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Abstract. In this paper, the nonlinear matrix equation Xp +ATXA = Q, where p is a positive integer, A is an arbitrary

n× n matrix, and Q is a symmetric positive definite matrix, is considered. A fixed-point iteration with stepsize parameter for

obtaining the symmetric positive definite solution of the matrix equation is proposed. The explicit expressions of the normwise,

mixed and componentwise condition numbers are derived. Several numerical examples are presented to show the efficiency of

the proposed iterative method with proper stepsize parameter and the sharpness of the three kinds of condition numbers.
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1. Introduction. We consider the nonlinear matrix equations

Xp +ATXA = Q,(1.1)

where p is a positive integer, A ∈ Rn×n and Q is an n× n symmetric positive definite matrix.

This type of nonlinear matrix equation has been studied recently by several authors, see [6, 9–15]. For

the case p = 1, equation (1.1) reduces to a symmetric linear matrix equation [16], which appears in each step

of Newton’s method for solving nonlinear matrix equations, such as the one appears in Chapter 7 of [19].

For the case p > 1, equation (1.1) is equivalent to Y + ATY
1
pA = Q with Y = Xp. This is an example of

the equation studied by El-Sayed and Ran [5]; see also [17].

Jia and Wei [10] studied the matrix equation Xs+ATXtA = Q, where s and t are both nonnegative inte-

gers, and they proved that a symmetric positive definite solution exists if λmax(ATA) ≤ λmin(Q)(λmax(Q))−
t
s .

They have also showed that the positive definite solution could be unique under some certain condition. Meng

and Kim [13] studied equation (1.1) and proposed two elegant estimates of the positive definite solution and

three basic fixed-point iterations for obtaining the solution.

For the perturbation analysis of equation (1.1), Jia and Wei [10] investigated the algebraic perturbation

analysis of the unique symmetric positive solution and they defined one normwise condition number. In [22],

Wang, Yang and Li derived the explicit expressions of the normwise, mixed and componentwise condition

numbers for the nonlinear matrix equation X+A∗F (X)A = Q. Motivated by this, we investigate the mixed

and componentwise condition numbers of equation (1.1).

As a continuation of the previous work, we first propose a fixed-point iteration with stepsize parameter
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for obtaining the symmetric positive definite solution of equation (1.1). Based on the coupled fixed-point

theory, we prove that the matrix sequences generated by the proposed iteration with stepsize parameter are

convergent. We then investigate two kinds of normwise condition numbers, and derive the explicit expressions

of mixed and componentwise condition numbers for equation (1.1).

This paper is organized as follows. In Section 2, we propose a fixed-point iteration with stepsize param-

eter for obtaining the symmetric positive definite solution of equation (1.1), and we prove the convergence

of the matrix sequence. In Section 3, we derive the explicit expressions of the normwise, mixed and com-

ponentwise condition numbers. In Section 4, we give some numerical examples to show the efficiency of the

proposed iterative method and the sharpness of the three kinds of condition numbers.

We begin with some notations used throughout this paper. Rn×n stands for the set of n × n matrices

with elements on field R. ‖·‖2, ‖·‖F and ‖·‖∞ are the spectral norm, Frobenius norm and matrix row norm,

respectively. For a matrix B = (bij) ∈ Rn×n, ‖B‖max is the matrix norm given by ‖B‖max = maxi,j |bij |
and |B| is the matrix whose elements are |bij |. The set of all n×n positive definite matrices is presented by

P (n). For a Hermitian matrix H, λmin(H) and λmax(H) denote the minimal eigenvalue and the maximal

eigenvalue, respectively. Similarly, σmin(H) and σmax(H) denote the minimal and the maximal singular

value, respectively. For Hermitian matrices X and Y , X ≥ Y (X > Y ) means that X − Y is positive

semidefinite (definite), and [αI, βI] denotes the matrices set {X : X − αI ≥ 0 and βI −X ≥ 0}.

2. Iteration with stepsize parameter. In this section, we propose a fixed-point iteration with step-

size parameter for obtaining the symmetric positive definite solution of equation (1.1).

