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THE HERMITIAN NULL-RANGE OF A MATRIX OVER A FINITE FIELD∗

E. BALLICO†

Abstract. Let q be a prime power. For u = (u1, . . . , un), v = (v1, . . . , vn) ∈ Fn
q2

, let 〈u, v〉 :=
∑n

i=1 u
q
i vi be the Hermitian

form of Fn
q2

. Fix an n×n matrix M over Fq2 . In this paper, it is considered the case k = 0 of the set Numk(M) := {〈u,Mu〉 | u ∈
Fn
q2

, 〈u, u〉 = k}. When M has coefficients in Fq the paper studies the set Numk(M)q := {〈u,Mu〉 | u ∈ Fn
q , 〈u, u〉 = k} ⊆ Fq .

The set Num1(M) is the numerical range of M , previously introduced in a paper by Coons, Jenkins, Knowles, Luke, and

Rault (case q a prime p ≡ 3 (mod 4)), and by the author (arbitrary q). In this paper, it is studied in details Num0(M) and

Numk(M)q when n = 2. If q is even, Num0(M)q is easily described for arbitrary n. If q is odd, then either Num0(M)q = {0},
or Num0(M)q = Fq , or ](Num0(M)q) = (q + 1)/2.
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1. Introduction. Fix a prime p and a power q of p. Up to field isomorphisms there is a unique field

Fq such that ](Fq) = q ([10, Theorem 2.5]). Let e1, . . . , en be the standard basis of Fn
q2 . For all v, w ∈ Fn

q2 ,

say v = a1e1 + · · ·+ anen and w = b1e1 + · · ·+ bnen, set 〈v, w〉 =
∑n

i=1 a
q
i bi. 〈· , ·〉 is the standard Hermitian

form of Fn
q2 . The set {u ∈ Fn

q2 | 〈u, u〉 = 1} is an affine chart of the Hermitian variety of Pn(Fq2) ([4, Ch. 5],

[6, Ch. 23]). Let M be an n × n matrix with coefficients in Fq2 . In [1], we made the following definition.

The numerical range Num(M) (or Num1(M)) of M is the set of all 〈u,Mu〉 with 〈u, u〉 = 1. C is a degree 2

Galois extension of R with the complex conjugation as the generator of the Galois group. Fq2 is a degree 2

Galois extension of Fq with the map t 7→ tq as a generator of the Galois group. Hence, 〈 , 〉 is the Hermitian

form associated to this Galois extension. Thus, the definition of Num(M) is a natural extension of the notion

of numerical range in linear algebra ([3], [7], [8], [11]). This extension was introduced in [2] when q is a prime

p ≡ 3 (mod 4). In this paper, we consider related subsets Num′0(M) ⊆ Num0(M) ⊆ Fq2 .

As in [2] for any k ∈ Fq set Cn(k) := {(a1, . . . , an) ∈ Fn
q2 |

∑n
i=1 a

q+1
i = k}. The set Cn(0) is a cone of

Fn
q2 and its proiectivization Hn ⊂ Pn−1(Fq2) is the Hermitian variety of dimension n− 2 of Pn−1(Fq2) with

rank n. Set C ′n(0) := Cn(0) \ {0}. Recall that 〈u, u〉 ∈ Fq for all u ∈ Fn
q2 . For any n×n matrix over Fq2 and

any k ∈ Fq let Numk(M) (resp., Num′0(M)) be the set of all a ∈ Fq2 such that there is u ∈ Cn(k) (resp.,

u ∈ C ′n(0) and n ≥ 2) with a = 〈u,Mu〉. We always have 0 ∈ Num0(M), Num0(M) = Num′0(M) ∪ {0}
and quite often, but not always, we have 0 ∈ Num′0(M) (Propositions 2.8, 2.11, 2.12). For instance, we

have Num′0(In×n) = {0} for all n ≥ 2, where In×n denote the unity n × n matrix. If n = 1, i.e., M is the

multiplication by a scalar m, we have Numk(M) = mk. There is an ambiguity if n = 1, because C ′1(0) = ∅.
Hence, we do not define Num′0 for 1× 1 matrices. We say that Num′0(M) is the Hermitian null-range of the

matrix M .

We have Numk(M) = kNum1(M) for all k ∈ F∗q (use Remark 2.2 to adapt the proof of [2, Lemma

2.3]). Thus, we know all numerical ranges of M if we know Num1(M) and Num′0(M). The first part of
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this paper studies Num′0(M). If n = 2 we prove several results concerning the set Num′0(M) under different

assumptions on the eigenvalues and the eigenvectors of M . As a byproduct of our study of the case n = 2

we get the following result.

Corollary 1.1. Assume that M 6= cIn×n for some c ∈ Fq2 . Then we have ](Num0(M)) ≥ d(q+ 1)/2e.

See Propositions 2.8, 2.11 and 2.12 and Lemma 2.10 for the cases in which we describe Num0(M) and

Num′0(M), not just we give lower bounds for their cardinality.

In the second part of this paper, we consider the following question. Fix k ∈ Fq and suppose that

all coefficient mij of the matrix M are elements of Fq. For any k ∈ Fq let Numk(M)q be the set of all

a ∈ Fq such that there is u ∈ Fn
q with 〈u, u〉 = k and 〈u,Mu〉 = a. If n > 1, k = 0 and we also impose

that u 6= 0, then we get the definition of Num′0(M)q. Note that Numk(M)q ⊆ Numk(M) ∩ Fq and that

Num′0(M)q ⊆ Num′0(M) ∩ Fq. These inclusions are not always equalities (see Example 3.12). In this part,

there are huge differences between the case q even and the case q odd.

First assume that q is even. For any matrix M we have Num′0(M)q 6= ∅, either Num′0(M)q = {0} or

Num′0(M)q ⊇ F∗q , and Num′0(M)q = {0} if and only if mij +mji+mii+mjj = 0 for all i 6= j (see Proposition

3.13 for a more general result).

Now assume that q is odd. For any M ∈ Mn,n(Fq) either Num0(M)q = {0}, or Num0(M)q = Fq, or

](Num0(M)q) = (q + 1)/2 (Lemma 3.2). There is a difference between the case q ≡ 1 (mod 4) (in which

−1 is a square in Fq) and the case q ≡ −1 (mod 4) (in which −1 is a not square in Fq). For instance if

n = 2 and q ≡ −1 (mod 4), then Num′0(M)q = ∅ (part (i) of Proposition 3.9). Now assume n = 2 and q ≡ 1

(mod 4). By part (iii) of Proposition 3.9 we have:

1. If m12 +m21 6= 0, then Num0(M)q contains at least (q−1)/2 elements of F∗q and we give a condition

on m22 −m11 and m12 +m21 which gives Num0(M)q = Fq.

2. Assume m12+m21 = 0. If m11 = m22, then Numk(M)q = {km11} for all k ∈ Fq and 0 ∈ Num′0(M)q.

If m11 6= m22, then ](Numk(M)q) ≤ (q + 1)/2 for all k ∈ Fq, ](Num0(M)q) = (q + 1)/2 and

0 /∈ Num′0(M)q.

