GENERALIZED INVERSES OF BORDERED MATRICES*

R. B. BAPAT^{\dagger} AND BING ZHENG \ddagger

Abstract

Several authors have considered nonsingular borderings $A=\left(\begin{array}{cc}B & C \\ D & X\end{array}\right)$ of B and investigated the properties of submatrices of A^{-1}. Under specific conditions on the bordering, one can recover any g-inverse of B as a submatrix of A^{-1}. Borderings A of B are considered, where A might be singular, or even rectangular. If A is $m \times n$ and if B is an $r \times s$ submatrix of A, the consequences of the equality $m+n-\operatorname{rank}(A)=r+s-\operatorname{rank}(B)$ with reference to the g-inverses of A are studied. It is shown that under this condition many properties enjoyed by nonsingular borderings have analogs for singular (or rectangular) borderings as well. We also consider g-inverses of the bordered matrix when certain rank additivity conditions are satisfied. It is shown that any g-inverse of B can be realized as a submatrix of a suitable g-inverse of A, under certain conditions.

Key words. Generalized inverse, Moore-Penrose inverse, Bordered matrix, Rank additivity.
AMS subject classifications. 15A09, 15A03.

1. Introduction. Let A be an $m \times n$ matrix over the complex field and let A^{*} denote the conjugate transpose of A. We recall that a generalized inverse G of A is an $n \times m$ matrix which satisfies the first of the four Penrose equations:
(1) $A X A=A$
(2) $X A X=X$
(3) $(A X)^{*}=A X$
(4) $(X A)^{*}=X A$.

For a subset $\{i, j, \ldots\}$ of the set $\{1,2,3,4\}$, the set of $n \times m$ matrices satisfying the equations indexed by $\{i, j, \ldots\}$ is denoted by $A\{i, j, \ldots\}$. A matrix in $A\{i, j, \ldots\}$ is called an $\{i, j, \ldots\}$-inverse of A and is denoted by $A^{(i, j, \ldots)}$. In particular, the matrix G is called a $\{1\}$-inverse or a g-inverse of A if it satisfies (1). As usual, a g-inverse of A is denoted by A^{-}. If G satisfies (1) and (2) then it is called a reflexive inverse or a $\{1,2\}$-inverse of A. Similarly, G is called a $\{1,2,3\}$-inverse of A if it satisfies (1),(2) and (3). The Moore-Penrose inverse of A is the matrix G satisfying (1)-(4). Any matrix A admits a unique Moore-Penrose inverse, denoted A^{\dagger}. If A is $n \times n$ then G is called the group inverse of A if it satisfies (1), (2) and $A G=G A$. The matrix A has group inverse, which is unique and denoted by A^{\sharp}, if and only if $\operatorname{rank}(A)=\operatorname{rank}\left(A^{2}\right)$. We refer to [4], [6] for basic results on g-inverses.

Suppose

$$
A=\begin{gather*}
 \tag{1.1}\\
p_{1} \\
p_{2}
\end{gather*}\left(\begin{array}{ll}
q_{1} & q_{2} \\
B & C \\
D & X
\end{array}\right)
$$

[^0]
ELA

is a partitioned matrix. We say that A is obtained by bordering B. We will generally partition a g-inverse A^{-}of A as

$$
A^{-}=\begin{gather*}
p_{1} \tag{1.2}\\
q_{1} \\
q_{2} \\
q_{2}
\end{gather*}\binom{E}{G}
$$

which is in conformity with A^{*}.
We say that the g-inverses of A have the "block independence property" if for any g-inverses

$$
A_{i}^{-}=\left(\begin{array}{cc}
E_{i} & F_{i} \\
G_{i} & Y_{i}
\end{array}\right), i=1,2
$$

of $A,\left(\begin{array}{ll}E_{1} & F_{1} \\ G_{1} & Y_{2}\end{array}\right),\left(\begin{array}{cc}E_{1} & F_{1} \\ G_{2} & Y_{1}\end{array}\right)$ etc. are also g-inverses of A.
If A is an $m \times n$ matrix, then the following function will play an important role in this paper:

$$
\psi(A)=m+n-\operatorname{rank}(A) .
$$

An elementary result is given next. For completeness, we include a proof.
Lemma 1.1. If B is a submatrix of A, then $\psi(B) \leq \psi(A)$.
Proof. Let

$$
\left.A=\begin{array}{c}
p_{1} \\
p_{2}
\end{array} \begin{array}{cc}
q_{1} & q_{2} \\
B & C \\
D & X
\end{array}\right) .
$$

Then

$$
\begin{aligned}
\operatorname{rank}(A) & \leq \operatorname{rank}\left(\begin{array}{ll}
B \quad C
\end{array}\right)+\operatorname{rank}\left(\begin{array}{ll}
D \quad X
\end{array}\right) \\
& \leq \operatorname{rank}(B)+\operatorname{rank}(C)+p_{2} \\
& \leq \operatorname{rank}(B)+q_{2}+p_{2}
\end{aligned}
$$

From this inequality, we get $\psi(B) \leq \psi(A)$.
Note that a matrix B with $\operatorname{rank}(B)=r$ can be completed to a nonsingular matrix A of order n if and only if $\psi(B) \leq n[10$, Theorem 5]. As another example of a result concerning ψ, if

$$
A=\begin{gathered}
\\
p_{1} \\
p_{2}
\end{gathered}\left(\begin{array}{cc}
q_{1} & q_{2} \\
B & C \\
D & O
\end{array}\right)
$$

is a nonsingular matrix of order $n, n=p_{1}+p_{2}=q_{1}+q_{2}$, then A^{-1} is of the form

$$
\left.A^{-1}=\begin{array}{c}
p_{1} \\
q_{1} \\
q_{2} \\
q_{2} \\
E
\end{array} \quad F \begin{array}{c}
\\
G
\end{array}\right)
$$

ELA

if and only if $\psi(B)=\psi(A)$. This will follow from Theorem 3.1.
Several authors ([4], [5], [8], [10], [11], [12]) have considered nonsingular borderings A of B and investigated the properties of submatrices of A^{-1}. Under specific conditions on the bordering, one can recover a special g-inverse of B as a submatrix of A^{-1}. It turns out that in all such cases the condition $\psi(B)=\psi(A)$ holds. The main theme of the present paper is to investigate borderings A of B, where A might be singular, or even rectangular. We show that if $\psi(A)=\psi(B)$ is satisfied then many properties enjoyed by nonsingular borderings have analogs for singular (or rectangular) borderings as well. For example, any g-inverse of B can be obtained as a submatrix of A^{-}where A is a bordering of B with $\psi(A)=\psi(B)$. This will be shown in Section 4. In Section 5 we show how to obtain the Moore-Penrose inverse and the group inverse by a general, not necessarily nonsingular, bordering. In the next two sections we consider general borderings A of B and obtain some results concerning A^{-}.