In [13], there was a basic fixed-point iteration as follows:{
X0 = α̃M1,

Xk+1 = (Q−ATXkA)
1
p ,

(2.2)

where α̃ is a positive solution of the following equations
α̃ =

λ
1
p
min(Q−β̃ATN1A)

λ
1
p
min(Q−ATN1A)

,

β̃ = λ
1
p
max(Q−α̃ATM1A)

λ
1
p
max(Q)

,

with M1 = λ
1
p

min(Q− λ
1
p
max(Q)A∗A)I and N1 = λ

1
p
max(Q)I.

Based on the above iteration (2.2), we propose a fixed-point iteration with stepsize parameter as follows:{
X0 = σI, σ ∈ [a, b],

Xk+1 = (1− α)Xk + α(Q−ATXkA)
1
p ,

(2.3)

where

α ∈ (0, 1),

a =
(
λmin(Q)− λmax(ATA)λ

1
p
max(Q)

) 1
p

,

b =
(
λmax(Q)

) 1
p

.
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To prove the convergence of iteration (2.3), we introduce the following well-known results:

Lemma 2.1. (Löwner-Heinz inequality, [23, Theorem 1.1]) If A ≥ B ≥ 0 and 0 ≤ r ≤ 1, then Ar ≥ Br.

Lemma 2.2. ([3]) If 0 < θ ≤ 1, and P and Q are positive definite matrices of the same order with

P,Q ≥ bI > 0, then ‖P θ −Qθ‖ ≤ θbθ−1‖P −Q‖ and ‖P−θ −Q−θ‖ ≤ θb−(θ+1)‖P −Q‖. Here, ‖ · ‖ stands

for one kind of matrix norm.

F : X ×X → X is a mixed monotone mapping if for any x, y ∈ X,

x1, x2 ∈ X, x1 ≤ x2 ⇒ F (x1, y) ≤ F (x2, y),

y1, y2 ∈ X, y1 ≤ y2 ⇒ F (x, y1) ≥ F (x, y2).

Theorem 2.3. ([1, Theorem 3]) Let (X,≤) be a partially ordered set and suppose there is a metric d on

X such that (X, d) is a complete metric space. Let F : X×X → X be a mixed monotone mapping for which

there exists a constant k ∈ [0, 1) such that for each x ≥ u, y ≤ v,

d(F (x, y), F (u, v)) + d(F (y, x), F (v, u)) ≤ k[d(x, u) + d(y, v)].

If there exist x0, y0 ∈ X such that

x0 ≤ F (x0, y0) and y0 ≥ F (y0, x0),

then there exist x̄, ȳ ∈ X such that

x̄ = F (x̄, ȳ) and ȳ = F (ȳ, x̄).

Moreover, the matrix sequences {xk} and {yk} generated by{
xk+1 = F (xk, yk),

yk+1 = F (yk, xk)

converge respectively to x̄ and ȳ. And if every pair (x, y) ∈ X × X has a lower bound or an upper bound,

then

x̄ = ȳ.

Theorem 2.3 is a generalization of the coupled fixed-point theorem obtained by Bhaskar and Laksh-

mikantham [2] and it will be used in our proof of the convergence of iteration (2.3).

Theorem 2.4. If λmin(Q) > λmax(ATA)λ
1
p
max(Q),

a1−p‖A‖22
p < 1, then the matrix sequence {Xk} gener-

ated by iteration (2.3) is convergent to a symmetric positive definite solution of equation (1.1).

Proof. Let Ω = {X : X = XT and aI ≤ X ≤ bI}, under Frobenius norm, (Ω, ‖ · ‖F ) is a Banach space.

Define F on Ω× Ω by

F (X,Y ) = (1− α)X + α(Q−ATY A)
1
p .

Clearly, F is a mixed monotone mapping. And F : Ω× Ω→ Ω. Indeed, for any X,Y ∈ Ω, applying Lemma

2.1 yields

F (X,Y ) = (1− α)X + α(Q−ATY A)
1
p

≥ (1− α)aI + α(Q− bATA)
1
p

≥ (1− α)aI + αaI

= aI,
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and

F (X,Y ) ≤ (1− α)bI + α(Q− aATA)
1
p

≤ (1− α)bI + αQ
1
p

≤ bI.