See Propositions 3.9 and 3.13 for cases in which we describe Num′0(M)q.

2. Preliminaries. For any field K, set K∗ := K \ {0}. For any n × n matrix N = (nij), nij ∈ Fq2

for all i, j, set N† = (nqji). For all u, v ∈ Fn
q2 we have 〈u,Nv〉 = 〈N†u, v〉. The matrix N is called unitary

if N†N = In×n (or equivalently NN† = In×n). Note that Numk(M) = Numk(U†MU) for every unitary

matrix U .

Remark 2.1. Fix a prime p and let r be a power of p. Up to field isomorphisms there is a unique finite

field, Fr, with r elements and Fr = {x ∈ Fp | xr = x}. The group F∗r is a cyclic group of order r − 1 and

F∗r = {x ∈ Fp | xr−1 = 1} ([4, page 1], [10, Theorem 2.8], [12, Proposition 1.6]).

Remark 2.2. Fix a ∈ F∗q . Since q + 1 is invertible in Fq, the polynomial tq+1 − a and its derivative

(q + 1)tq have no common zero. Hence, the polynomial tq+1 − a has q + 1 distinct roots in Fq. Fix any one

of them, b. Since aq−1 = 1 (Remark 2.1), we have bq
2−1 = 1. Hence, b ∈ F∗q2 (Remark 2.1). Thus, there are

exactly q + 1 elements c ∈ F∗q2 with cq+1 = a.

Remark 2.3. Let F be a finite field. If F has even characteristic, then for each a ∈ F there is a unique

b ∈ F with b2 = a (e.g. because F∗ is a cyclic group with odd order by Remark 2.1). Now assume that F
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has odd characteristic. Each element of F is a sum of 2 squares of elements of F ([4, Lemma 5.1.4]). For

each c ∈ F∗ there are either 0 or 2 elements t ∈ F with t2 = c. Hence, each non-empty fiber of the map

t 7→ t2 from F∗ into F∗ has cardinality 2. Thus, F∗ has exactly (](F)−1)/2 elements, which are squares (this

statement is the case d = 2 of [12, Ex. 1.7]). Obviously 0 is a square in F.

Remark 2.4. If n ≥ 2, then Num′0(In×n) = {0}, because Cn(0) 6= {0} for all n ≥ 2.

Lemma 2.5. Fix k ∈ Fq. We have α ∈ Numk(M) (resp., α ∈ Num′0(M)) if and only if αq ∈ Numk(M†)

(resp., αq ∈ Num′0(M†)). Thus, ](Numk(M)) = ](Numk(M†)) and ](Num′0(M)) = ](Num′0(M†)).

Proof. Fix u ∈ Fn
q2 and let M be an n×n matrix over Fq2 . We have 〈u,Mu〉 = 〈M†u, u〉 = (〈u,M†u〉)q.

Since F∗q2 is a cyclic group of order (q+1)(q−1) and q is coprime with (q+1)(q−1), the map t 7→ tq induces

a bijection Fq2 → Fq2 , proving the lemma.

Remark 2.6. Fix c, d ∈ Fq2 and k ∈ Fq. For any n×n matrix M over Fq2 we have Numk(cIn×n+dM) =

ck + dNumk(M).

Lemma 2.7. Assume n ≥ 2 and that M = A⊕B (orthonormal decomposition) with A an x×x matrix, B

an (n−x)× (n−x) matrix and 0 < x < n. Then Num0(M) = Num0(A) + Num0(B)∪
⋃

k∈F∗
q
(k(Num1(A)−

Num1(B)). We have 0 ∈ Num′0(M) if and only if either x ≥ 2 and 0 ∈ Num′0(A) or x ≤ n − 2 and

0 ∈ Num′0(B) or there is a ∈ Num1(A) with −a ∈ Num1(B).

Proof. Take u = (v, w) ∈ Fn
q2 with 〈u, u〉 = 0, v ∈ Fx

q2 and w ∈ Fn−x
q2 . We have 〈u,Mu〉 = 〈v,Av〉 +

〈v,Bv〉. We have 〈u, u〉 = 〈v, v〉 + 〈w,w〉, and hence, the assumption “〈u, u〉 = 0” is equivalent to the

assumption “〈w,w〉 = −〈v, v〉” (note that this is also true when q is even). First assume 〈v, v〉 = 0. We

get 〈w,w〉 = 0, 〈v,Av〉 ∈ Num0(A) and 〈w,Aw〉 ∈ Num0(B) and so Num0(M) ⊇ Num0(A) + Num0(B).

Now assume k := 〈v, v〉 6= 0. We get 〈u,Mu〉 = a + b with a ∈ Numk(A) and b ∈ Num−k(B). Since

Numx(M) = xNum1(M) for all x 6= 0, we have Numk(M) = −Num−k(M) if k 6= 0. Hence, Num0(M) ⊆
Num0(A) + Num0(B)∪

⋃
k∈F∗

q
k(Num1(A)−Num1(B)). The same proof gives the opposite inclusion. Since

u = 0 if and only if v = 0 and w = 0, we get that 0 ∈ Num′0(M) if and only if we came from a case with

k 6= 0 or with a case in which 〈v, v〉 = 〈w,w〉 = 0 and either v 6= 0 or w 6= 0.

Proposition 2.8. Assume that M is unitarily equivalent to a diagonal matrix with c1, . . . , ck, k ≥ 2,

different eigenvalues, ci ∈ Fq2 for all i, and ci occurring with multiplicity mi > 0.

(a) Assume k ≥ 3. If (ci − c1)/(cj − c1) ∈ F∗q for all 1 < i < j ≤ k, then Num0(M) = {t(c2 − c1)}t∈Fq
.

In the other cases, we have Num0(M) = Fq2 .

(b) If k ≥ 3, then 0 ∈ Num′0(M) if and only if either k ≥ 4 or n ≥ 4 or n = k = 3 and (c3−c1)/(c2−c1) /∈
F∗q .

(c) If k = 2 and n ≥ 3, then Num′0(M) = {t(c2 − c1)}t∈Fq
.

(d) If k = n = 2, then Num′0(M) = {t(c2 − c1)}t∈F∗
q
.

Proof. Note that ci − cj ∈ F∗q2 for all i 6= j. Assume for the moment k ≥ 3 and fix integers i, j such

that 2 ≤ j < i ≤ k. Since Fq2 is a 2-dimensional Fq-vector space, ci − c1 and cj − c1 are a basis of Fq2

over Fq (i.e., (ci − c1)/(cj − c1) /∈ F∗q) if and only if ci − cj and c1 − cj are another basis of Fq2 . Hence,

(ci − c1)/(cj − c1) ∈ F∗q ⇔ (ci − cj)/(c1 − cj) ∈ F∗q ⇔ (cj − c1)/(cj − c1) ∈ F∗q .

