positive correlations.

(5.5) |a| < min {b, c, d, e, f, g, h, i, j}.

The proof is lengthy and involves some tedious algebra. It may be helpful to provide a road map.

We assume one of components of the dominant eigenvector (say v3) is positive. We divide our five

equations in (5.3) by v3 to get equations in four unknowns. Label these unknowns as w1, w2, w3, w4.

We show that w1 and w2 have the same sign and that w3 and w4 also have the same sign. From

this, we can prove that all the w′s are positive, and hence, conclude that all the elements of v are

positive.

Proof. We assume v3 > 0. Divide the system (5.3) by v3 to obtain.

(5.6)



κw1 + |a|w2 = b+ cw3 + dw4,

|a|w1 + κw2 = e+ fw3 + gw4,

κ = bw1 + ew2 + hw3 + iw4,

κw3 = cw1 + fw2 + h+ jw4,

κw4 = dw1 + gw2 + i+ jw3.
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where

w1 =
v1
v3
, w2 =

v2
v3
, w3 =

v4
v3
, w4 =

v5
v3
.

The first two equations in (5.6) are:

(5.7)

{
κw1 + |a|w2 = b+ cw3 + dw4,

|a|w1 + κw2 = e+ fw3 + gw4.

From (5.7), we can obtain expressions for w2 and w1 in terms of w3 and w4.

(5.8) w2 =
(κe− |a|b) + (κf − |a|c)w3 + (κg − |a|d)w4

κ2 − |a|2
,

and

(5.9) w1 =
(κb− |a|e) + (κc− |a|f)w3 + (κd− |a|g)w4

κ2 − |a|2
.

The final two equations in (5.6) are

κw3 = cw1 + fw2 + h+ jw4,

κw4 = dw1 + gw2 + i+ jw3.
(5.10)

From these last two equations, we obtain expressions for w3 and w4 in terms of w1 and w2.

w3 = (κh+ij)+(κc+jd)w1+(κf+gj)w2

(κ2−j2) ,

w4 = (κi+hj)+(κd+jc)w1+(κg+fj)w2

(κ2−j2) .

(5.11)

Using equations (5.8), (5.9), (5.10) and (5.11), we obtain two equations for w3 and w4.

h11w3 + h12w4 = b1,

h21w3 + h22w4 = b2,
(5.12)

and two equations for w1 and w2.

g11w1 + g12w2 = c1,

g21w1 + g22w2 = c2,
(5.13)

where

h11 =
(
(κ2 − |a|2)(κ2 − j2)− (κc+ jd)(κc− |a|f)− (κf + gj)(κf − |a|c)

)
,

h12 = − ((κc+ jd)(κd− |a|g) + (κf + gj)(κg − |a|d)) ,

h21 = − ((κd+ jc)(κc− |a|f) + (κg + fj)(κf − |a|c)) ,
h22 =

(
(κ2 − |a|2)(κ2 − j2)− (κd+ jc)(κd− |a|g)− (κg + fj)(κg − |a|d)

)
,

b1 = (κh+ ij)(κ2 − |a|2) + (κc+ jd)(κb− |a|e) + (κf + gj)(κe− |a|b),
b2 = (κi+ hj)(κ2 − |a|2) + (κd+ jc)(κb− |a|e) + (κg + fj)(κe− |a|b),
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and

g11 = − ((κc+ jd)(κf − |a|c) + (κd+ jc)(κg − |a|d)) ,

g12 =
(
(κ2 − |a|2)(κ2 − j2)− (κf + gj)(κf − |a|c)− (κg + fj)(κg − |a|d)

)
,

g21 =
(
(κ2 − |a|2)(κ2 − j2)− (κc+ jd)(κc− |a|f)− (κd+ jc)(κd− |a|g)

)
,

g22 = − ((κf + gj)(κc− |a|f) + (κg + fj)(κd− |a|g)) ,

c1 = (κe− |a|b)(κ2 − j2) + (κh+ ij)(κf − |a|c) + (κi+ hj)(κg − |a|d),

c2 = (κb− |a|e)(κ2 − j2) + (κh+ ij)(κc− |a|f) + (κi+ hj)(κd− |a|g).

We will concentrate on finding the solution to equation (5.12) since the solution procedure for (5.13)

is similar. From inspection, we have

h12 < 0, h21 < 0, b1 > 0, b2 > 0.