We say that rank additivity holds in the matrix equation $A=A_{1}+\cdots+A_{k}$ if $\operatorname{rank}(A)=\operatorname{rank}\left(A_{1}\right)+\cdots+\operatorname{rank}\left(A_{k}\right)$. Let $R(A)$ and $N(A)$ denote the range space of A and the null space of A respectively. We will need the following well-known result.

Lemma 1.2. [2] Let A, B be $m \times n$ matrices. Then the following conditions are equivalent:
(i) $\operatorname{rank}(B)=\operatorname{rank}(A)+\operatorname{rank}(B-A)$.
(ii) Every B^{-}is a g-inverse of A.
(iii) $A B^{-}(B-A)=O,(B-A) B^{-} A=O$ for any B^{-}.
(iv) There exists a B^{-}that is a g-inverse of both A and $B-A$.

It follows from the proof of Lemma 1.1 that if $\psi(B)=\psi(A)$ then rank additivity holds in

$$
\left(\begin{array}{ll}
B & C \tag{1.3}\\
D & X
\end{array}\right)=\left(\begin{array}{cc}
B & O \\
O & O
\end{array}\right)+\left(\begin{array}{cc}
O & C \\
O & O
\end{array}\right)+\left(\begin{array}{cc}
O & O \\
D & X
\end{array}\right)
$$

and in

$$
\left(\begin{array}{ll}
B & C \tag{1.4}\\
D & X
\end{array}\right)=\left(\begin{array}{cc}
B & O \\
O & O
\end{array}\right)+\left(\begin{array}{cc}
O & O \\
D & O
\end{array}\right)+\left(\begin{array}{cc}
O & C \\
O & X
\end{array}\right) .
$$

In Section 2 we discuss necessary and sufficient conditions for the block matrix $\left(\begin{array}{ll}E & F \\ G & Y\end{array}\right)$ to be a g-inverse of $\left(\begin{array}{cc}B & C \\ D & X\end{array}\right)$ under the assumption of rank additivity in (1.3) and (1.4). In section 3, necessary and sufficient conditions for the block matrix $\left(\begin{array}{cc}E & F \\ G & Y\end{array}\right)$ to be a g-inverse of $\left(\begin{array}{cc}B & C \\ D & X\end{array}\right)$ are considered under the assumption $\psi(A)=\psi(B)$. Certain related results are also proved. Some additional references on g-inverses of bordered matrices as well as generalizations of Cramer's rule are [1], [14], [16], [17].
2. G-inverses of a bordered matrix . Let $A=\left(\begin{array}{cc}B & C \\ D & X\end{array}\right)$ be a block matrix which is a bordering of B. In this section we will study some necessary and sufficient

ELA

conditions for a partitioned matrix $\left(\begin{array}{cc}E & F \\ G & Y\end{array}\right)$, conformal with A^{*}, to be a g-inverse of A.

Theorem 2.1. Let $A=\left(\begin{array}{cc}B & C \\ D & X\end{array}\right)$. Then rank additivity holds in (1.3) and (1.4) and $H=\left(\begin{array}{cc}E & F \\ G & Y\end{array}\right)$ is a g-inverse of A if and only if the following conditions hold.
(i) $B E B=B, C G C=C, D F D=D, X G C=D F X=-D E C, X=X Y X-D E C$.
(ii) $C Y D, B F X, C Y X, X G B, X Y D, B E C, D E B, C G B, B F D$ are null matrices.

Furthermore, if $E B E=E$, then $X=X Y X$.
Proof. "Only if" part: Assume rank additivity in (1.3) and (1.4) and that H is a g-inverse of A. Then by (ii) of Lemma $1.2, H$ is also a g-inverse of each summand matrix in (1.3) and (1.4). Using the definition of g-inverse, we easily get $B E B=$ $B, C G C=C, D F D=D, X Y D=O, C Y X=O$, and

$$
\begin{equation*}
D F X+X Y X=X, X G C+X Y X=X \tag{2.1}
\end{equation*}
$$

On the other hand, by (iii) of Lemma 1.2, we have

$$
\begin{aligned}
& \left(\begin{array}{ll}
B & O \\
O & O
\end{array}\right)\left(\begin{array}{ll}
E & F \\
G & Y
\end{array}\right)\left(\begin{array}{ll}
O & C \\
O & O
\end{array}\right)=\left(\begin{array}{ll}
O & O \\
O & O
\end{array}\right) \Rightarrow B E C=O, \\
& \left(\begin{array}{ll}
O & C \\
O & O
\end{array}\right)\left(\begin{array}{ll}
E & F \\
G & Y
\end{array}\right)\left(\begin{array}{cc}
B & O \\
O & O
\end{array}\right)=\left(\begin{array}{ll}
O & O \\
O & O
\end{array}\right) \Rightarrow C G B=O, \\
& \left(\begin{array}{ll}
B & O \\
O & O
\end{array}\right)\left(\begin{array}{ll}
E & F \\
G & Y
\end{array}\right)\left(\begin{array}{cc}
O & O \\
D & X
\end{array}\right)=\left(\begin{array}{cc}
O & O \\
O & O
\end{array}\right) \Rightarrow B F D=O, B F X=O, \\
& \left(\begin{array}{ll}
O & C \\
O & O
\end{array}\right)\left(\begin{array}{ll}
E & F \\
G & Y
\end{array}\right)\left(\begin{array}{cc}
O & O \\
D & X
\end{array}\right)=\left(\begin{array}{cc}
O & O \\
O & O
\end{array}\right) \Rightarrow C Y D=O, C Y X=O, \\
& \left(\begin{array}{ll}
O & C \\
O & X
\end{array}\right)\left(\begin{array}{ll}
E & F \\
G & Y
\end{array}\right)\left(\begin{array}{cc}
O & O \\
D & O
\end{array}\right)=\left(\begin{array}{cc}
O & O \\
O & O
\end{array}\right) \Rightarrow C Y D=O, X Y D=O . \\
& \left.\begin{array}{l}
\left(\begin{array}{ll}
O & O \\
D & X
\end{array}\right)\left(\begin{array}{ll}
E & F \\
G & Y
\end{array}\right)\left(\begin{array}{ll}
B & O \\
O & O
\end{array}\right)=\left(\begin{array}{ll}
O & O \\
O & O
\end{array}\right) \\
\left(\begin{array}{ll}
O & C \\
O & X
\end{array}\right)\left(\begin{array}{ll}
E & F \\
G & Y
\end{array}\right)\left(\begin{array}{ll}
B & O \\
O & O
\end{array}\right)=\left(\begin{array}{ll}
O & O \\
O & O
\end{array}\right)
\end{array}\right\} \Rightarrow X G B=O, D E B=O, \\
& \text { (2.2) } \left.\begin{array}{rl}
\left(\begin{array}{ll}
O & O \\
D & X
\end{array}\right)\left(\begin{array}{ll}
E & F \\
G & Y
\end{array}\right)\left(\begin{array}{ll}
O & C \\
O & O
\end{array}\right) & =\left(\begin{array}{cc}
O & O \\
O & O
\end{array}\right) \\
\left(\begin{array}{ll}
O & O \\
D & O
\end{array}\right)\left(\begin{array}{ll}
E & F \\
G & Y
\end{array}\right)\left(\begin{array}{ll}
O & C \\
O & X
\end{array}\right) & =\left(\begin{array}{ll}
O & O \\
O & O
\end{array}\right)
\end{array}\right\} \Rightarrow X G C=D F X=-D E C .
\end{aligned}
$$