By Remark 2.6, we reduce to the case c1 = 0. Fix a ∈ Fq2 .

(i) Assume k = 2. We reduced to the case c1 = 0, and hence, c2−c1 6= 0. Let V1 (resp., V2) the eigenspace
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for the eigenvalue 0 (resp., c2 − c1). Take u ∈ Fq2 and write u = u1 + u2 with u1 ∈ V1 and u2 ∈ V2. Since

〈v, w〉 = 0 for all v ∈ V1 and w ∈ V2, we have 〈u, u〉 = 〈u1, u1〉 + 〈u2, u2〉 and 〈u,Mu〉 = (c2 − c1)〈u2, u2〉.
Since 〈u2, u2〉 ∈ Fq, we get Num0(M) ⊆ {t(c2− c1)}t∈Fq

. Since we may take as 〈u2, u2〉 any α ∈ Fq (Remark

2.2) and then take u1 with 〈u1, u1〉 = −α (Remark 2.2), we get Num0(M) = {t(c2 − c1)}t∈Fq
. If n = 2 we

have 〈u,Mu〉 = 0 if and only if u2 = 0. Hence, it n = 2 we have 〈u, u〉 = 0 if and only if u1 = u2 = 0 and so

0 /∈ Num′0(M). If n ≥ 3, then mi ≥ 2 for some i, and hence, 0 ∈ Num′0(M) (Remark 2.4).

(ii) Assume k ≥ 3, c1 = 0, and that ci/cj /∈ F∗q for some 2 ≤ i < j ≤ k, say c2/c3 /∈ F∗q . Up to a unitary

transformation we may assume that e1 is an eigenvector of M with eigenvalue 0, e2 is an eigenvector of M

with eigenvalue c2 ∈ Fq2 \ {0} and e3 is an eigenvector of M with eigenvalue c3 ∈ Fq2 \ Fqc2. Since Fq2 is a

two-dimensional Fq-vector space and c2 and c3 are Fq-linearly independent, there are uniquely determined

a2, a3 ∈ Fq such that a = a2c2 + a3c3. By Remark 2.2 there are ui ∈ Fq2 , i = 2, 3, such that uq+1
i = ai,

i = 2, 3. Take u1 ∈ Fq2 such that uq+1
1 = −a2 − a3 (Remark 2.2) and set u := u1e1 + u2e2 + u3e3. We have

〈u, u〉 =
∑3

i=1 u
q+1
i = 0 and 〈u,Mu〉 = c2u

q+1
2 + c3u

q+1
3 = a. Hence, Num0(M) = Fq2 .

(iii) Assume k ≥ 3 and that (ci − c1)/(cj − c1) ∈ F∗q for all 1 < i < j ≤ k. Note that {t(c2 − c1)}t∈Fq
=

{t(ci−c1)}t∈Fq
for all i = 3, . . . , k. Hence, z(cx−c1) ∈ {t(c2−c1)}t∈Fq

for all z ∈ Fq and all x = 1, . . . , k. Thus,

bq+1(cx − c1) ∈ {t(c2 − c1)}t∈Fq for all b ∈ Fq2 and all x = 1, . . . , k. By assumption there is an orthonormal

basis yij , 1 ≤ i ≤ k, 1 ≤ j ≤ mi, of Fn
q2 such that Myij = ciyij for all i, j. Take u ∈ Fn

q2 such that 〈u, u〉 = 0.

Write u =
∑k

i=1

∑mi

j=1 bijyij for some bij ∈ Fq2 . We have 〈u, u〉 = 0 if and only if
∑k

i=1

∑mi

j=1 b
q+1
ij = 0. We

have 〈u,Mu〉 =
∑k

i=1

∑mi

j=1 b
q+1
ij ci. Taking 〈u,Mu〉− c1〈u, u〉 we get Num0(M) ⊆ {t(c2− c1)}t∈Fq

. The case

n = k = 2 done in step (i) gives Num0(M) ⊇ {t(c2 − c1)}t∈Fq
, concluding the proof of part (a).

(iv) Now take k = n = 3. We need to check when 0 ∈ Num′0(M). We need to find u1, u2, u3 ∈ Fq2 such

that (u1, u2, u3) 6= (0, 0, 0), uq+1
1 +uq+1

2 +uq+1
3 = 0 and c1u

q+1
1 +c2u

q+1
2 +c3u

q+1
3 = 0. The previous conditions

are satisfied if and only if there is (u2, u3) 6= (0, 0) such that (c2 − c1)uq+1
2 + (c3 − c1)uq+1

3 = 0. Since uq+1
2

and uq+1
3 are elements of Fq, c3−c2 6= 0 and c2−c1 6= 0, this is possible if and only if (c3−c1)/(c2−c1) ∈ Fq.

(v) Now assume k ≥ 4. We may assume c1 = 0 and that ei is an eigenvalue for ci, i = 1, . . . , k. If

u = (x1, . . . , xn), then Mu and 〈u,Mu〉 depend only on x2, . . . , xn, not on x1. If n > 4 take xi = 0 for all

i > 4. For any x2, x3, x4 ∈ Fq2 there is u1 ∈ Fq2 with uq+1
1 = −xq+1

2 −xq+1
3 −xq+1

4 (Remark 2.2). Hence, it is

sufficient to find u2, u3, u4 with (u2, u3, u4) 6= (0, 0, 0) and
∑4

i=2(ci − c1)uq+1
i = 0. Since the map F∗q2 → F∗q

defined by the formula t 7→ tq+1 is surjective (Remark 2.2), it is sufficient to find bi ∈ Fq, 2 ≤ i ≤ 4, such

that (b2, b3, b4) 6= (0, 0, 0) and

(2.1)

4∑
i=2

(ci − c1)bi = 0.

Since Fq2 is a 2-dimensional vector space over Fq, (2.1) is equivalent to a homogenous linear system with 2

equations and 3 unknowns over Fq, and hence, it has a non-trivial solution.

(vi) Now assume k = 3 and n ≥ 4. Without losing generality we may assume that the eigenspace of c1
contains e1, e2. Use Remark 2.4.

The case a = −1 of Remark 2.2 gives the following lemma.

Lemma 2.9. Set Θ := {a ∈ Fq | aq+1 = −1}. Then ](Θ) = q + 1 and Θ ⊂ F∗q2 .

We write M = (mij).
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Lemma 2.10. Assume n = 2, m11 = m21 = m22 = 0 and m12 = 1.