Let k =
(
1 − α

(
1 − ‖A‖22

pap−1

))
and clearly k ∈ (0, 1). For any X,Y, U, V ∈ Ω such that X ≥ U, Y ≤ V ,

note that

Q−A∗XA ≥ apI and Q−A∗Y A ≥ apI,

by Lemma 2.2, we have

‖F (X,Y )− F (U, V )‖F ≤ (1− α)‖X − U‖F + α‖(Q−ATY A)
1
p − (Q−ATV A)

1
p ‖F

≤ (1− α)‖X − U‖F +
αa1−p‖A‖22

p
‖V − Y ‖F ,

and similarly,

‖F (Y,X)− F (V,U)‖F ≤ (1− α)‖Y − V ‖F +
αa1−p‖A‖22

p
‖X − U‖F .

Then

‖F (X,Y )− F (U, V )‖F + ‖F (Y,X)− F (V,U)‖F ≤ k
(
‖X − U‖F + ‖Y − V ‖F

)
.

Let X0 = aI, Y0 = bI, since F (Ω× Ω) ⊆ Ω, it is trivial that

X0 ≤ F (X0, Y0) and Y0 ≥ F (Y0, X0).

By Theorem 2.3, there are X̄, Ȳ ∈ Ω such that

X̄ = F (X̄, Ȳ ) and Ȳ = F (Ȳ , X̄).

Since every (X,Y ) ∈ Ω× Ω has a lower bound or an upper bound, we can get

X̄ = Ȳ .

Define the matrix sequences {X ′k} and {Y ′k} by
X ′0 = aI,

Y ′0 = bI,

X ′k+1 = F (X ′k, Y
′
k) = (1− α)X ′k + α(Q−ATY ′kA)

1
p ,

Y ′k+1 = F (Y ′k, X
′
k) = (1− α)Y ′k + α(Q−ATX ′kA)

1
p .

According to Theorem 2.3, we have

lim
k→∞

X ′k = X̄ and lim
k→∞

Y ′k = Ȳ .
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To show the matrix sequence {Xk} generated by (2.3) is convergent, we first show that X ′k ≤ Xk ≤ Y ′k
is true for k = 0, 1, . . . Note that Xk+1 = F (Xk, Xk) and X ′0 ≤ X0 ≤ Y ′0 , by the mixed monotonicity of F ,

we have

F (X ′0, Y
′
0) ≤ F (X0, X0) ≤ F (Y ′0 , X

′
0),

that is,

X ′1 ≤ X1 ≤ Y ′1 .

By mathematical induction, it is easy to get X ′k ≤ Xk ≤ Y ′k for all k = 0, 1, . . . Since

lim
k→∞

X ′k = X̄ = Ȳ = lim
k→∞

Y ′k,

it follows that {Xk} converges to X̄, we can see that X̄ satisfies equation (1.1).

Theorem 2.5. Let X+ be a positive definite solution of equation (1.1). Consider the sequence {Xk}
generated by iteration (2.3). Assume that Xk ≤ X+ for some k, then Xk+1 ≥ Xk.

Proof. Assume that Xk ≤ X+ holds for one integer k, then from Lemma 2.1 it follows that

Xk+1 = (1− α)Xk + α(Q−ATXkA)
1
p

≥ (1− α)Xk + α(Q−ATX+A)
1
p

= (1− α)Xk + αX+

≥ Xk.

Corollary 2.6. Let X+ be a positive definite solution of equation (1.1). Consider the sequence {Xk}
generated by (2.3). Assume that Xk ≥ X+ for some k, then Xk+1 ≤ Xk.

3. Normwise, mixed and componentwise condition numbers. In this section, we investigate the

normwise, mixed and componentwise condition numbers of equation (1.1).

Consider the perturbed equation

(X + ∆X)p + (A+ ∆A)T (X + ∆X)(A+ ∆A) = Q+ ∆Q,(3.4)

where ∆A,∆Q ∈ Rn×n.