ELA

Also, (2.1) and (2.2) imply $X=X Y X-D E C$.
"If" part: If the conditions (i) and (ii) hold, then it is easy to verify that H is a g-inverse of each summand matrix in (1.3) and (1.4). By (iv) in Lemma 1.2, rank additivity holds in (1.3) and (1.4). It is also easily verified that H is a g-inverse of A.

If $E B E=E$, then $D E C=O$ and so $X=X Y X$.
We note certain consequences of Theorem 2.1.
Corollary 2.2. Let $A=\left(\begin{array}{cc}B & C \\ D & X\end{array}\right)$. Then rank additivity holds in (1.3) and (1.4) and the matrix $H=\left(\begin{array}{ll}E & F \\ G & O\end{array}\right)$ is a g-inverse of A if and only if the following conditions hold.
(i) $B E B=B, C G C=C, D F D=D, D E C=-X$.
(ii) $B E C, D E B, C G B, B F D$ are null matrices.

Furthermore if $E B E=E$, then $X=O$.
Corollary 2.3. Let $A=\left(\begin{array}{cc}B & C \\ D & O\end{array}\right)$. Then $R(B) \cap R(C)=\{0\}, R\left(B^{*}\right) \cap$ $R\left(D^{*}\right)=\{0\}$ and $H=\left(\begin{array}{cc}E & F \\ G & Y\end{array}\right)$ is a g-inverse of A if and only if the following conditions hold.
(i) $B E B=B, C G C=C, D F D=D$.
(ii) $C Y D, D E C, B E C, D E B, C G B, B F D$ are null matrices.

In this case, the g-inverses of A have the block independence property.
REMARK 2.4. As the conditions $R(B) \cap R(C)=\{0\}, R\left(B^{*}\right) \cap R\left(D^{*}\right)=\{0\}$ together with $X=O$ imply rank additivity in (1.3) and (1.4), Corollary 2.3 is a direct consequence of Theorem 2.1. In particular, conditions (i) and (ii) indicate that the block matrices in $\left(\begin{array}{cc}E & F \\ G & Y\end{array}\right)$ can be independently chosen if it is a g-inverse of A. In other words, the g-inverses of $A=\left(\begin{array}{cc}B & C \\ D & O\end{array}\right)$ have the block independence property. Thus Corollary 2.3 complements the known result (see Theorem 3.1 in [15] and Lemma 5(1.2e) in [7]) that the g-inverses of A have the block independence property if and only if

$$
\begin{aligned}
\operatorname{rank}(A) & =\operatorname{rank}\binom{B}{D}+\operatorname{rank}(C) \\
& =\operatorname{rank}\left(\begin{array}{ll}
B & C
\end{array}\right)+\operatorname{rank}(D)
\end{aligned}
$$

The next result can also be viewed as a generalization of Corollary 2.3. This type of rank additivity has been considered, for example, in [13].

Theorem 2.5. Let $A=\left(\begin{array}{cc}B & C \\ D & X\end{array}\right)$ and suppose

$$
\operatorname{rank}(A)=\operatorname{rank}(B)+\operatorname{rank}(C)+\operatorname{rank}(D)+\operatorname{rank}(X) .
$$

ELA

Then $H=\left(\begin{array}{cc}E & F \\ G & Y\end{array}\right)$ is a g-inverse of A if and only if the following conditions hold.
(i) $B E B=B, C G C=C, D F D=D, X Y X=X$.
(ii) $B F X, C Y D, C Y X, D F X, X G B, X G C, X Y D, B E C, B F D, C G B, D E B$,
$D E C$ are null matrices.
Proof. Note that the condition $\operatorname{rank}(A)=\operatorname{rank}(B)+\operatorname{rank}(C)+\operatorname{rank}(D)+$ $\operatorname{rank}(X)$ implies rank additivity in

$$
A=\left(\begin{array}{cc}
B & O \\
O & O
\end{array}\right)+\left(\begin{array}{cc}
O & C \\
O & O
\end{array}\right)+\left(\begin{array}{cc}
O & O \\
D & O
\end{array}\right)+\left(\begin{array}{cc}
O & O \\
O & X
\end{array}\right) .
$$

Now the proof is similar to that of Theorem 2.1.
A generalization of Theorem 2.5 is stated next; the proof is omitted.
Theorem 2.6. Let $A=\left(A_{i, j}\right), i=1,2, \cdots, m, j=1,2, \cdots, n$ be an $m \times n$ block matrix. If $\operatorname{rank}(A)=\sum_{i=1}^{m} \sum_{j=1}^{n} \operatorname{rank}\left(A_{i, j}\right)$, then $G=\left(G_{l, s}\right), l=1,2, \cdots, n, s=$ $1,2, \cdots, m$ is a g-inverse of A if and only if the following equations hold.

$$
A_{i, j} G_{j, l} A_{l, s}=\left\{\begin{array}{cl}
A_{i, j} & (i, j)=(l, s) \\
O & (i, j) \neq(l, s)
\end{array}\right.
$$