1. If q is even, then Num′0(M) = F∗q2 .

2. If q is odd, then ](Num′0(M)) = (q2−1)/2 and Num′0(M) is the set of all zw with z ∈ Θ and w ∈ F∗q .

Proof. Take u = ae1 + be2 such that 〈u, u〉 = 0, i.e., such that aq+1 + bq+1 = 0. We have 〈u,Mu〉 =

〈u, be1〉 = aqb. Note that a = 0 if and only if b = 0, and hence, 0 /∈ Num′0(M). Let ∆ be the set of all aqb

with a, b ∈ F∗q and aq+1 + bq+1 = 0. Take aqb ∈ ∆. Since ab 6= 0 and aq+1 + bq+1 = 0, there is a unique

z ∈ Θ such that b = az, but for a fixed a we may take any z ∈ Θ and then set b := az. Varying a ∈ F∗q2
we get as aq+1 all elements of F∗q (Remark 2.2). Thus, ∆ is the set of all products cz with c ∈ F∗q and

z ∈ Θ. Note that ](F∗q) · ](Θ) = ](F∗q2) by Lemma 2.9. Take c, c1 ∈ F∗q and z, z1 ∈ Θ and assume cz = c1z1.

Hence, cq+1zq+1 = cq+1
1 zq+1

1 . Since zq+1 = zq+1
1 = −1, we get cq+1 = cq+1

1 . Since c, c1 ∈ F∗q , we get c2 = c21.

If q is even, we get c = c1. Hence, z = z1. Hence, if q is even we get ](Num′0(M)) = q2 − 1 and (since

0 /∈ Num′0(M)), we get Num′0(M) = F∗q2 . Now assume that q is odd. We get that either c = c1 or c = −c1.

If c = c1, then we get z = z1. Now assume c = −c1, and hence, z = −z1. We get cz = (−c)(−z). In this

case the set of all cz, c ∈ F∗q and z ∈ Θ has cardinality (q2 − 1)/2, and hence, ](Num′0(M)) = (q2 − 1)/2.

Proposition 2.11. Take n = 2 and assume that M has a unique eigenvalue, c, and that the associated

eigenspace is one-dimensional and generated by an eigenvector u with 〈u, u〉 6= 0. We have 0 /∈ Num′0(M).

If q is even, then Num′0(M) = F∗q2 . If q is odd, then ](Num′0(M)) = (q2 − 1)/2 and there is a matrix M1

unitarily equivalent to a multiple of M such that Num′0(M1) is the set of all zw with z ∈ Θ and w ∈ F∗q .

Proof. Since n = 2 the characteristic polynomial f(t) ∈ Fq2 [t] of M has degree 2. By assumption f(t)

has a unique root, c. If q is odd, then the high school formula for the roots of a degree 2 polynomial gives

c ∈ Fq2 . The same holds for even q, because Fq is perfect ([12, Ex. 1.1]) and, since p = 2, the monic

polynomial f(t) = t2 + d1t+ d2 has c as its only root if and only if f(t) = (t− c)2 (e.g. c is a root both of

f(t) and of f ′(t) = 2t + d1 = d1 by [9, Theorem 1.68] and so d1 = 0); see [4, pages 3–4] for the roots of an

arbitrary degree 2 polynomial over a finite field with even characteristic. Taking M − cI2×2 instead of M

we reduce to the case c = 0 (Remark 2.6). Take t ∈ Fq2 such that tq+1 = 〈u, u〉 (Remark 2.2). Using t−1u

instead of u we reduce to the case 〈u, u〉 = 1. Hence, up to a unitary transformation we reduce to the case

u = e1. In this case, we have m11 = m21 = 0. Since m22 is an eigenvalue of M , we have m22 = 0. Since e2
is not an eigenvector of M , we have m12 6= 0. Take M1 := 1

m12
M and apply Lemma 2.10 to M1.

Proposition 2.12. Take n = 2 and assume that M has two distinct eigenvalues c1, c2 ∈ Fq2 and

eigenvectors ui of ci, 1 ≤ i ≤ 2, with 〈ui, ui〉 = 0 for all i. Then there is o ∈ F∗q2 such that Num′0(M) =

{to}t∈Fq .

Proof. Each ui gives that 0 ∈ Num′0(M). Since u1 and u2 are a basis of F2
q2 , 〈 , 〉 is non-degenerate and

〈ui, ui〉 = 0 for all i, we have e := 〈u1, u2〉 6= 0. Taking u1 and u2/e instead of u1 and u2 we reduce to the

case e = 1. Note that 〈u2, u1〉 = 1. Taking M−c1I2×2 instead of M we reduce to the case c1 = 0, and hence,

c := c2 − c1 6= 0. Take a, b ∈ F∗q2 and set u := au1 + bu2. We have 〈u, u〉 = bqa + aqb. Hence, 〈u, u〉 = 0 if

and only if bqa + aqb = 0. We have 〈u,Mu〉 = 〈u, cbu2〉 = aqbc. Set w := b/a. We have 〈u, u〉 = 0 if and

only if wq + w = 0. Since b 6= 0, we have w 6= 0 and so 〈u, u〉 = 0 if and only if wq−1 + 1 = 0. We have

〈u,Mu〉 = aq+1wc. By Remark 2.2 varying a ∈ F∗q2 we get as aq+1 an arbitrary element of F∗q . If q is even,

w is an arbitrary element of F∗q , because wq−1 = 1 and F∗q = {t ∈ Fq | tq−1 = 1}, and hence, varying a and w

we get that Num′0(M) = {tc}t∈Fq
. Now assume that q is odd. In this case, w /∈ Fq, because wq−1 = −1 6= 1

(Remark 2.1). Take w1 ∈ Fq2 with wq−1
1 = −1 (Remark 2.2). Since (w/w1)q−1 = 1, we have w/w1 ∈ F∗q .

Hence, varying w with wq−1 = 1 and aq+1 with a ∈ F∗q2 we get exactly q − 1 elements of F∗q2 , all of them of

the form {to}t∈F∗
q

with o = wc.
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Proposition 2.13. Take n = 2 and assume m21 6= 0 and m12 6= 0. Then:

(i) ](Num′0(M)) ≥ d(q + 1)/2e;

(ii) If (−m12/m21)q+1 6= 1, then ](Num′0(M)) ≥ q + 1.

Proof. Using M−m11I2×2 instead of M we reduce to the case m11 = 0 (Remark 2.6). Take u = ae1+be2.

We have 〈u, u〉 = aq+1 + bq+1, Mu = bm21e1 + (am12 +m22b)e2 and 〈u,Mu〉 = aqbm21 + bq(am12 +m22b) =

aqbm21 + bqam12 + m22b
q+1. We take only the solutions obtained taking b = 1 and so a ∈ Θ, where Θ is

as in Lemma 2.9. To get the lemma we study the number of different values of the restriction to Θ of the

polynomial g(t) = m21t
q+m12t+m22. This number is the number of different values of the restriction to Θ of

the polynomial f(t) = m21t
q+m12t. Fix z, w ∈ Θ and assume f(z) = f(w). Hence, f(z)zw = f(w)zw. Since

zq+1 = wq+1 = −1, we get −m21w+m12z
2w = −m21z+m12zw

2. Set hz(t) = m12zt
2−m12z

2t+m21t−m21z.

