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ON THE DISTANCE AND DISTANCE SIGNLESS LAPLACIAN EIGENVALUES

OF GRAPHS AND THE SMALLEST GERŜGORIN DISC∗

FOUZUL ATIK† AND PRATIMA PANIGRAHI†

Abstract. The distance matrix of a simple connected graph G is D(G) = (dij), where dij is the distance between the

ith and jth vertices of G. The distance signless Laplacian matrix of the graph G is DQ(G) = D(G) + Tr(G), where Tr(G)

is a diagonal matrix whose ith diagonal entry is the transmission of the vertex i in G. In this paper, first, upper and lower

bounds for the spectral radius of a nonnegative matrix are constructed. Applying this result, upper and lower bounds for the

distance and distance signless Laplacian spectral radius of graphs are given, and the extremal graphs for these bounds are

obtained. Also, upper bounds for the modulus of all distance (respectively, distance signless Laplacian) eigenvalues other than

the distance (respectively, distance signless Laplacian) spectral radius of graphs are given. These bounds are probably first of

their kind as the authors do not find in the literature any bound for these eigenvalues. Finally, for some classes of graphs, it

is shown that all distance (respectively, distance signless Laplacian) eigenvalues other than the distance (respectively, distance

signless Laplacian) spectral radius lie in the smallest Gerŝgorin disc of the distance (respectively, distance signless Laplacian)

matrix.
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1. Introduction. We consider an n-vertex simple connected graph G = (V,E), where V = {1, 2, . . . , n}
is the vertex set and E is the edge set of the graph. The transmission tr(v) of a vertex v is the sum of the

distances from v to all other vertices in G. The graph G is said to be s-transmission regular if tr(v) = s

for every vertex v ∈ V . We denote the maximum and minimum transmission of G by trmax and trmin,

respectively, that is trmax = max
v∈V

tr(v) and trmin = min
v∈V

tr(v). A real square matrix is said to be nonnegative

(respectively, positive) if all of its entries are nonnegative (respectively, positive). A nonnegative matrix A is

said to be reducible if there exists a permutation matrix P such that PTAP =

[
B C

0 D

]
, where B and D

are square matrices of order r and n− r, respectively, and 1 ≤ r ≤ n− 1. If the matrix is not reducible then

it is called irreducible. The largest eigenvalue of a matrix A is called the spectral radius of the matrix and is

denoted by ρ(A). By the well known Perron-Frobenius theorem [18], for irreducible matrix A, the eigenvalue

ρ(A) is simple and having a positive eigenvector. The distance matrix D(G) of an n-vertex graph G is a

square matrix of order n, whose (i, j)th entry is equal to dij , i, j = 1, 2, . . . , n, where dij is the distance (length

of a shortest path) between the ith and jth vertices in G. We take Tr(G) as a diagonal matrix whose ith

diagonal entry is the transmission of the vertex i ∈ V . The distance signless Laplacian matrix of the graph

G, introduced in [2], is denoted by DQ(G) and is defined by DQ(G) = D(G) + Tr(G). The matrices D(G)

and DQ(G) both are symmetric, non-negative and irreducible. The largest eigenvalue of D(G) (respectively,

DQ(G)), denoted by ρ(D(G)) (respectively, ρ(DQ(G))), is called the distance spectral radius (respectively,

distance signless Laplacian spectral radius) of G. The eigenvalues and spectrum of D(G) (respectively,
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DQ(G)) are said to be the distance eigenvalues (respectively, distance signless Laplacian eigenvalues), in

short D-eigenvalues, and distance spectrum (respectively, distance signless Laplacian spectrum), in short

D-spectrum, of G, respectively.

The distance eigenvalues of graphs have been studied by researchers for many years. In the literature,

very few graphs are there whose full distance spectrum are known. For early work, see Graham and Lovász

[14], where they have discussed about the characteristic polynomial of distance matrix of a tree. Ruzieh and

Powers [29] found all the eigenvalues and eigenvectors of the distance matrix of path Pn on n vertices. In

[13], Fowler et al. determined all the distance eigenvalues of cycle Cn with n vertices. Ilić [19] characterized

the distance spectrum of integral circulant graphs and calculated the D-spectrum of unitary Cayley graphs.

Lin et al. [22] characterized all connected graphs with least D-eigenvalue −2 and all connected graphs of

diameter 2 with exactly three distinct distance eigenvalues when distance spectral radius is not an integer.