3. G-inverses of a block matrix A with $\psi(A)=\psi(B)$. Let A and H be matrices of order $m \times n$ and $n \times m$ respectively, partitioned as follows:

$$
A=\begin{gather*}
q_{1} \tag{3.1}\\
p_{1} \\
p_{2}
\end{gather*}\left(\begin{array}{ll}
B & C \\
D & X
\end{array}\right) \quad \text { and } \quad H=\begin{array}{r}
p_{1} \\
q_{1} \\
q_{2}
\end{array}\left(\begin{array}{c}
E \\
E \\
G
\end{array}\right),
$$

where $p_{1}+p_{2}=m$ and $q_{1}+q_{2}=n$. By $\eta(A)$ we denote the row nullity of A, which by definition is the number of rows minus the rank of A. If $m=n, A$ is nonsingular, $H=A^{-1}$ and if A and H are partitioned as in (3.1) then it was proved by Fiedler and Markham [10], and independently by Gustafson [9], that

$$
\begin{equation*}
\eta(B)=\eta(Y) . \tag{3.2}
\end{equation*}
$$

The following result, proved in [3], will be used in the sequel. We include an alternative simple proof for completeness.

Lemma 3.1. Let A and H be matrices of order $m \times n$ and $n \times m$ respectively, partitioned as in (3.1). Assume $\operatorname{rank}(A)=r$ and $\operatorname{rank}(H)=k$. Then the following assertions are true.
(i) If $A H A=A$, then

$$
-(m-r) \leq \eta(Y)-\eta(B) \leq n-r
$$

(ii) If $H A H=H$, then

$$
-(n-k) \leq \eta(B)-\eta(Y) \leq m-k .
$$

ELA

Proof. (i) According to a result on bordered matrices and g-inverses [11, Theorem 1], there exist matrices P, Q and Z of order $m \times(m-r),(n-r) \times n$ and $(n-r) \times(m-r)$ respectively, such that the matrix

$$
S=\left(\begin{array}{ll}
A & P \\
Q & Z
\end{array}\right)
$$

is nonsingular and the submatrix formed by the first n rows and the first m columns of $T=S^{-1}$ is W. Thus we may write

$$
S=\begin{aligned}
& p_{1} \\
& p_{2} \\
& n-r
\end{aligned}\left(\begin{array}{ccc}
q_{1} & q_{2} & m-r \\
B & C & P_{1} \\
D & X & P_{2} \\
Q_{1} & Q_{2} & Z
\end{array}\right) \quad \text { and } \quad T=\begin{array}{ccc}
p_{1} & p_{2} & n-r \\
q_{2} \\
m-r
\end{array}\left(\begin{array}{ccc}
E & F & U_{1} \\
G & Y & U_{2} \\
V_{1} & V_{2} & W
\end{array}\right) .
$$

Since S is nonsingular, we have, using (3.2),

$$
\eta(B)=\eta\left(\left(\begin{array}{cc}
Y & U_{2} \\
V_{2} & W
\end{array}\right)\right)=q_{2}+m-r-\operatorname{rank}\left(\begin{array}{cc}
Y & U_{2} \\
V_{2} & W
\end{array}\right)
$$

Now by Lemma 1.1

$$
\operatorname{rank}(Y) \leq \operatorname{rank}\left(\begin{array}{cc}
Y & U_{2} \\
V_{2} & W
\end{array}\right) \leq \operatorname{rank}(Y)+m+n-2 r
$$

and hence

$$
-(m-r) \leq \eta(Y)-\eta(B) \leq n-r
$$

The result (ii) follows from (i).
The following result, proved using Lemma 3.1, will be used in the sequel.
Theorem 3.2. Let $A=\left(\begin{array}{cc}B & C \\ D & X\end{array}\right)$ with $\psi(A)=\psi(B)$. Then for any g-inverse $A^{-}=\left(\begin{array}{ll}E & F \\ G & Y\end{array}\right)$ of $A, Y=O$.

Proof. Assume the sizes of the block matrices in A to be as in (3.1). By Lemma 3.1 we have

$$
-(m-r) \leq \eta(Y)-\eta(B) \leq n-r
$$

It follows that

$$
-m+r \leq q_{2}-\operatorname{rank}(Y)-p_{1}+\operatorname{rank}(B) .
$$

Using $\psi(A)=\psi(B)$ and the inequality above, $\operatorname{rank}(Y)=0$ and hence $Y=O$. \square
Theorem 3.3. Let $A=\left(\begin{array}{cc}B & C \\ D & X\end{array}\right)$. Then $\psi(A)=\psi(B)$ and $H=\left(\begin{array}{cc}E & F \\ G & Y\end{array}\right)$ is a g-inverse of A if and only if the following equations hold.
(i) $Y=O, B E B=B, G C=I, D F=I$.
(ii) $D E C=-X$.
(iii) $B E C=O, D E B=O, B F=O, G B=O$.

Furthermore, if $E B E=E$, then $X=O$.
Proof. If H is a g-inverse of A with $\psi(A)=\psi(B)$, then by Theorem 3.2, we know $Y=O$. From the proof of Lemma 1.1, the condition $\psi(A)=\psi(B)$ also indicates rank additivity in (1.3) and (1.4). Note that C and D are also of full column rank and of full row rank respectively under the condition $\psi(A)=\psi(B)$. Then the proof of the theorem is similar to that of Theorem 2.1.

The proof of the following result is also similar and is omitted.
Theorem 3.4. Let $A=\left(\begin{array}{cc}B & C \\ D & X\end{array}\right), H=\left(\begin{array}{cc}E & F \\ G & Y\end{array}\right)$ and consider the statements:
(i) $Y=O, B E B=B, G C=I, D F=I, B F=O, G B=O$.
(ii) $E B+F D$ is hermitian.
(iii) $B E+C G$ is hermitian.
(iv) $E B E+F D E=E$ (v) $E B E+E C G=E$.

Then
(a) $\psi(A)=\psi(B)$ and $H \in A\{1,2,3\}$ if and only if (i), (ii), (iv) hold, $D E C=$ $-X, E C=F D E C$ and $D E B=O$.
(b) $\psi(A)=\psi(B)$ and $H \in A\{1,2,4\}$ if and only if (i), (iii), (v) hold, $D E C=-X$, $D E=D E C G$ and $B E C=O$.
(c) $\psi(A)=\psi(B)$ and $H=A^{\dagger}$ if and only if (i)-(v) hold, $D E+X G=O$ and $E C+F X=O$.