The polynomial hz(t) has at most two zeroes in Fq2 , one of them being z. Hence, for each z ∈ Θ there is

at most one w ∈ Θ with w 6= z and g(w) = g(z). Thus, ](Num′0(M)) ≥ d(q + 1)/2e. Assume the existence

of w 6= z with hz(w) = 0. Since z and w are the two roots of hz(t), we have m12z
2w = −m21z, i.e., (since

z 6= 0) m12zw = −m21. Since (zw)q+1 = 1 and (−1)q+1 = 1 (even if q is even), we get part (ii).

Proof of Corollary 1.1. By assumption there are i, j ∈ {1, . . . , n} such that i 6= j and either mij 6= 0 or

mii 6= mjj . Up to a permutation of the indices {1, . . . , n} (which is induced by a unitary transformation of

Fq2), we may assume {i, j} = {1, 2}. First assume n = 2. Using M −m11I2×2 instead of M we reduce to the

case m11 = 0 (Remark 2.6). If m21 = 0, then we use either Proposition 2.8 (if M is unitarily equivalent to

a diagonal matrix) or Proposition 2.11 (if 0 is the unique eigenvalue of M with e1 spanning its eigenspace).

If m21 = 0 we apply the last sentence to M† and use Lemma 2.5. Hence, we may assume that m12m21 6= 0.

Apply Proposition 2.13. Now assume n > 2. Call A = (aij) the 2×2 matrix with aij = mij for all i, j = 1, 2.

Take u = (x1, . . . , xn) with xi = 0 for all i > 2 and apply the case n = 2 to A.

3. Matrices with coefficients in Fq. We always assume n ≥ 2. We assume M = (mij) with mij ∈ Fq

for all i, j. Take k ∈ Fq and u ∈ Fn
q with 〈u, u〉 = k and write u =

∑n
i=1 xiei with xi ∈ Fq for all i. Since

xi ∈ Fq, we have xq+1
i = x2i and so the condition 〈u, u〉 = k is equivalent to the degree 2 equation

(3.2)

n∑
i=1

x2i = k.

Since xqi = xi for all i, the condition 〈u,Mu〉 = a is equivalent to

(3.3)

n∑
i,j=1

mijxixj = a.

Remark 3.1. Fix any k ∈ Fq, any integer n ≥ 2 and any n×n matrix M with coefficients in Fq. Every

element of Fq is a sum of two squares of elements of Fq (Remark 2.3). Hence, (3.2) has always a solution

(y1, . . . , yn) ∈ Fn
q . Setting xi := yi in the left hand side of (3.3) we get Numk(M)q 6= ∅. However, there are

a few cases with Num′0(M)q = ∅ (part (i) of Proposition 3.9). We always have Num′0(M)q 6= ∅ if q is even

(part (a) of Proposition 3.13).

Lemma 3.2. Take M ∈Mn,n(Fq).

(a) If q is even, then either Num0(M)q = {0} or Num0(M)q = Fq.
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(b) Assume q odd and that neither Num0(M)q = {0} nor Num0(M)q = Fq. Fix a ∈ Num0(M)q \ {0}.
Then ](Num0(M)q) = (q + 1)/2 and Num0(M)q is the union of 0 and all b ∈ F∗q such that b/a is a square

in Fq.

Proof. Assume the existence of a ∈ Num0(M)q with a 6= 0. Take u ∈ Fn
q such that 〈u, u〉 = 0 and

〈u,Mu〉 = a. For any t ∈ F∗q we have 〈tu, tu〉 = 0 and 〈tu,M(tu)〉 = t2a. Hence, Num0(M)q \ {0} contains

all b ∈ F∗q such that b/a is a square in Fq. If q is even, then every element of Fq is a square (Remark 2.3)

and so Num0(M)q = Fq, proving part (a). Now assume q odd. Since F∗q is a cyclic group of even order, F∗q
has (q − 1)/2 squares (Remark 2.3). Hence, Num0(M)q \ {0} contains the set Σa of all t2a, t ∈ F∗q . Note

that ](Σa) = (q− 1)/2. Assume the existence of d ∈ Num0(M)q \ ({0} ∪Σa). If α, β ∈ F∗q and α is a square,

β is a square if and only if αβ (or α/β = αβ/β2) is a square. Thus, Num0(M)q \ ({0} ∪ Σa) contains a set,

Σd, of cardinality (q − 1)/2. Hence, Num0(M)q = Fq.

Remark 3.3. Take M ∈Mn,n(Fq). By Lemma 3.2, if q is even to describe Num0(M)q we only need to

say if Num0(M)q is 0 or Fq. Now assume that q is odd. Lemma 3.2 gives ](Num0(M)q) ∈ {0, (q + 1)/2, q}
and that if ](Num0(M)q) = (q + 1)/2 to describe Num0(M)q it is sufficient to find a single element of

Num0(M)q \ {0}. For any q it is interesting to know if 0 ∈ Num′0(M)q.

Set Bn := {u ∈ Fn
q | 〈u, u〉 = 0}. Let ν′M : Bn → Fq be the map defined by the formula ν′M (u) = 〈u,Mu〉.

Remark 3.4. Take another n× n matrix N = (nij) ∈Mn,n(Fq) with nii = mii for all i and nij + nji =

mij + mji for all i 6= j. The systems given by (3.2) and (3.3) for M and for N are the same, and hence,

Numk(M)q = Numk(N)q for all k and Num′0(M)q = Num′0(N)q. As a matrix N we may always take a

triangular matrix. If q is odd (i.e., if we may divide by 2 in our fields Fq and Fq2), then we may take as N

a symmetric matrix.

Remark 3.5. For all c, d ∈ Fq we have Num0(cIn×n +dM)q = dNum′0(M)q and Numk(cIn×n +dM)q =

ck + dNumk(M)q.

Remark 3.6. Fix k, b ∈ F∗q , a ∈ Fq, and assume the existence of d ∈ F∗q such that b = kd2. The

map (x1, . . . , xn) 7→ (dx1, . . . , dxn) shows that the system given by (3.2) and (3.3) has a solution if and

only the system given by (3.2) and (3.3) with b instead of k and ad2 instead of a has a solution. Hence,

](Numk(M)q) = ](Numb(M)q). If q is even, for all k, b ∈ F∗q , a ∈ Fq there is d ∈ F∗q such that b = kd2

(Remark 2.3). Hence, if q is even, then ](Numk(M)q) = ](Num1(M)q) for all k ∈ F∗q and a description of

Num1(M)q gives a description of Numk(M)q for all k 6= 0. Now assume q odd. The multiplicative group F∗q
is cyclic of order q − 1 (Remark 2.1). Since q − 1 is even, the group F∗q/(F∗q)2 has cardinality 2, and hence,

to know all integers ](Numk(M)q), k ∈ F∗q , or to describe all Numk(M)q, k ∈ F∗q , it is sufficient to know it

for one k, which is a square in F∗q (e.g. for k = 1) and for one k, which is not a square in F∗q .

(a) Assume that q is even. For any k ∈ Fq there is a unique c ∈ Fq with c2 = k (Remark 2.3). Hence,

(3.2) is equivalent to (
∑n

i=1 xi + c)2 = 0, i.e., to

(3.4)

n∑
i=1

xi = c.