In [4], Atik and Panigrahi found the distance spectrum of some distance regular graphs including the well

known Johnson graphs. Balaban et al. [5] proposed the use of distance spectral radius as a molecular

descriptor, while Gutman and Medeleanu [15] successfully used it to infer the extent of branching and model

boiling points of alkanes. The distance spectral radius is a useful molecular descriptor in QSPR modeling as

demonstrated by Consonni and Todeschini [8, 30]. In [36] and [37], Zhou and Trinajstic provided upper and

lower bounds for ρ(D(G)) in terms of the number of vertices, Wiener index and Zagreb index of G. Das [11]

determined upper and lower bounds for ρ(D(G)) of a connected bipartite graph and characterized graphs

for which these bounds are exact. Indulal [20] found sharp bounds on the distance spectral radius of graphs.

Some results on least distance eigenvalue of graphs can be found in [23, 35]). For more results related to

D-spectrum of graphs, readers may see the survey [1]. Also, very few results, mostly bounds on spectral

radius, are there for distance signless Laplacian matrix of graphs. For results on DQ(G), researchers may

follow [10, 17, 21, 32, 33].

Gerŝgorin disc theorem, which is stated in Section 5, is fundamental and widely used result on locating

the eigenvalues of square matrices. Varga’s nice book [31] surveys various applications and extensions of

this important theorem. Recently, Marsli and Hall [25] found an interesting result, which states that if

λ is an eigenvalue of an n × n matrix A with geometric multiplicity k, then λ is in at least k of the n

Gerŝgorin discs of A. Fiedler et al. [12] proved that for a triple of positive integers k, r, t with k ≤ r ≤ t,

there is a t × t complex matrix A and an eigenvalue λ of A such that λ has geometric multiplicity k and

algebraic multiplicity t, and λ is in precisely r Gerŝgorin discs of A. Marsli and Hall extended these results

in subsequent papers [24, 26, 27]. Bárány and Solymosi [6] showed that if the matrix entries are non-negative

and an eigenvalue has geometric multiplicity at least two, then this eigenvalue lies in a smaller disk.

In this paper, we find upper and lower bounds for the spectral radius of any nonnegative matrix.

Applying this result we find upper and lower bounds for the distance and distance signless Laplacian spectral

radius of graphs and characterize the graphs for which these bounds are extremal. Also, we give upper

bounds for the modulus of all distance (respectively, distance signless Laplacian) eigenvalues other than the

distance (respectively, distance signless Laplacian) spectral radius of graphs. These bounds are probably

first of their kind as we do not find in the literature any bound for these eigenvalues. For graphs satisfying

trmax − trmin ≤ n − 2 (respectively, 2trmax − 2trmin ≤ n) we get that all distance (respectively, distance

signless Laplacian) eigenvalues other than the distance (respectively, distance signless Laplacian) spectral

radius lie in the smallest Gerŝgorin disc of the distance (respectively, distance signless Laplacian) matrix.

We also give an example of a class of graphs with trmax − trmin > n− 2 and whose distance matrix satisfy

the above property. In case of distance matrix or distance signless Laplacian matrix of a graph of order
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n, if it happens that all the eigenvalues other than the spectral radius lie in the smallest Gerŝgorin disc

of that matrix, then it actually means that there are n − 1 eigenvalues, whatever may be their geometric

multiplicities, they lie in n− 1 Gerŝgorin disc of that matrix (see Figure 2 and Figure 3).

Next we state few known results which will be used in the sequel.

Theorem 1.1. [18] Let A be a nonnegative square matrix. Suppose that there is a positive vector x and

a nonnegative real number λ such that either Ax = λx or xTA = λxT . Then λ = ρ(A).

Theorem 1.2. [18] Let A = (aij) and B = (bij) be nonnegative square matrices such that A ≥ B (that

is aij ≥ bij), then ρ(A) ≥ ρ(B).

Theorem 1.3. [16] Let A, B be nonnegative, irreducible square matrix such that A  B, then ρ(A) >

ρ(B).

Theorem 1.4. [28] If A is a nonnegative matrix with maximal eigenvalue λ and row sums r1, r2, . . . , rn,

then

r ≤ λ ≤ R,

where r = mini ri and R = maxi ri. If A is irreducible, then equality can hold on both sides if and only if all

row sums of A are equal.

The following theorem is the well known Courant-Weyl inequalities.

Theorem 1.5. [9] Let A, B be n×n Hermitian matrices and eigenvalues of them be in decreasing order.

Then,

λj(A+B) ≤ λi(A) + λj−i+1(B) for 1 ≤ i ≤ j ≤ n,

and

λj(A+B) ≥ λi(A) + λj−i+n(B) for n ≥ i ≥ j ≥ 1.