Subtracting (1.1) from (3.4) yields

(X + ∆X)p −Xp = ∆Q− (ATX∆A+ ∆ATXA+AT∆XA)−∆E,(3.5)

where ∆E = ∆ATX∆A+AT∆X∆A+ ∆ATX∆A+ ∆AT∆X∆A.

For notational simplicity, we introduce a function φ : N̄× N̄× Rn×n × Rn×n → Rn×n defined in [20] as{
φ(i, 0)(X,Y ) = Xi, φ(0, j)(X,Y ) = Y j , i ∈ N̄,
φ(i, j)(X,Y ) =

(
Xφ(i− 1, j) + Y φ(i, j − 1)

)
(X,Y ), i, j ∈ N+,

where N̄ is the set of natural numbers and N+ = N̄− {0}. We can easily get

φ(0, 0)(X,Y ) = In,
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and

φ(n, 1)(X,Y ) =

n∑
i=0

Xn−iY Xi.

Using the notations given above, we can also have

(X + Y )n =

n∑
i=0

φ(n− i, i)(X,Y ), n ∈ N̄.

Then

(X + ∆X)p −Xp =

p∑
i=0

φ(p− i, i)(X,∆X)−Xp

= φ(p, 0)(X,∆X) + φ(p− 1, 1)(X,∆X) +G(∆X)−Xp

=

p−1∑
j=0

Xp−1−j∆XXj +G(∆X),(3.6)

where G(∆X) =
∑p
i=2 φ(p− i, i)(X,∆X).

Combining (3.5) and (3.6) and applying the vec operator yields

( p−1∑
j=0

Xj ⊗Xp−1−j +AT ⊗AT
)

vec(∆X)

= vec(∆Q)−
(

(I ⊗ATX) + ((ATX)⊗ I)Π
)

vec(∆A) +O
(
‖∆Q,∆A‖2F

)
,(3.7)

where Π ∈ Rn2×n2

is the vec permutation satisfying Πvec(A) = vec(AT ) and here it is defined by

Π =

n∑
i=1

n∑
j=1

Eij(n× n)⊗ Eji(n× n),

with Eij = e
(n)
i (e

(n)
j )T ∈ Rn×n and e

(n)
i is the i-th column of the identity matrix I. O

(
‖∆Q,∆A‖2F

)
is the

first order approximation of ∆X with respect to (∆Q,∆A). According to the implicit function theorem, we

can get ∆X → 0 as (∆Q,∆A)→ 0.

From Theorem 16.3.2 in [8], we can get ((ATX)⊗ I)Π = Π(I⊗ (ATX)). Then omitting the higher order

terms in (3.7) yields

( p−1∑
j=0

Xj ⊗Xp−1−j +AT ⊗AT
)

vec(∆X)

= vec(∆Q)−
(

(In2 + Π)(I ⊗ATX)
)

vec(∆A).(3.8)

Define a map Φ : R2n2 → Rn2

by

Φ : ω = (vec(Q)T , vec(A)T )T → vec(X),(3.9)

where X is the unique symmetric positive definite solution of equation (1.1).
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3.1. Normwise condition number. According to Rice [18] and [21], we investigate two kinds of

normwise condition numbers of map Φ, which are defined by

Ki
rel = lim

δ→0
sup

∆i≤δ

‖∆X‖F
δ‖X‖F

, i = 1, 2,(3.10)

where

∆1 =
‖(∆Q,∆A)‖F
‖(Q,A)‖F

and ∆2 =
∥∥∥( ∆Q

‖Q‖F
,

∆A

‖A‖F

)∥∥∥
F
.

If Φ is Fréchet differentiable at ω = (vec(Q), vec(A)T )T , from Theorem 4 in [18], we have

K1
rel(X) =

‖Φ′(ω)‖2‖(Q,A)‖F
‖X‖F

,(3.11)

where Φ′(ω) is the Fréchet derivative of Φ at ω.