From Cramer’s rule, the solutions for w3 and w4 are

w3 =

det

(
b1 h12
b2 h22

)
det

(
h11 h12
h21 h22

) , w4 =

det

(
h11 b1
h21 b2

)
det

(
h11 h12
h21 h22

) .(5.14)

We now show that w3 and w4 have same sign. From (5.14), the expressions for w3 and w4 have

the same denominator

D = h11h22 − |h12||h21|,

hence, their signs are determined by the numerators. We will show that both numerators in (5.14)

are positive.

The numerator of the expression for w3 is

b1h22 + |h12|b2.

A sufficient condition for this last expression to be positive is h22 > 0. The numerator of the

expression for w4 is

b2h11 + |h21|b2.

A sufficient condition for this last expression to be positive is h11 > 0. We now show that h11 is

strictly positive. Noting that a = −|a|, It is convenient to write h11 as

h11 = (κ2 − a2)(κ2 − j2)− (κc+ jd)(κc+ af)− (κf + gj)(κf + ac).(5.15)

Consider the matrix

D =


1 a c d

a 1 f g

c f 1 j

d g j 1

 .



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 34, pp. 240-268, May 2018.

P. Boyle and T.B. N’Diaye 262

In this case, the characteristic equation is

φ(y) = y4 − (a2 + c2 + d2 + f2 + g2 + j2)y2

− 2(acf + adg + cdj + fgj)y − 2(acgj + adfj + cdfg).

The matrix D is a sub matrix of the five-by-five matrix C. Hence, φ(κ) > 0. Now we rewrite h11
in terms of φ. Use y instead of κ so that

h11(y) = (y2 − a2)(y2 − j2)− (yc+ jd)(yc+ af)− (yf + gj)(yf + ac).(5.16)

Manipulating the algebra we have

h11(y) = φ(y) + (d2 + g2)y2 + a2j2 + y(cjd+ fgj + 2adg) + (jdaf + gjac+ 2cdfg).

This can be written as

h11(y) = φ(y) + a2j2 + 2cdfg +
[
(d2 + g2)y2 − 2|a|dgy)

]
+ [y(cjd+ fgj)− (jd|a|f + gj|a|c)] .

The first three terms are positive. We now show that the last two terms in the square brackets are

also positive.

First we have

(d2 + g2)y2 − 2|a|dgy = dy(yd− |a|g) + gy(yg − |a|d) > 0,

because

y > g, d > |a|, y > d, g > |a|.

Turning to the second term

y(cjd+ fgj)− (jd|a|f + gj|a|c) = jd(yc− |a|f) + gj(yf − |a|c)
> 0,

because

y > f, c > |a|, y > c, f > |a|.

In the same way, we show that h22 is also positive. Hence, w3 and w4 have the same sign. We can

use similar arguments to show that w1 and w2 also have the same sign.

Hence, there are only four possibilities.

P1 : Both w3 and w4 are positive and both w1 and w2 are positive.

P2 : Both w3 and w4 are positive and both w1 and w2 are negative.

P3 : Both w3 and w4 are negative and both w1 and w2 are positive.

P4 : Both w3 and w4 are negative and both w1 and w2 are negative.
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We now show that possibilities P2, P3, P4 cannot occur.

Possibility: P2

By adding the two first equations of (5.6), we have

(κ+ |a|)(w1 + w2) = (b+ e) + (c+ f)w3 + (d+ g)w4.

However this shows that P2 cannot occur.

Possibility: P3

By adding the two last equation of (5.6), we have

(κ− j)(w3 + w4) = (h+ i) + (c+ d)w1 + (f + g)w2.

However this shows that P3 cannot occur.

Possibility: P4

From the middle equation in (5.6), we have

κ = bw1 + ew2 + hw3 + iw4.

However this shows that P4 cannot occur.

Hence, only Possibility P1 can occur. Therefore, w1, w2, w3 and w4 are positive which implies that

v1, v2, v4 and v5 are also positive.

From Table 4, we see that five-by-five correlation matrices with two or more negative correlations

constitute 32 similarity classes. Since each similarity class can give rise to its own set of conditions

we do not analyze these classes individually. However we can obtain clear cut results if there is

a complete row of negative correlations. If this occurs the matrix cannot have a strictly positive

dominant eigenvector. We need at least four negative correlations to have a complete row of negative

correlations. If there are exactly four negative correlations we can obtain a complete row of negative

correlations in five possible ways and they all belong to the same similarity class. However if there

are four negative correlations the remaining 205 combinations representing five other similarity

classes do not have a complete row of negative correlations.