2. Spectral radius of nonnegative matrices. In this section, we develop some results on spectral

radius of nonnegative matrices. These results are used in the next section for finding bounds on distance

and distance signless Laplacian eigenvalues of graphs.

Consider a real square matrix A whose rows and columns are indexed by elements in X = {1, 2, . . . , n}
and a partition π = {X1, X2, . . . , Xm} of X. The characteristic matrix S = (sij) of π is an n × m or-

der matrix such that sij = 1 if i ∈ Xj and 0 otherwise. We partition the matrix A according to π as
A11 A12 · · · A1m

A21 A22 · · · A2m

...
...

. . .
...

Am1 Am2 · · · Amm

, where each Aij is a submatrix (block) of A whose rows and columns are indexed

by elements of Xi and Xj , respectively. If qij denotes the average row sum of Aij then the matrix Q = (qij)

is called a quotient matrix of A. If the row sum of each block Aij is a constant then the partition π is called

equitable. The following is an well known result on equitable partition of a matrix.

Theorem 2.1. [9] Let Q be a quotient matrix of any square matrix A corresponding to an equitable

partition. Then the spectrum of A contains the spectrum of Q.

The following result appears as Corollary 3.9.11 in [9].
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Theorem 2.2. [9] Any divisor of a graph G has the index of G as an eigenvalue.

This result says that the adjacency spectral radius of a graph is same as the spectral radius of a quotient

matrix corresponding to any equitable partition of the adjacency matrix of the graph.

In Theorem 2.3 below, we give a relation between the spectral radius of any nonnegative square matrix

with that of its quotient matrices with respect to equitable partitions. A particular case of this theorem, that

is for nonnegative irreducible symmetric matrices, appears in [3]. More interestingly, this was conjectured

by You et al. [34].

Theorem 2.3. The spectral radius of a nonnegative square matrix A is same as the spectral radius of a

quotient matrix of it corresponding to an equitable partition.

Proof. We consider two cases depending on A is irreducible or not. We take Q as a quotient matrix of

A corresponding to an equitable partition π.

Case 1. Suppose the matrix A is irreducible. Then Q is also nonnegative and irreducible. By Perron-

Frobenius theorem the spectral radius ρ(Q) of Q is positive and having a positive eigenvector, say v, asso-

ciated with it. Then by Theorem 2.1 ρ(Q) is an eigenvalue of A. Also we get that Sv is an eigenvector of

A corresponding to the eigenvalue ρ(Q), where S is the characteristic matrix corresponding to the equitable

partition π. Since S is non-negative and every row of S has exactly one positive entry, the vector Sv is

positive. As ASv = ρ(Q)Sv, from Theorem 1.1 we get ρ(A) = ρ(Q).

Case 2. Now we consider that the matrix A is reducible. The quotient matrix Q is nonnegative but may

not be irreducible. If Q is irreducible then the proof is same as Case 1. Otherwise we we define a matrix

Aε = A + εJ , where ε > 0 and J is the all one square matrix of the order same as A. Then clearly Aε
is nonnegative and irreducible. Let Qε be the quotient matrix of Aε corresponding to the same equitable

partition π. Then Qε = Q+ εJ ′, where J ′ is the quotient matrix of J corresponding to the same equitable

partition π. By Case 1 we have ρ(Aε) = ρ(Qε). Since eigenvalues and eigenvectors are continuous functions

of entries of the matrix, we get ρ(Aε) → ρ(A) and ρ(Qε) → ρ(Q) as ε → 0. Again ρ(Qε) = ρ(Aε) → ρ(A)

when ε→ 0. So we have ρ(A) = ρ(Q).

Notation 2.1. For any nonnegative matrix of order n, ri denote the i-th row sum of the matrix,

i = 1, 2, . . . , n. We also denote the maximum and minimum row sum of the matrix by rmax and rmin,

respectively.

In the below, we give upper and lower bounds for the spectral radius of a nonnegative matrix and find

out extremal matrices.

Theorem 2.4. Let A = (aij)n×n be a nonnegative square matrix with rmin = rp and rmax = rq for some

p and q, 1 ≤ p, q ≤ n. Let S = {1, 2, . . . , n}, l = max
i∈S\{p}

{ri − aip}, m = min
i∈S\{q}

{ri − aiq}, s = max
i∈S\{p}

aip

and t = min
i∈S\{q}

aiq. Then the spectral radius of A satisfies

aqq +m+
√

(m− aqq)2 + 4t(rmax − aqq)
2

≤ ρ(A) ≤
app + l +

√
(l − app)2 + 4s(rmin − app)

2
.