Let

S =

p−1∑
j=0

Xj ⊗Xp−1−j +AT ⊗AT ,

T =
(
In2 − (In2 + Π)(I ⊗ (ATX))

)
,

v = (vec(∆Q)T , vec(∆A)T )T .

Then (3.8) can be written as

Svec(∆X) = Tv.(3.12)

Note that if
a1−p‖A‖22

p < 1, then

σmin(S) ≥ λmin

( p−1∑
j=0

Xj ⊗Xp−1−j
)
− ‖A‖22 ≥ pap−1 − ‖A‖22 > 0,

which shows that S is invertible. Then, it follows from (3.12) that Φ is Fréchet differentiable and

Φ′(ω) = S−1T.(3.13)

Therefore, according to (3.11), the following theorem can be obtained.

Theorem 3.1. Let X be the positive definite solution of matrix equation (1.1). If
a1−p‖A‖22

p < 1, then

the relative condition number k1
rel of equation (1.1) defined in (3.10) is given by

k1
rel =

‖S−1T‖2‖(Q,A)‖F
‖X‖F

.

Theorem 3.2. Let X be the positive definite solution of matrix equation (1.1). If
a1−p‖A‖22

p < 1, then

the relative condition number k2
rel of equation (1.1) defined in (3.10) is given by

k2
rel =

‖[‖Q‖FΣr − ‖A‖FΩr]‖2
‖X‖F

,(3.14)

where

Σr = S−1 and Ωr = S−1(I ⊗ (ATX) + ((XA)T ⊗ I)Π).
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Proof. Note that (3.12) can be rewritten as

vec(∆X) = S−1T1r1,(3.15)

where

T1 = T diag(‖Q‖F , ‖A‖F ) and r1 =

(
vec(∆Q)

‖Q‖F
,

vec(A)

‖A‖F

)T
.

It follows from (3.15) that

‖∆X‖F = ‖S−1T1r1‖2
≤ ‖S−1T1‖2‖r1‖2
≤
∥∥[‖Q‖FS−1,−‖A‖FS−1(In2 + Π)(I ⊗ (ATX))

]∥∥
2
‖r1‖2.(3.16)

Since ‖r1‖2 = ∆2, according to (3.10) (when i = 2) and inequality (3.16), we arrive at (3.14).

3.2. Mixed and componentwise condition numbers. We now consider the the mixed and compo-

nentwise condition numbers of matrix equation (1.1). We first introduce some definitions and useful results

about these two condition numbers.

For any a, b ∈ Rn, we define a./b = [c1, c2, . . . , cn]T with

ci =


ai/bi, if bi 6= 0,

0, if ai = bi = 0,

∞, otherwise.

Then we introduce one distance function

d(a, b) = ‖(a− b)./b‖∞ = max
i=1,2,...,n

{∣∣∣∣ai − bibi

∣∣∣∣} .
In the rest of this paper we assume d(a, b) <∞ for any pair (a, b). And we extend the function d to matrices

M and N by d(M,N) = d(vec(M), vec(N)). For ε > 0, we denote B0(a, ε) = {x|d(x, a) ≤ ε}.

Definition 3.3. ([7]) Let F : Rp → Rq be a continuous mapping defined on an open set Dom(F ) ⊂ Rp

such that 0 /∈ Dom(F ) and F (a) 6= 0 for a given a ∈ Rp.
(1) The mixed condition number of F at a is defined by

m(F, a) = lim
ε→0

sup
x∈B0(a,ε)

x6=a

‖F (x)− F (a)‖∞
‖F (a)‖∞

1

d(x, a)
.

(2) Suppose F (a) =
[
f1(a), f2(a), . . . , fq(a)

]T
such that fj(a) 6= 0 for j = 1, 2, . . . , q. The componentwise

condition number of F at a is defined by

c(F, a) = lim
ε→0

sup
x∈B0(a,ε)

x 6=a

d(F (x), F (a))

d(x, a)
.