The two previous results will be used in the proof of the next result.
Theorem 3.5. let $A=\left(\begin{array}{cc}B & C \\ D & X\end{array}\right)$. Then the following conditions are equivalent:
(1) $\psi(A)=\psi(B)$ and $\left(\begin{array}{cc}B & C \\ D & X\end{array}\right)^{\dagger}=\left(\begin{array}{ll}B^{\dagger} & D^{\dagger} \\ C^{\dagger} & X^{\dagger}\end{array}\right)$.
(2) $\psi(A)=\psi(B)$ and $\left(\begin{array}{ll}B^{\dagger} & D^{\dagger} \\ C^{\dagger} & X^{\dagger}\end{array}\right)$ is a g-inverse of A.
(3) $X=O, C^{\dagger} C=I, D D^{\dagger}=I, B D^{\dagger}=O, C^{\dagger} B=O$.
(4) $X=O, C^{\dagger} C=I, D D^{\dagger}=I, B D^{*}=O, C^{*} B=O$.
(5) $\psi(A)=\psi(B)$ and $\left(\begin{array}{cc}E & D^{\dagger} \\ C^{\dagger} & X^{\dagger}\end{array}\right)$ is a g-inverse of A for some $E \in B^{\{1,2\}}$.
(6) $\psi(A)=\psi(B)$ and $\left(\begin{array}{cc}E & D^{\dagger} \\ C^{\dagger} & X^{\dagger}\end{array}\right)$ is a g-inverse of A for some E.
(7) $\psi(A)=\psi(B)$ and $\left(\begin{array}{cc}B & C \\ D & X\end{array}\right)^{\dagger}=\left(\begin{array}{cc}B^{\dagger} & F \\ G & Y\end{array}\right)$ for some matrices F, G, Y.
(8) $\psi(A)=\psi(B)$ and $\left(\begin{array}{cc}B^{\dagger} & F \\ C^{\dagger} & Y\end{array}\right)$ is a $\{1,2,3\}$-inverse of A for some F, Y.
(9) $\psi(A)=\psi(B)$ and $\left(\begin{array}{cc}B^{\dagger} & D^{\dagger} \\ G & Y\end{array}\right)$ is a $\{1,2,4\}$-inverse of A for some G, Y.

Proof. Clearly, (1) \Rightarrow (2).
$(2 \Rightarrow(3)$: This follows from Theorem 3.3.

ELA

(3) \Leftrightarrow (4): Since $B D^{\dagger}=O$ and $C^{\dagger} B=O$ are equivalent to $B D^{*}=O$ and $C^{*} B=O$ respectively, we have this implication.
$(3) \Rightarrow(1)$: Note that $B D^{\dagger}=O$ and $C^{\dagger} B=O$ imply $D B^{\dagger}=O$ and $B^{\dagger} C=O$. Then it is easy to verify that $\left(\begin{array}{cc}B^{\dagger} & D^{\dagger} \\ C^{\dagger} & X^{\dagger}\end{array}\right)$ is A^{\dagger} thus (1) holds.

Clearly, $(1) \Rightarrow(5) \Rightarrow(6)$.
$(6) \Rightarrow(3)$: By Theorem 3.3, if $\left(\begin{array}{cc}E & D^{\dagger} \\ C^{\dagger} & X^{\dagger}\end{array}\right)$ is a g-inverse of A for some matrix E, then we have $X^{\dagger}=O, C^{\dagger} C=I, D D^{\dagger}=I, B D^{\dagger}=O$ and $C^{\dagger} B=O$. Note that $X^{\dagger}=O \Leftrightarrow X=O$, thus (3) holds.
$(6) \Rightarrow(1)$: This follows from $(6) \Rightarrow(3)$ and $(3) \Rightarrow(1)$.
Obviously, $(1) \Rightarrow(7),(1) \Rightarrow(8)$ and $(1) \Rightarrow(9)$.
$(7) \Rightarrow(1)$: By Theorem 3.3, we have $X=O, Y=O, G C=I, D F=I, B F=O$ and $G B=O$. Clearly, $G \in C\{1,2,4\}$ and $F \in D\{1,2,3\}$. Using the hermitian property of the matrices $\left(\begin{array}{cc}B & C \\ D & X\end{array}\right),\left(\begin{array}{cc}B^{\dagger} & F \\ G & Y\end{array}\right),\left(\begin{array}{cc}B^{\dagger} & F \\ G & Y\end{array}\right)\left(\begin{array}{cc}B & C \\ D & X\end{array}\right), B B^{\dagger}$ and $B^{\dagger} B$, it is easy to conclude that $C G$ and $F D$ are also hermitian. Thus $F=D^{\dagger}$ and $G=C^{\dagger}$. Note that $Y=X^{\dagger}=O$ and (1) is proved.

Similarly, using Theorem 3.4 we can show $(8) \Rightarrow(1)$ and $(9) \Rightarrow(1)$ and the proof is complete.
4. Obtaining any g-inverse by bordering. By Theorem 3.3 if $A=\left(\begin{array}{cc}B & C \\ D & X\end{array}\right)$ with $\psi(A)=\psi(B)$ and if $H=\left(\begin{array}{cc}E & F \\ G & O\end{array}\right)$ is a g-inverse of A, then E is a g-inverse of B which also satisfies $D E C=-X, B E C=O$ and $D E B=O$. Such an E, hereafter, will be denoted by $E_{(C, D, X)}$. Note that $E_{(C, D, X)}$ is not uniquely determined by C, D, X, since A^{-}is not unique. In this section we will investigate the converse problem, that is: for a given g-inverse E of B, how to construct C, D and X so that $H=\left(\begin{array}{cc}E & F \\ G & O\end{array}\right)$ is a g-inverse of $A=\left(\begin{array}{cc}B & C \\ D & X\end{array}\right)$ with $\psi(A)=\psi(B)$ for some matrices of proper sizes. We first state some well-known lemmas to be used later; see, for example, [4], [6].

Lemma 4.1. The following three statements are equivalent: (i) E is a g-inverse of B, (ii) $B E$ is an idempotent matrix and $\operatorname{rank}(B E)=\operatorname{rank}(B)$, and (iii) $E B$ is an idempotent matrix and $\operatorname{rank}(E B)=\operatorname{rank}(B)$.

Lemma 4.2. E is a $\{1,2\}$-inverse of B if and only if E is a g-inverse of B and $\operatorname{rank}(E)=\operatorname{rank}(B)$.