We summarize the results for the incidence of complete rows of negative correlation in Table 5.

In this section, we analyzed five-by-five correlation matrices. These matrices give rise to 34

different similarity classes. We derived necessary and sufficient conditions for such matrices to have

a strictly positive dominant eigenvector when there is one negative correlation. We also provided

details of the incidence of complete rows of negative correlations.

6. General case: n-by-n correlation matrices. From our preceding analysis, we know

that the conditions for the general n-by-n case will vary by both the number of negative elements

and the similarity class. It is impractical to analyze all the possible similarity classes. Instead we

obtained some specific results similar to those obtained in the last section for five-by-five matrices.

In particular, we derive necessary and sufficient conditions for an n-by-n correlation matrix to

have a strictly positive dominant eigenvector when there is just one negative correlation. We also
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Table 5

Analysis of 5-by-5 correlation matrix by number of negative correlations and by number of complete rows of

negative correlations

Number of Number of combinations Number of combinations

negative that produce nc that produce complete

correlations nc negative correlations rows of negative correlations

0 1 0

1 10 0

2 45 0

3 120 0

4 210 5

5 252 30

6 210 75

7 120 90

8 45 45

9 10 10

10 1 1

Totals 1024 256

obtained some results for the number of random matrices which have a strictly positive dominant

eigenvector. The correlation matrix in the general case is

(6.1) C =



1 c1,2 c1,3 c1,4 · · · c1,n
c1,2 1 c2,3 c2,4 · · · c2,n
c1,3 c2,3 1 c3,4 · · · c3,n
c1,4 c2,4 c3,4 1 · · · c4,n

...
...

...
...

. . .
...

c1,n c2,n c3,n · · · cn−1,n 1


.

We now use the notation ci,j instead of cij to denote the correlation coefficients. By including the

separating comma, the notation becomes more transparent when we have terms like cn−1,n. Where

there is exactly one negative correlation there are n members of the similarity class. In this case

we can assume the negative correlation is in position c1,2.

Necessary conditions: one negative correlation.

Theorem 6.1 (n-by-n matrix with one negative entry: Necessary Condition). Let C be an n-

by-n correlation matrix with exactly one negative correlation (say c1,2). A necessary condition for

C to have a strictly positive, dominant eigenvector is that the sum of the n correlations is positive:

(6.2)

(n−1)∑
i=1

n∑
j=(i+1)

ci,j > 0.
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Proof. We assume that C has a strictly positive dominant eigenvector and derive a contradic-

tion. Assume (6.2) is false so that

(6.3)

(n−1)∑
i=1

n∑
j=(i+1)

ci,j ≤ 0.

We assume that c1,2 < 0 so that (6.3) implies

(6.4) |c1,2| ≥
n∑
k=3

c1,k +

(n−1)∑
i=2

n∑
j=(i+1)

ci,j .

The n linear equations in this case are

(6.5)



κv1 + |c1,2|v2 = c1,3v3 + c1,4v4 + · · ·+ c1,nvn,

|c1,2|v1 + κv2 = c2,3v3 + c2,4v4 + · · ·+ c2,nvn,

κv3 = c1,3v1 + c2,3v2 + · · ·+ c3,nvn,

κv4 = c1,4v1 + c2,4v2 + · · ·+ c4,nvn,
... =

...

κvn = c1,nv1 + c2,nv2 + · · ·+ cn−1,nvn.

Adding together all n equations we obtain

n∑
i=1

ψivi = 0.

From our assumptions, each ψi is positive and so we have a contradiction. This completes the

proof.

Sufficient conditions: One negative correlation.

Theorem 6.2 (n-by-n matrix with one negative entry: Sufficient Condition). Let C be an

n-by-n correlation matrix with exactly one negative correlation (say c1,2 ). A sufficient condition

for C to have a strictly positive, dominant eigenvector is:

(6.6) |c1,2| < min {ci,j : i 6= 1, j 6= 2},

and

(6.7) 2|c1,2| <
n∑
j=3

c1,j c2,j .