From Gohberg and Koltracht [7] or Cucker, Diao, and Wei [4], if F is Fréchet differentiable at a, the

explicit expressions of the mixed and componentwise condition numbers of F at a are given by the following

lemma.
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Lemma 3.4. Suppose F is Fréchet differentiable at a. We have

(1) if F (a) 6= 0, then

m(F, a) =
‖F ′(a)diag(a)‖∞
‖F (a)‖∞

=
‖|F ′(a)||a|‖∞
‖F (a)‖∞

;

(2) if F (a) =
[
f1(a), f2(a), . . . , fq(a)

]T
such that fj(a) 6= 0 for j = 1, 2, . . . , q, then

c(F, a) = ‖(diag(F (a)))−1F ′(a)diag(a)‖∞ =

∥∥∥∥ |F ′(a)||a|
|F (a)|

∥∥∥∥
∞
.

Theorem 3.5. Let X be the symmetric positive definite solution of equation (1.1). If
a1−p‖A‖22

p < 1,

then the mixed and componentwise condition numbers of matrix equation (1.1) are given by

m(Φ) =

∥∥|S−1|vec(|Q|) + |S−1
(
In2 ⊗Π

)(
I ⊗ (ATX)

)
|vec(|A|)

∥∥
∞

‖X‖max
,

and

c(Φ) =

∥∥∥∥ |S−1|vec(|Q|)+
∣∣S−1

(
In2+Π

)(
I⊗(ATX)

)∣∣vec(|A|)
vec(|X|)

∥∥∥∥
∞
.

Furthermore, we have two simple upper bounds for m(Φ) and c(Φ) as follows:

mU (Φ) :=
‖S−1‖∞

∥∥|Q|+ |ATX||A|+ |AT ||AX|∥∥
max

‖X‖max
& m(ϕ),

and

cU (Φ) :=
∥∥diag−1

(
vec(X)

)
S−1

∥∥
∞ =

∥∥|Q|+ |ATX||A|+ |AT ||XA|∥∥
max

& c(ϕ).

Proof. From (3.13) we know Φ′(ω) = S−1T , where ω = (vec(Q)T , vec(A)T )T , according to (1) of Lemma

3.4, we get

m(Φ) =
‖|S−1T ||ω|‖∞
‖vec(X)‖∞

=

∥∥∥∥[|S−1|, |S−1
(
In2 + Π

)(
I ⊗ (ATX)

)
|
]( |vec(Q)|
|vec(A)|

)∥∥∥∥
∞

‖X‖max

=

∥∥|S−1|vec(|Q|) + |S−1
(
In2 + Π

)(
I ⊗ (ATX)

)
|vec(|A|)

∥∥
∞

‖X‖max
.

Similarly, from (2) of Lemma 3.4, we get

c(Φ) =

∥∥∥∥ |S−1T ||ω|
|vec(X)|

∥∥∥∥
∞

=

∥∥∥∥ |S−1|vec(|Q|)+
∣∣S−1

(
In2+Π

)(
I⊗(ATX)

)∣∣vec(|A|)
vec(|X|)

∥∥∥∥
∞
.

Note that

‖|S−1T ||ω|‖∞ ≤ ‖|S−1||T ||ω|‖∞
≤ ‖S−1‖∞‖|T ||ω|‖∞
≤ ‖S−1‖∞

∥∥vec(|Q|) +
∣∣(In2 + Π)(I ⊗ (ATX))

∣∣vec(|A|)
∥∥
∞

≤ ‖S−1‖∞
∥∥|Q|+ |ATX||A|+ |AT ||AX|∥∥

max
,
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it follows that

m(Φ) ≤ ‖S
−1‖∞‖|T |||ω‖∞
‖X‖max

=
‖S−1‖∞

∥∥|Q|+ |ATX||A|+ |AT ||XA|∥∥
max

‖X‖max
.

Similarly, it holds that

c(Φ) = ‖|diag−1(vec(X))||S−1T ||ω|‖∞
≤ ‖diag−1(vec(X))S−1‖∞‖|T ||ω|‖∞
≤ ‖diag−1(vec(X))S−1‖∞

∥∥|Q|+ |ATX||A|+ |AT ||XA|∥∥
max

.

The proof is completed.