Hence, the system given by (3.2) and (3.3) is equivalent to the system given by (3.3) and (3.4). Writing

xn =
∑n−1

i=1 xi+c we translate the system given by (3.3) and (3.4) into a degree 2 polynomial in x1, . . . , xn−1.

If k = a = 0, then this is a homogeneous polynomial of degree 2 in n − 1 variables, and hence, it has a

non-trivial solution if n− 1 ≥ 3 ([4, Corollary 1], [12, Theorem 3.1]), proving the following result.
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Corollary 3.7. If M has coefficients in Fq, q is even and n ≥ 4, then 0 ∈ Num′0(M)q.

If k and/or a are arbitrary the system given by (3.3) and (3.4) is equivalent to find a solution in Fn−1
q

of a certain polynomial in Fq[x1, . . . , xn−1] with degree at most 2. We only fix c ∈ Fq, but not a. Call

f(x1, . . . , xn−1) the left hand side of (3.3) obtaining substituting xn = −x1 − · · · − xn + c. Numk(M)q is

described by the image of the map Fn−1
q → Fq associated to the polynomial f(x1, . . . , xn−1) with deg(f) ≤ 2.

We claim that if f is not a constant polynomial, then the image of f has cardinality at least q/2. Indeed,

if deg(f) = 1, then f induces a surjective map Fn−1
q → Fq. Now assume deg(f) = 2. For any map

h : Fq → Fq induced by a degree 2 polynomial a fiber of h has cardinality at most 2. Hence, ](h(Fq)) ≥ q/2.

Hence, ](f(Fn−1
q )) ≥ q/2. See part (i) of Proposition 3.9 for a case with f ≡ 0, Num0(M)q = {0} and

Num′0(M)q = ∅.

(b) Assume that q is odd. Taking a = k = 0, we get that (3.2) and (3.3) are a system of two degree 2

homogeneous equations. Chevalley-Warning theorem ([12, Theorem 3.1]) gives the following corollary.

Corollary 3.8. If M has coefficients in Fq, q is odd and n ≥ 5, then 0 ∈ Num′0(M)q.

The left hand side of (3.2) is a non-degenerate quadratic form β ∈ Fq[x1, . . . , xn]. If n = 2s β is

characterized in [4, Table 5.1] with m = n (because all the coefficients, 1, appearing on the left hand side of

(3.2) are squares in Fq): it is a hyperbolic quadric if either s is even or q ≡ 1 (mod 4) and s is odd, while it

is elliptic if s is odd and q ≡ −1 (mod 4).

Now we consider the case n = 2 for an arbitrary q.

Proposition 3.9. Assume n = 2 and let N = (nij) be the 2 × 2-matrix with n11 = m11, n22 = m22,

n21 = 0 and n12 = m12 + m21. We have Num′0(M)q = Num′0(N)q and Numk(M)q = Numk(N)q for all

k ∈ Fq.

(i) If q ≡ −1 (mod 4), then Num′0(M)q = ∅.

(ii) Assume that q is even. If m22+m12+m21+m11 6= 0, then Num′0(M)q = F∗q and ](Numk(M)q) ≥ q/2
for all k ∈ F∗q . If m22 + m12 + m21 + m11 = 0, then Num′0(M)q = {0}; for any fixed k ∈ F∗q either

Numk(M)q = Fq or ](Numk(M)q) = 1. If m12 + m21 = 0 and m11 6= m22, then Numk(M)q = Fq for all

k ∈ F∗q .

(iii) Assume q ≡ 1 (mod 4).

(iii-1) If m12 +m21 6= 0, then Num0(M)q contains at least (q − 1)/2 elements of F∗q . Take e ∈ Fq such

that e2 = −1; if (m12+m21)2 6= (m22−m11)2 and (−m11+m22+e(m12+m21))/(−m11+m22−e(m12+m21))

is not a square in Fq, then Num0(M)q = Fq.

(iii-2) Assume m12 + m21 = 0. If m11 = m22, then Numk(M)q = {km11} for all k ∈ Fq and 0 ∈
Num′0(M)q. If m11 6= m22, then ](Numk(M)q) ≤ (q + 1)/2 for all k ∈ Fq, ](Num0(M)q) = (q + 1)/2 and

](Num′0(M)q) = (q − 1)/2.

Proof. We have Numk(N)q = Numk(M)q and Num′0(N)q = Num′0(M)q by Remark 3.4.

Take u = x1e1 + x2e2 with 〈u, u〉 = k and 〈u,Mu〉 = a. Hence, we get the system given by (3.2) and

(3.3). If q is even, then instead of (3.2) we may use (3.4) with c2 = k.

(a) Assume for the moment q ≡ −1 (mod 4). Thus, q is odd and (−1)(q−1)/2 = −1 in Z. Since F∗q is a

cyclic group of order q− 1, we get that −1 is not a square in F∗q . Hence, (3.2) for k = 0 has only the solution
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x1 = x2 = 0.

(b) Now assume that q is even. Take k = 0 in (3.4). We have x1 + x2 = 0 if and only if x1 = x2.

When x1 = x2, (3.3) is equivalent to (m22 + m12 + m21 + m11)x21 = a. If m22 + m12 + m21 + m11 = 0,

then we get a = 0 and so Num0(M)q = {0}; taking x1 = x2 = 1 we get Num′0(M)q = {0}. Now assume

m22 + m12 + m21 + m11 6= 0. If a = 0, we get x1 = 0 and so x2 = 0, and hence, 0 /∈ Num′0(M)q. Now

assume a 6= 0. There is a unique b ∈ F∗q such that b2 = a/(m22 + m12 + m21 + m11) (Remark 2.3). Taking

x1 = x2 = b we get a ∈ Num′0(M)q.

Now we fix k ∈ F∗q and write c2 = k with c ∈ F∗q (Remark 2.3). We have x2 = x1 + c by (3.4).

Substituting this equation in (3.3) we get an equation f(x1) = a with deg(f) ≤ 2. The coefficient of x21 in f

is m11 +m12 +m22 +m21. If m11 +m12 +m22 +m21 6= 0, then ](f(Fq)) ≥ q/2, because ](f−1(t)) ≤ 2 for all

t ∈ Fq. If m11 +m12 +m22 +m21 = 0, then either f has degree 1 and so it induces a bijection Fq → Fq or it

is a constant, α (we allow the case α = 0), and hence, Numk(M)q = {α}. Now assume m12 +m21 = 0 and

m11 6= m22. Take k = c2. Substituting (3.4), i.e., x2 = x1+c in (3.3) we get (m11+m22)x21+c(m11+m22) = a.

Since m11 +m22 6= 0 and every element of Fq is square (Remark 2.3), we get Numk(M)q = Fq for all k.