Lemma 4.3. Let $H=U V$ be a rank factorization of a square matrix. Then the following three statements are equivalent: (i) H is an idempotent matrix, (ii) $I-H$ is an idempotent matrix, and (iii) $V U=I$.

Theorem 4.4. (i) Let E be a g-inverse of the $p_{1} \times q_{1}$ matrix B with $\operatorname{rank}(B)=$ r. Then there exist C, D, and X such that $E=E_{(C, D, X)}$, where $\operatorname{rank}(C) \leq p_{1}-$ r and $\operatorname{rank}(D) \leq q_{1}-r$.

ELA

(ii) If $E=E_{(C, D, X)}$, then there exist matrices U, V, \bar{U} and \bar{V} such that

$$
I-B E=\left(\begin{array}{ll}
C & U
\end{array}\right)\binom{G}{V} \text { and } I-E B=\left(\begin{array}{ll}
F & \bar{U}
\end{array}\right)\binom{D}{\bar{V}}
$$

are the rank factorizations of $I-B E$ and $I-E B$ respectively.
(iii) $\operatorname{rank}\left(E_{(C, D, X)}\right)=\operatorname{rank}(B)+\operatorname{rank}(R)$, where

$$
R=\left(\begin{array}{cc}
-X & D E U \tag{4.1}\\
\bar{V} E C & \bar{V} E U
\end{array}\right)
$$

for some matrices U and \bar{V} as in (ii).
Proof. For a given g-inverse E of B, we use rank factorizations of $I-B E$ and $I-E B$, by which there exist $C, D, X, F, G, U, \bar{U}, V$, and \bar{V} satisfying the following identities

$$
\begin{align*}
& I-B E=\left(\begin{array}{ll}
C & U
\end{array}\right)\binom{G}{V} \tag{4.2}\\
& I-E B=\left(\begin{array}{ll}
F & \bar{U}
\end{array}\right)\binom{D}{\bar{V}} \tag{4.3}
\end{align*}
$$

$$
X=-D E C
$$

To prove (i), we only need to show that these C, D, X, F and G along with $Y=O$ satisfy the conditions (i),(ii) and (iii) in Theorem 3.3. In fact, from (4.2) and (4.3), we have, in view of Lemma 4.3, that $\binom{G}{V}\left(\begin{array}{ll}C & U\end{array}\right)=I$ and $\binom{D}{\bar{V}}\left(\begin{array}{ll}F & \bar{U}\end{array}\right)=I$, implying

$$
G C=I \text { and } D F=I
$$

Again from (4.2) and (4.3), we have, by $(I-B E) B=O$ and $B(I-E B)=O$,

$$
\binom{G}{V} B=O \text { and } B\left(\begin{array}{ll}
F & \bar{U} \tag{4.4}
\end{array}\right)=O,
$$

and by $B E(I-B E)=O$ and $(I-E B) E B=O$,

$$
B E\left(\begin{array}{ll}
C & U \tag{4.5}
\end{array}\right)=O \text { and }\binom{D}{\bar{V}} E B=O
$$

Now by (4.4), $G B=O$ and $B F=O$, and by (4.5), $B E C=O$ and $D E B=O$.
(ii) Let $E=E_{(C, D, X)}$. By Theorem 3.3, $B E C=O$, which means $R(C) \subseteq$ $N(B E)=R(I-B E)$. Note that C is of full column rank under the condition $\psi(A)=\psi(B)$. Thus there exists a matrix U so that $R\left(\left(\begin{array}{ll}C & U\end{array}\right)\right)=R(I-B E)$

ELA

and the matrix $\left(\begin{array}{ll}C & U\end{array}\right)$ is of full column rank. Hence, there exists a matrix of full row rank which can be partitioned as $\binom{G}{V}$ such that

$$
I-B E=\left(\begin{array}{ll}
C & U
\end{array}\right)\binom{G}{V}
$$

On the other hand, $D E B=O$ implies $N(I-E B)=R(E B) \subseteq N(D)$. So there exists a matrix \bar{V} such that $\binom{D}{\bar{V}}$ is of full row rank and

$$
N(I-E B)=N\left(\binom{D}{\bar{V}}\right)
$$

From this we conclude that there exists a matrix of full column rank which can be partitioned as $\left(\begin{array}{ll}F & \bar{U}\end{array}\right)$ such that

$$
I-E B=\left(\begin{array}{ll}
F & \bar{U}
\end{array}\right)\binom{D}{\bar{V}}
$$

Now we prove (iii). If $E=E_{(C, D, X)}$, then from the proof of (ii) there exist matrices U, V, \bar{U} and \bar{V} such that (4.2) and (4.3) hold. Hence $B E\left(\begin{array}{ll}C & U\end{array}\right)=O$ and $\binom{D}{\bar{V}} E B=O$. Therefore we have

$$
\begin{aligned}
\left(\begin{array}{c}
B \\
D \\
\bar{V}
\end{array}\right) E\left(\begin{array}{lll}
B & C & U
\end{array}\right) & =\left(\begin{array}{ccc}
B & O & O \\
O & D E C & D E U \\
O & \bar{V} E C & \bar{V} E U
\end{array}\right) \\
& =\left(\begin{array}{cc}
B & O \\
O & R
\end{array}\right)
\end{aligned}
$$

where $R=\binom{D}{\bar{V}} E\left(\begin{array}{ll}C & U\end{array}\right)$.
On the other hand,

$$
\begin{aligned}
\left(\begin{array}{lll}
E & F & \bar{U}
\end{array}\right)\left(\begin{array}{cc}
B & O \\
O & R
\end{array}\right)\left(\begin{array}{l}
E \\
G \\
V
\end{array}\right) & =E B E+\left(\begin{array}{ll}
F & \bar{U}
\end{array}\right) R\binom{G}{V} \\
& =E B E+(I-E B) E(I-B E) \\
& =E
\end{aligned}
$$

Thus we have $\operatorname{rank}\left(E_{(C, D, R)}\right)=\operatorname{rank}(B)+\operatorname{rank}(R)$.
Theorem 4.4(i) and its proof show that for a given matrix B and its g-inverse E we can find matrices C of full column rank with $R(C) \subseteq N(B E)$ and D of full row rank with $R(E B) \subseteq N(D)$, as well as $X=-D E C, F$ and G such that matrix
$\left(\begin{array}{ll}E & F \\ G & O\end{array}\right)$ is a g-inverse of $A=\left(\begin{array}{cc}B & C \\ D & O\end{array}\right)$ with $\psi(A)=\psi(B)$. Furthermore, we have the following.