4. Numerical examples. In this section, we give three examples to show the efficiency of the proposed

iterative method with stepsize parameter, and the sharpness of the three kinds of condition numbers. The

stepsize parameter is different case by case. Our experiments were done in Matlab 7.10.0, which has the

unit roundoff µ ≈ 2.2 · 10−16 and the iterations terminate if the relative residuals ρ(Xk) satisfies

ρ(Xk) =
‖fl(Xp

k +ATXkA−Q)‖F
‖Xk‖pF + ‖AT ‖F ‖Xk‖F ‖A‖F + ‖Q‖F

≤ nµ.

In [13], we also proposed the following two iterative methods which work better than iteration (2.2)

(4.1)

{
X0 = γI,

Xk+1 = (Q−ATXkA)
1
p

and

(4.2)

{
X0 = 0,

Xk+1 = (Q−AT (Q−ATXkA)
1
pA)

1
p ,

where γ > 0 in (4.1) is a real number such that

γp + γλmax(ATA) = λmin(Q).

We will compare the proposed iteration (2.3) with iteration (2.2) and the above two iterations.

Example 4.1. (Example 4.1, [13]) Let matrix A = rand(10) · 10−2, Q = eye(10), and p = 2, 3, 4, 5, 6, 7.

We apply the basic fixed-point iteration (2.2), (4.1), (4.2) and the iteration (2.3) with stepsize parameter

on equation (1.1). Figure 1 shows the iterations of (2.3) with different values of α when p = 3 and 7,

respectively. The iterations before convergence, the CPU time and the relative residuals are shown in 1 and

Table 2.

From Figure 1, we can see that the stepsize parameter affects the performance of iteration (2.3) signifi-

cantly and when it is close to 1 (in our example it is close to 0.9) iteration (2.3) works more efficiently. From

Table 1 and Table 2, we can see that iteration (2.3) with proper stepsize parameter converges much faster

and uses less time for obtaining the symmetric positive definite solution.
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Figure 1. Iterations with different parameter α.

p
Iteration (2.3) with stepsize parameter Iteration (2.2)

α It(s) CPU time Relative res It(s) CPU time relative res

2 0.79 22 0.01696 1.27 · 10−15 53 0.03924 1.78 · 10−15

3 0.82 19 0.01617 1.93 · 10−15 38 0.03234 2.14 · 10−15

4 0.83 18 0.01769 4.54 · 10−16 31 0.02978 1.44 · 10−15

5 0.86 16 0.01838 8.89 · 10−16 26 0.02930 1.68 · 10−15

6 0.88 14 0.01927 1.96 · 10−15 23 0.03121 9.64 · 10−16

7 0.89 13 0.02100 2.02 · 10−15 20 0.03203 1.34 · 10−15

Table 1

Comparison of iteration (2.3) with iteration (2.2).

Example 4.2. Let

A =


0.1892 0.2406 0.1078 0.1682

0.0708 0.2020 0.0646 0.1774

0.1492 0.0138 0.2177 0.1643

0.0325 0.0228 0.0224 0.2160

 ,

Q = eye(4) and p = 3. The perturbations in coefficient matrices are given by

∆A = (rand(4) · 10−j) ◦A and ∆Q = (rand(4) · 10−j) ◦Q,

where j is a positive integer and ◦ is the Hadamard product. Using iteration (2.3) with X0 = aI, we can get

the unique positive definite solution X of equation (1.1) and X̃ of the corresponding perturbed equation.

From Theorem 3.1 and Theorem 3.2, we get two local normwise perturbation bounds ‖∆X‖F‖X‖F ≤ k1
rel∆1 and

‖∆X‖F
‖X‖F ≤ k

2
rel∆2.

Let

ε0 = min {ε : |∆A| ≤ ε|A|, |∆Q| ≤ ε|Q|} .