(c) Now assume that q ≡ 1 (mod 4). Since q ≡ 1 (mod 4), then (q − 1)/2 ∈ N. Since F∗q is a cyclic

group of order q − 1, there is e ∈ F∗q with e2 = −1. We have e 6= −e and t2 = −1 with t ∈ Fq if and only if

t ∈ {−e, e}. First take k = 0, and hence, x1 = tx2 with t2 = −1, i.e., t ∈ {e,−e}. Assume for the moment

m12 + m12 6= 0. Hence, there is g ∈ {e,−e} such that −m11 + g(m12 + m21) + m22 6= 0. Take x1 = gx2.

Since g2 = −1, we have x21 + x22 = 0 and (3.3) is transformed into (−m11 + g(m12 + m21) + m22)x22 = a.

We get that Num0(M)q contains the set ∆a,g of all a ∈ F∗q such that a/(−m11 +m22 + g(m12 +m21)) is a

square. Since (q− 1)/2 elements of F∗q are squares (Remark 2.3), we get the first part of (iii1). Now assume

the conditions of the second part of (iii1). If α, β ∈ F∗q are squares, then αβ and α/β = αβ/β2 are squares.

Hence, if α, γ ∈ F∗q and α is a square, then γ is a square ⇔ αγ is a square ⇔ α/γ is a square. Hence, ∆a,−g
is well-defined, ∆a,−g ⊂ Num0(N)q and ∆a,−g ∩∆a,g = ∅. Thus, Num0(N)q = Fq.

Now assume m12 + m21 = 0. We have Num′0(M)q = Num0(N)q and Numk(M)q = Numk(N)q, where

N = (nij) is the diagonal matrix with n11 = m11 and n22 = m22. If m11 = m22, then N = m11I2×2, and

hence, Numk(N)q = {km11} for all k ∈ Fq and 0 ∈ Num′0(N)q, because ν′(e, 1) = 0. Now assume m11 6= m22.

We fix k ∈ Fq, but not a. Subtracting m11 times (3.2) from (3.3) we get (m22 −m11)x22 = a− km11. Since

m22 6= m11 and (q+ 1)/2 elements of Fq are squares, we get that ](Numk(N)q) ≤ (q+ 1)/2 (we only get the

inequality ≤, because for a given b ∈ Fq, we are not sure that the equation x21 + b2 = k has a solution). If

k = 0, we may always take x1 = eb and so ](Num0(N)q) = (q + 1)/2. We have 0 /∈ Num′0(N)q, because we

first get x2 = 0 and then x1 = 0.

The case k 6= 0 of step (c) of the proof of Proposition 3.9 proves the following observation.

Remark 3.10. Assume n = 2, q ≡ 1 (mod 4) and m12 + m21 = 0. If m11 = m22, then Numk(M)q =

{km11} for all k ∈ Fq. If m11 6= m22, then ](Numk(M)q) ≤ (q + 1)/2 for all k ∈ F∗q .

Corollary 3.11. Assume n ≥ 2, q ≡ 1 (mod 4) and fix an n × n-matrix M = (mij) with coefficients

in Fq.

(i) Assume mij + mji = 0 for all i, j with 1 ≤ i < j ≤ n and mii = m11 for all i. Then Numk(M)q =

{km11} for all k ∈ Fq and 0 ∈ Num′0(M)q.

(ii) If M is not as in (i), then Num0(M)q contains at least (q − 1)/2 elements of F∗q .



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 34, pp. 205-216, May 2018.

E. Ballico 214

Proof. Let N be the n × n-matrix with nii = mii for all i, nij = 0 for all i < j and nij = mij + mji

for all i < j. We have Numk(M)q = Numk(N)q and Num′0(M)q = Num′0(N)q by Remark 3.4. Take M as

in part (i). We have N = m11In×n. Hence, Numk(M)q = {km11} for all k ∈ Fq. We have 0 ∈ Num′0(N)q,

because the equation x21 + x22 = 0 has a non-trivial solution, e.g. (e, 1) with e2 = −1. Now assume that M

is not as in (i). Hence, either there are i < j with mij + mji 6= 0 or there is i > 1 with mii 6= m11. In the

former (resp., latter) case, we use part (iii1) (resp., (iii2)) of Proposition 3.9.

Example 3.12. We always have Numk(M)q ⊆ Numk(M) ∩ Fq and Num′0(M)q ⊆ Num′0(M) ∩ Fq,

but often these inclusions are strict ones. In the examples, we take n = 2. Take M = I2×2. We have

0 ∈ Num′0(M) by Remark 2.4. If q ≡ −1 (mod 4), then 0 /∈ Num′0(M)q by part (i) of Proposition 3.9. Now

take n = 2 and A = (aij) with a11 = a21 = a12 = 0 and a22 = 1. We have Num0(A) ∩ Fq = Num0(A) = Fq

(part (d) of Proposition 2.8). If q ≡ −1 (mod 4) we have Num0(A)q = {0} (part (i) of Proposition 3.9). If

q ≡ 1 (mod 4) we have ](Num′0(A)q) = (q − 1)/2 (part (iii2) of Proposition 3.9).

Proposition 3.13. Assume n ≥ 2 and q even and fix an n × n-matrix M = (mij) with coefficients in

Fq.

(a) We have Num′0(M)q 6= ∅ and either 0 ∈ Num′0(M)q or Num0(M)q ⊇ F∗q .

(b) We have Num′0(M)q = {0} if and only if mii +mij +mji +mjj = 0 for all i < j.

(c) Assume Num′0(M)q 6= {0}. If n = 2, (resp., n = 3, resp., n ≥ 4), then Num′0(M)q = F∗q (resp.,

Num′0(M)q ⊇ F∗q , resp., Num′0(M)q = Fq).

Proof. Part (a) follows from the case n = 2, which is true by part (ii) of Proposition 3.9.

The “ only if ” part of part (b) follows from part (a) and the case n = 2, which is true by part (ii) of

Proposition 3.9.

Now assume n ≥ 3 and mii + mij + mji + mjj = 0 for all i < j. Take u =
∑n

i=1 xiei, xi ∈ Fq. For

i = 1, . . . , n, the coefficient of x2i in 〈u,Mu〉 is mii. If 1 ≤ i < j ≤ n the coefficient of xixj in 〈u,Mu〉
is mij + mji. Now assume 〈u, u〉 = 0, i.e., xn = x1 + · · · + xn−1. Note that x2n = x21 + · · · + x2n−1. Fix

i ∈ {1, . . . , n − 1}. After this substitution the coefficient of x2i in 〈u,Mu〉 is mii + mnn + min + mni = 0.

Fix 1 ≤ i < j ≤ n − 1. After the substitution xn = x1 + · · · + xn−1 the coefficient of xixj in 〈u,Mu〉 is

mij +mji +mni +min +mnj +mjn. By assumption we have mij +mji = mii +mjj , mni +min = mii +mnn

and mnj +mjn = mjj +mnn. Hence, mij +mji +mni +min +mnj +mjn = 2mii + 2mjj + 2mnn = 0. Part

(a) gives Num′0(M)q = {0}.

The case n = 2 of part (c) is true by part (ii) of Proposition 3.9. Part (c) for n = 3 follows from part

(a). Part (c) for n ≥ 4 follows from part (a) and Corollary 3.7.