Corollary 4.5. Let B and its g-inverse E be given. Then the matrix $A=$ $\left(\begin{array}{cc}B & C \\ D & X\end{array}\right)$ satisfies $\psi(A)=\psi(B)$ and has a g-inverse of the form $\left(\begin{array}{cc}E & F \\ G & O\end{array}\right)$ if and only if C is of full column rank with $R(C) \subseteq N(B E)$ and D of full row rank with $R(E B) \subseteq N(D)$. In this case, $X=-D E C, F \in D\{1,3\}, G \in C\{1,4\}, B F=O$ and $G B=O$.

Proof. Necessity: This follows from Theorem 3.3.
Sufficiency: The proof of sufficiency is similar to that of Theorem 4.4(i), (ii).
As a special case we recover the following known result.
Corollary 4.6. [11, Theorem 1] Let E be a g-inverse of B. Then for any matrix C of full column rank with $R(C)=N(B E)$ and any matrix D of full row rank with $N(D)=R(E B)$, the matrix

$$
A=\left(\begin{array}{cc}
B & C \\
D & -D E C
\end{array}\right)
$$

is nonsingular and

$$
A^{-1}=\left(\begin{array}{ll}
E & F \\
G & O
\end{array}\right)
$$

where $F \in D\{1,3\}, B F=O, G \in C\{1,4\}$ and $G B=O$.
5. Moore-Penrose inverse and group inverse by bordering. For a given g inverse E of B, Corollary 4.5 shows that C and D can be chosen with the conditions $R(C) \subseteq N(B E)$ and $R\left(D^{*}\right) \subseteq N\left((E B)^{*}\right)$ so that $A=\left(\begin{array}{cc}B & C \\ D & -D E C\end{array}\right)$ satisfies $\psi(A)=\psi(B)$ and has a g-inverse of the form $\left(\begin{array}{ll}E & F \\ G & O\end{array}\right)$. Further, Corollary 4.6 provides an approach to border the matrix B into a nonsingular matrix such that in its inverse, the block matrix on the upper left corner is E. We now show how to border the matrix if E is the Moore-Penrose inverse or the group inverse of B.

Theorem 5.1. Let B be given. Then the matrix $A=\left(\begin{array}{cc}B & C \\ D & X\end{array}\right)$ satisfies $\psi(A)=$ $\psi(B)$ and has a g-inverse of the form $\left(\begin{array}{cc}B^{\dagger} & F \\ G & O\end{array}\right)$ if and only if C has full column rank with $R(C) \subseteq N\left(B^{*}\right)$ and D has full row rank with $R\left(D^{*}\right) \subseteq N(B)$. In this case, $X=-D B^{\dagger} C=O$ and

$$
A^{\dagger}=\left(\begin{array}{cc}
B^{\dagger} & D^{\dagger} \\
C^{\dagger} & O
\end{array}\right)
$$

Proof. Note that $N\left(B B^{\dagger}\right)=N\left(B^{*}\right)$ and $N\left((E B)^{*}\right)=N\left(B^{\dagger}\right)=N(B)$, and the necessity and sufficiency follow from Corollary 4.5.

ELA

It is easy to verify that $\left(\begin{array}{cc}B^{\dagger} & D^{\dagger} \\ C^{\dagger} & O\end{array}\right)$ is a g-inverse of A. Thus by Corollary 3.5(2), we have

$$
A^{\dagger}=\left(\begin{array}{cc}
B^{\dagger} & D^{\dagger} \\
C^{\dagger} & O
\end{array}\right)
$$

where $X=-D B^{\dagger} C=O$.
Combining Corollary 4.6 with Theorem 5.1, we have
Corollary 5.2. [5] Let B be a $p_{1} \times q_{1}$ matrix with $\operatorname{rank}(B)=r$. Suppose the columns of $C \in C_{p_{1}-r}^{p_{1} \times\left(p_{1}-r\right)}$ are a basis of $N\left(B^{*}\right)$ and the columns of $D^{*} \in C_{q_{1}-r}^{q_{1} \times\left(q_{1}-r\right)}$ are a basis for $N(B)$. Then the matrix

$$
A=\left(\begin{array}{ll}
B & C \\
D & O
\end{array}\right)
$$

is nonsingular and its inverse is

$$
A^{-1}=\left(\begin{array}{cc}
B^{\dagger} & D^{\dagger} \\
C^{\dagger} & O
\end{array}\right)
$$

If B is square and has group inverse, we can get a bordering $\left(\begin{array}{cc}B & * \\ * & O\end{array}\right)$ of B such that it has a g-inverse in the form $\left(\begin{array}{cc}B^{\sharp} & * \\ * & O\end{array}\right)$. Part (ii) of the following result is known. We generalize it to any bordering, not necessarily nonsingular, in part (i).

Theorem 5.3. Let B be $n \times n$ and with index 1. Then
(i) there exist matrices C of full column rank with $R(C) \subseteq N(B)$ and D of full row rank with $R(B) \subseteq N(D)$ which satisfy $D C=I$ such that $\left(\begin{array}{cc}B^{\sharp} & C \\ D & O\end{array}\right)$ is a g-inverse of $\left(\begin{array}{ll}B & C \\ D & O\end{array}\right)$ with $\psi(A)=\psi(B)$;
(ii) ([8], [14], [17]) for any matrix C of full column rank with $R(C)=N(B)$ and any matrix D of full row rank with $R(B)=N(D)$, the matrix

$$
A=\left(\begin{array}{ll}
B & C \\
D & O
\end{array}\right)
$$

is nonsingular and

$$
A^{-1}=\left(\begin{array}{cc}
B^{\sharp} & C(D C)^{-1} \\
(D C)^{-1} D & O
\end{array}\right) .
$$

Proof. (i): Consider the rank factorization of $I-B B^{\sharp}$ given by

$$
I-B B^{\sharp}=\left(\begin{array}{ll}
C & U
\end{array}\right)\binom{D}{V} .
$$

Note that $B B^{\sharp}=B^{\sharp} B$, and we have

$$
I-B^{\sharp} B=\left(\begin{array}{ll}
C & U
\end{array}\right)\binom{D}{V} .
$$

Obviously $R(C) \subseteq N(A)$ and $R(B) \subseteq N(D)$. As in the proof of Theorem 4.4(i), we conclude that $\left(\begin{array}{cc}B^{\sharp} & C \\ D & O\end{array}\right)$ is a g-inverse of $\left(\begin{array}{cc}B & C \\ D & O\end{array}\right)$ with $\psi(A)=\psi(B)$, since $X=-D B^{\sharp} C=O$.
(ii): By Corollary 4.6, the nonsingularity of the matrix $\left(\begin{array}{cc}B^{\sharp} & C \\ D & O\end{array}\right)$ under the conditions $R(C)=N(A)$ and $R(B)=N(D)$ can be easily seen. We now prove that for any matrix C of full column rank with $R(C)=N(B)$ and any matrix D of full row rank with $R(B)=N(D), D C$ is nonsingular.