We obtain the local mixed and componentwise perturbation bounds

‖∆X‖max/‖X‖max . ε0mU (ϕ),
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p
Iteration (2.3) with stepsize parameter Iteration (4.1) Iteration (4.2)

α It(s) CPU time It(s) CPU time It(s) CPU time

2 0.79 22 0.01696 48 0.0263 28 0.0276

3 0.82 19 0.01617 35 0.0211 20 0.0227

4 0.83 18 0.01769 28 0.0204 17 0.0233

5 0.86 16 0.01838 24 0.0221 14 0.0239

6 0.88 14 0.01927 21 0.0234 13 0.0279

7 0.89 13 0.02100 18 0.0247 11 0.0293
Table 2

Comparisons of iteration (2.3) with iteration (4.1) and iteration (4.2).

j 3 4 5 6

‖∆X‖F
‖X‖F

2.8299e-004 2.3131e-005 1.4513e-006 2.0563e-007

k1
rel(ϕ)∆1 2.1257e-003 1.7298e-004 1.0497e-005 1.4720e-006

k2
rel(ϕ)∆2 3.1625e-004 2.8783e-005 1.8903e-006 2.6481e-007
‖∆X‖max
‖X‖max

3.2166e-004 2.9719e-005 1.8111e-006 2.8408e-007

mU (ϕ)ε0 4.5666e-004 4.3999e-005 2.3324e-006 3.9336e-007∥∥∥ vec(∆X)
vec(X)

∥∥∥
∞

1.1047e-003 1.1322e-004 8.7107e-006 1.1544e-006

cU (ϕ)ε0 3.0964e-002 29834e-003 1.5815e-004 2.6672e-005

Table 3

Upper bounds given by normwise, mixed and componentwise condition numbers.

and

‖vec(∆X)./vec(X)‖max . ε0cU (ϕ).

Table 3 shows that the perturbation bounds given by the three kinds of condition numbers are very

sharp.

Example 4.3. Let

A =



2 0 0 1 0 0

1 2 0 0 1 0

0 0 3 0 1 0

1 0 0 2 0 1

1 0 1 0 3 0

0 1 0 0 1 2


,

Q =



1.6740 0.1069 0.2218 0.0033 0.0775 0.2502

0.1069 1.8446 0.2356 0.2854 0.2327 0.2553

0.2218 0.2356 1.7428 0.0088 0.2549 0.0884

0.0033 0.2854 0.0088 1.1526 0.1433 0.1666

0.0775 0.2327 0.2549 0.1433 1.6075 0.4349

0.2502 0.2553 0.0884 0.1666 0.4349 2.1978


,



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 34, pp. 217-230, May 2018.

229 Iteration With Stepsize Parameter and Condition Numbers for a Nonlinear Matrix Equation

j 7 9 11 13

‖∆X‖F
‖X‖F

1.7180e-09 1.7179e-11 1.7192e-13 1.6405e-15

k1
rel(ϕ)∆1 2.8176e-08 2.8176e-10 2.8176e-12 2.8176e-14

k2
rel(ϕ)∆2 4.5508e-09 4.5508e-11 4.5508e-13 4.5508e-15
‖∆X‖max
‖X‖max

1.8107e-09 1.8106e-11 1.8074e-13 1.9528e-15

mU (ϕ)ε0 1.7763e-08 1.7763e-10 1.7763e-12 1.7763e-14∥∥∥ vec(∆X)
vec(X)

∥∥∥
∞

2.6329e-07 2.6315e-09 2.4086e-11 3.8679e-12

cU (ϕ)ε0 6.9164e-05 6.9164e-07 6.9164e-09 6.9164e-11

Table 4

Upper bounds given by normwise, mixed and componentwise condition numbers.

and p = 100. The perturbations in coefficient matrices are given by

∆A = (rand(6) · 10−j) ◦A and ∆Q = (rand(6) · 10−j) ◦Q,

where j is a positive integer and ◦ is the Hadamard product. This is another example. But in this example,

we have a slightly greater order of matrix and also greater power of p. The results are shown in Table 4.

And it can be easily deduced from the results that our estimations are almost tight.

5. Conclusion. In this paper, we propose an iteration with stepsize parameter for obtaining the sym-

metric positive definite solution (1.1). Different stepsize parameter affects the performance of the proposed

iteration significantly, but it works efficiently with a proper stepsize parameter. We also investigate the

normwise, mixed and componentwise condition numbers of equation (1.1).
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