Proof. It is straightforward to show that if conditions (6.6) and (6.7) are satisfied the matrix

C2 has all its entries positive. This means that C2 has a strictly positive dominant eigenvector

by the Perron-Frobenius theorem. Since C and C2 have the same dominant eigenvector the proof

follows.
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The proof of this theorem is very much simpler than the corresponding result for the five-by-

five case because of the additional condition (6.7). However for n ≥ 5, virtually all the correlation

matrices that satisfy (6.6) also satisfy (6.7). Hence, very little is lost by assuming (6.7).

To illustrate this point for n = 5, 6, 7 and 8, we conducted a numerical experiment. We

generated a large2 number of random correlation matrices that satisfied condition (6.6). We now

explain the generation procedure using the five-by-five case. First we generate ten independent

random numbers that are uniformly distributed in (0, 1). Label these as

r(1), r(2), . . . , r(10).

Suppose r(j) is the smallest of these. Switch r(j) and r(1) and change the sign of the first member

of the revised sequence. Using our early notation the revised set of correlations can be represented

as

−|a|, b, c, d, e, f, g, h, i, j,

where

|a| < min {b, c, d, e, f, g, h, i, j}.

Note that under this construction, condition (6.6) is automatically satisfied. We repeated this

procedure ten million times and for each simulation we checked if condition (6.7) was satisfied. It

turns out that a very high percentage of the ten million simulations that satisfy condition (6.6) also

satisfy condition (6.7) for the five-by-five case and the numbers become even higher with increasing

n. Table 6 illustrates this point.

Table 6

Simulations to illustrate the extent to which correlation matrices satisfying condition (6.6) also satisfy (6.7).

Value of n Number of simulations Number of simulations

that satisfy (6.6) that satisfy (6.7)

5 10,000,000 9,971,693

6 10,000,000 9,999,524

7 10,000,000 9,999,996

8 10,000,000 10,000,000

Fraction of n-by-n matrices with Perron-Frobenius property. There is a simple formula

for the proportion of (random) correlation matrices which have a strictly positive dominant eigen-

vector. This proportion declines with increasing n. Suppose the N correlations are independently

and identically distributed and each is drawn from the uniform distribution on (−1, 1). We can

assume that the first component of the dominant eigenvector is positive. The probability that each

of the remaining components is positive is one half. Since there are (n− 1) of them, the probability

that all of them are positive is 1
2n−1 . We can confirm by direct calculation that this formula works

for n = 2 and n = 3. We have confirmed numerically that it is valid for high dimensional matrices

up to order ten.

2 Ten million.
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Any n-by-n correlation matrix can be represented by a point in N -dimensional space. The

entire set of these matrices corresponds to the N -dimensional hypercube (−1, 1)N with volume 2N .

The subset of these matrices which have a strictly positive dominant eigenvalue occupies a region

of this hypercube with volume

2
n2−n+2

2 .

Note that

2
n2−n+2

2

2N
=

1

2n−1
.

The proportion of n-by-n random matrices that do not have a strictly positive dominant eigenvector

is therefore
2n−1 − 1

2n−1
.

Table 7 shows the proportions of random matrices that have and the proportions of random matrices

that do not have a strictly positive dominant eigenvector for different values of n. For n = 3 the

proportion with the Perron-Frobenius property is 25% but by the time we reach eight-by-eight

matrices the proportion is less than one percent.

Table 7

Proportions of random matrices with and without a strictly positive dominant eigenvector for various values of

n.

n Proportion of random matrices Proportion of random matrices

that have a strictly that do not have a strictly

positive dominant eigenvector positive dominant eigenvector

3 0.2500 0.7500

4 0.1250 0.8750

5 0.0625 0.9375

6 0.0313 0.9688

7 0.0156 0.9844

8 0.0078 0.9922

7. Summary. Correlation matrices play an important role in multivariate statistics. In the

context of certain portfolio problems, the dominant eigenvector of the correlation matrix of stock-

returns plays a key role. It is of both practical and theoretical interest to understand the conditions

under which the elements of this eigenvector are strictly positive. This paper has examined how

the characteristics of the negative entries in a correlation matrix are related to the positivity of the

dominant eigenvector. The matrix groupings induced by similarity transformations based on the

permutation matrix provide a natural framework for our analysis. We derived detailed results for

two-by-two, three-by-three and four-by-four correlation matrices. We also obtained some specific

results for higher order correlation matrices when there is just one negative correlation. We estab-

lished a negative row condition which provides a sufficient condition for a correlation matrix not to

have a strictly positive dominant eigenvector.
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