In fact, if $D C x=O$, then $C x \in R(C)$ and $C x \in N(D)$. Since $R(C)=N(B)$, $N(D)=R(B)$ and $R(B) \cap N(B)=\{0\}$, we have $C x=O$ and therefore $x=0$. Thus $D C$ is nonsingular.

By Lemma 4.3, $C(D C)^{-1} D$ is an idempotent matrix and

$$
I-B B^{\sharp}=I-B^{\sharp} B=C(D C)^{-1} D
$$

is a rank factorization. From Corollary 4.6, we know that

$$
\left(\begin{array}{cc}
B & C(D C)^{-1} \\
D & O
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{cc}
B & C \\
(D C)^{-1} D & O
\end{array}\right)
$$

are nonsingular and in fact

$$
\left(\begin{array}{cc}
B & C(D C)^{-1} \\
D & O
\end{array}\right)^{-1}=\left(\begin{array}{cc}
B^{\sharp} & C(D C)^{-1} \\
D & O
\end{array}\right) .
$$

Note that

$$
\left(\begin{array}{cc}
B & C(D C)^{-1} \\
D & O
\end{array}\right)=\left(\begin{array}{cc}
B & C \\
D & O
\end{array}\right)\left(\begin{array}{cc}
I & O \\
O & (D C)^{-1}
\end{array}\right)
$$

The result follows immediately from the two equations preceding the one above.
Remark 5.4. Theorem 5.3(ii) can be used to compute the group inverse of the matrix $(I-T)^{\sharp}$ which plays an important role in the theory of Markov chains, where T is the transition matrix of a finite Markov chain. For an n-state ergodic chain, it is well-known that the transition matrix T is irreducible and that $\operatorname{rank}(I-T)=n-1$ [6, Theorem 8.2.1]. Hence by Theorem 5.3 (ii) we can compute the group inverse $(I-T)^{\sharp}$ of $I-T$ by a bordered matrix.

Let c be a right eigenvector of T and d a left eigenvector, that is c and d satisfy $T c=c$ and $d^{*} T=d^{*}$, respectively. Then the bordered matrix $\left(\begin{array}{cc}I-T & c \\ d^{*} & 0\end{array}\right)$ is nonsingular and

$$
\left(\begin{array}{cc}
I-T & c \\
d^{*} & 0
\end{array}\right)^{-1}=\left(\begin{array}{cc}
(I-T)^{\sharp} & \frac{c}{d^{*} c} \\
\frac{d}{d^{*} c} & o
\end{array}\right) .
$$

ELA

Thus the group inverse $(I-T)^{\sharp}$ can be obtained by computing the inverse of a nonsingular matrix.

REFERENCES

[1] J.K. Baksalary and G.P.H. Styan. Generalized inverses of partitioned matrices in BanachiewiczSchur form. Linear Algebra Appl., 354:41-47, 2002.
[2] R.B. Bapat. Linear Algebra and Linear Models. Springer-Verlag, New York, 2000.
[3] R.B. Bapat. Outer inverses: Jacobi type identities and nullities of submatrices. Linear Algebra Appl., 361:107-120, 2003.
[4] A. Ben-Israel and T.N.E. Greville. Generalized Inverses: Theory and Applications. Wiley, New York, 1974.
[5] J.W. Blattner. Bordered matrices. Jour. Soc. Indust. Appl. Math., 10:528-536, 1962.
[6] S.L. Campbell and C.D. Meyer Jr. Generalized Inverses of Linear Transformations. Pitman, London, 1979.
[7] Chen Yonglin and Zhou Bingjun. On g-inverses and nonsingularity of a bordered matrix $\left(\begin{array}{ll}A & B \\ C & O\end{array}\right)$. Linear Algebra Appl., 133:133-151, 1990.
[8] N. Eagambaram. (i, j, \cdot, k)-inverse via bordered matrices. Sankhy: The Indian Journal of Statistics, Ser. A, 53:298-308, 1991.
[9] W.H. Gustafson. A note on matrix inversion. Linear Algebra Appl., 57:71-73, 1984.
[10] M. Fiedler and T.L. Markham. Completing a matrix when certain entries of its inverse are specified. Linear Algebra Appl., 74:225-237, 1986.
[11] K. Nomakuchi. On the characterization of generalized inverses by bordered matrices. Linear Algebra Appl., 33:1-8, 1980.
[12] K. Manjunatha Prasad and K.P.S. Bhaskara Rao. On bordering of regular matrices. Linear Algebra Appl., 234:245-259, 1996.
[13] Yongge Tian. The Moore-Penrose inverse of $m \times n$ block matrices and their applications. Linear Algebra Appl., 283:35-60, 1998.
[14] G. Wang. A Cramer rule for finding the solution of a class of singular equations. Linear Algebra Appl., 116:27-34, 1989.
[15] Musheng Wei and Wenbin Guo. On g-inverses of a bordered matrix: revisited. Linear Algebra Appl., 347:189-204, 2002.
[16] Y. Wei. Expression for the Drazin inverse of a 2×2 block matrix. Linear and Multilinear Algebra, 45:131-146, 1998.
[17] Y. Wei. A characterization for the W-weighted Drazin inverse and a Cramer rule for the Wweighted Drazin inverse solution. Appl Math. Comput., 125:303-310, 2002.

[^0]: *Received by the editors on 15 July 2002. Accepted for publication on 14 January 2003. Handling Editor: Steve J. Kirkland.
 ${ }^{\dagger}$ Indian Statistical Institute, New Delhi, 110016, India (rbb@isid.ac.in).
 \ddagger Department of Mathematics, Shanghai University, Shanghai 200436, People’s Republic of China (dzhengbing@eastday.com). The present work was done while this author was visiting the Indian Statistical Institute during October 2001-September 2002. He would like to express his thanks for the warm hospitality he enjoyed during his visit. Supported by the Chinese Scholarship Council.