Lemma 3.14. For every k ∈ Fq, q odd, and any a1 ∈ F∗q , a2 ∈ F∗q there are x1, x2 ∈ Fq such that

a1x
2
1 + a2x

2
2 = k.

Proof. If k = 0, then take x1 = x2 = 0. Now assume k 6= 0. The equation a1x
2
1 + a2x

2
2 − kx23 = 0 is the

equation of a smooth conic C ⊂ P2(Fq), because for odd q and non-zero a1, a2, k the partial derivatives of

a1x
2
1 + a2x

2
2 − kx23 have only (0, 0, 0) as their common zero. We have ](C) = q + 1 ([4, Part (i) of Theorem

5.2.6]) and at most two of its points are contained in the line L ⊂ P2(Fq) with x3 = 0 as its equation. If

(b1 : b2 : b3) ∈ C \ C ∩ L, then b3 6= 0 and a1(b1/b3)2 + a2(b1/b3)2 = k.
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Proposition 3.15. Fix c ∈ F∗q and set M := cIn×n.

(i) If q is even, then Num′0(cIn×n)q = {0} for all n ≥ 2 and ](ν′M
−1

(0)) = qn−1.

(ii) Assume that q is odd. We have Num′0(cIn×n)q = {0} if either n ≥ 3 or n = 2 and q ≡ 1 (mod 4),

while Num′0(cIn×n)q = ∅ if q ≡ −1 (mod 4). If n = 2s + 1 is odd, then ](ν′M
−1

(0)) = q2s. If n = 2s with

either s even or q ≡ 1 (mod 4), then ](ν′M
−1

(0)) = q2s−1 + qs − qs−1. If n = 2s with s odd and q ≡ −1

(mod 4), then ](ν′M
−1

(0)) = q2s−1 − qs + qs−1.

Proof. We obviously have 〈u, cIn×nu〉 = 0 for any u ∈ Fq with 〈u, u〉 = 0. Thus, the only problem is

if there is u ∈ Fn
q , u 6= 0, with 〈u, u〉 = 0 and to compute the cardinality of the set of all such u. Write

u =
∑

i xiei with xi ∈ Fq. First assume that q is even. In this case, the condition 〈u, u〉 = 0 is equivalent to

(3.4) with c = 0 and it has a non-trivial solution for all n ≥ 2; moreover the set 〈u, u〉 = 0 is the hyperplane

x1 + · · · + xn = 0 of Fn
q , and hence, it has cardinality qn−1. Now assume that q is odd. In this case, (3.2)

with k = 0 is the equation of a certain quadric hypersurface Q ⊂ Pn−1(Fq) and 0 ∈ Num′0(cIn×n)q if and

only if Q(Fq) 6= ∅, while (since we are working in the vector space Fn
q , instead of the associated projective

space) ](ν′−1M (0)) = 1 + (q− 1)](Q). The quadric Q has always full rank, and hence, Q 6= ∅ if n− 1 ≥ 2. The

integer ](Q) is computed in [4, Table 5.1 and Theorem 5.2.6].

Proposition 3.16. Assume q ≡ −1 (mod 4) and n ≥ 3. Then Num′0(M)q 6= ∅.

Proof. It is sufficient to do the case n = 3. Just use that x21 +x22 +x23 = 0 has a solution 6= (0, 0, 0) in F3
q

by Lemma 3.14 (since q is odd, it has exactly q2 solutions in F3
q, because the associated conic Q ⊂ P2(Fq)

has cardinality q + 1 ([4, Part (i) of Theorem 5.2.6])).

The assumption “ q ≡ 1 (mod 4) if n = 2 ” in the next result is necessary by part (i) of Proposition 3.9.

Proposition 3.17. Assume q odd. If n = 2 assume q ≡ 1 (mod 4). Let M = (mij) be an n× n matrix

such that mij+mji = 0 for all i 6= j, m11 6= m22 and mii = m22 for all i > 2. Then ](Num0(M)q) = (q+1)/2

and Num0(M)q \{0} is the set of all a ∈ F∗q such that −a/(m22−m11) is a square. We have 0 ∈ Num′0(M)q
if and only if either n ≥ 4 or n = 3 and q ≡ 1 (mod 4).

Proof. By Remark 3.4, it is sufficient to do the case in which M is a diagonal matrix. The case n = 2 is

true by part (iii2) of Proposition 3.9. Now assume n ≥ 3. Taking the difference of (3.3) with (3.2) multiplied

by m11 we get (m22−m11)(x22+· · ·+x2n) = a, while (3.2) gives x21 = −(x22+· · ·+x2n). Thus, if −a/(m22−m11)

is not a square, then a /∈ Num0(M)q. If −a/(m22 −m11) is a square, then we take xi = 0 for i > 3, take

x2 and x3 such that (m22 −m11)(x22 + x23) = a (Lemma 3.17) and then take x1 with x21 = −a/(m22 −m11).

Now take a = 0. If n ≥ 4 we take x1 = 0, xj = 0 for all j > 4 and find (x2, x3, x4) ∈ F3
q \ {(0, 0, 0)} such

that x22 + x22 + x23 = 0 (take x3 = 1 and use Lemma 3.14 with a1 = a2 = 1 and k = −1). Now assume a = 0

and n = 3. We proved that we need to have x22 + x23 = 0, and hence, we need to have x1 = 0. There is

(x2, x3) ∈ F2
q \{(0, 0)} with x22 +x23 = 0 if and only if −1 is a square in Fq, i.e., if and only if q ≡ 1 (mod 4).

Lemma 3.18. Let r be a prime power. Let f ∈ Fr[t1, t2] be a polynomial of degree at most 2 with f not

a constant. Then f assumes at least dr/2e values over Fr.

Proof. Let φ : F2
r → Fr be the map induced by f . Since deg(f) ≤ 2 and f is not constant, for each

a ∈ Fr, φ−1(a) is an affine conic and in particular ](φ−1(a)) ≤ 2r. Hence, ](φ(F2
r)) ≥ dr/2c.

Proposition 3.19. Assume q odd and n ≥ 3. Let M = (mij) be an n × n matrix over Fq such that

there is i ∈ {1, . . . , n} with mij +mji = 0 for at least 2 indices j 6= i (say j1 and j2) and either mj1j1 6= mii

or mj2j2 6= mii or mj1j2 +mj2j1 6= 0. Then ](Numk(M)q) ≥ (q + 1)/2 for all k ∈ Fq.
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Proof. We reduce to the case n = 3 and m32+m23 = m31+m13 = 0 and either m11 6= m33 or m22 6= m33

or m12 +m21 6= 0. By Remark 3.4 we may assume that m32 = m23 = m31 = m13 = 0. Taking the difference

between (3.3) and m33 times (3.3) we get

(m11 −m33)x21 + (m12 +m21)x1x2 + (m22 −m33)x22 = a− km33.

Solve for a and apply Lemma 3.18.
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