Moreover, equality holds in the left side if ri − aiq = m and aiq = t for all i ∈ S \ {q}, and in the right side

if ri − aip = l and aip = s for all i ∈ S \ {p}.

Proof. Without loss of generality, we assume that p = 1 (because otherwise we can permute the rows
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and columns of the matrix A). Then A can be partitioned in block form as

A =

[
a11 E

B C

]
,(2.1)

where E = (eij) is an 1× (n− 1) matrix, B = (bij) is an (n− 1)× 1 matrix and C = (cij) is an

(n− 1)× (n− 1) square matrix. The row sum of E is rmin − a11. Consider an (n − 1) × 1 matrix

B1 = (b′ij)(n−1)×1 whose all entries are s. If row sum of any row in C is less than l then by adding

positive numbers to entries of that row we get a matrix C1 = (c′ij)(n−1)×(n−1) such that c′ij ≥ cij for all i, j

and
n−1∑
j=1

cij = l for all i. Let A1 be the matrix as given below.

A1 =

[
a11 E

B1 C1

]
.(2.2)

If A1 = (a′ij)n×n then a′ij ≥ aij for all i, j ∈ S, that is A ≤ A1. Then by Theorem 1.2 ρ(A) ≤ ρ(A1). We

note that each block of A1 has constant row sum. Then the corresponding quotient matrix for A1 is

Q1 =

[
a11 rmin − a11
s l

]
.

Now A1 is also nonnegative, so by Theorem 2.3 spectral radius of A1 is same as the spectral radius of

Q1. Thus, ρ(A1) = ρ(Q1) =
l+a11+

√
(l−a11)2+4s(rmin−a11)

2 . So we have ρ(A) ≤ l+a11+
√

(l−a11)2+4s(rmin−a11)
2 .

Equivalently, by considering the matrix A in its original form we have

ρ(A) ≤
app + l +

√
(l − app)2 + 4s(rmin − app)

2
.

If ri − aip = l and aip = s for all i ∈ S \ {p} then we must have A = A1 and so equality holds in the

above inequality.

Following the similar technique we get the lower bound for ρ(A). We assume that q = 1 and partition

the matrix A in block form as

A =

[
a11 E′

B′ C ′

]
,(2.3)

where row sum of the block matrix E′ is rmax − a11. Consider another matrix

A′1 =

[
a11 E′

B′1 C ′1

]
,(2.4)

where all the entries of B′1 are t, and C ′1 is obtained from C by reducing some positive entries of each row of

C whose row sum is grater than m so that C ′1 is nonnegative and each row sum of C ′1 is m. Then we have

A ≥ A′1. Also the quotient matrix for A′1 is

Q′1 =

[
a11 rmax − a11
t m

]
.

By applying Theorem 1.2 and Theorem 2.3, we get ρ(A) ≥ ρ(A′1) = ρ(Q′1) =
m+a11+

√
(m−a11)2+4t(rmax−a11)

2 .

Hence, if the matrix is in its original form then we have

ρ(A) ≥
aqq +m+

√
(m− aqq)2 + 4t(rmax − aqq)

2
,
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and equality holds whenever ri − aiq = m and aiq = t for all i ∈ S \ {q}.

Remark 2.5. Consider the nonnegative matrix A =

 4 3 1

1 7 1

2 3 5

. By applying Theorem 2.4 we get

that 8.449 < ρ(A) < 9.464. Whereas, Theorem 1.4 gives that 8 < ρ(A) < 10. Hence, one may find several

nonnegative matrices for which bounds given in Theorem 2.4 are sharper than those in Theorem 1.4.

3. Bounds on eigenvalues of the distance matrix. In this section, we first define a class of graphs

for which our upper bound for spectral radius of distance matrix of a graph will have extremal value.

Definition 3.1. A simple connected graph G on n vertices is said to be distinguished vertex deleted

regular graph (DVDR) if there exist a vertex v in G such that degG(v) = n− 1 and G− v is regular graph.

The vertex v is said to be a distinguished vertex of the DVDR graph G.

We note that complete graphs, star graphs, and wheel graphs are some trivial examples of this class of

graphs. Some non-trivial DVDR graphs are shown in Figure 1. In the following, we give a representation of

DVDR graphs in terms of almost transmission regular graphs.

Definition 3.2. A simple connected graph G is called almost transmission regular if each vertex of G

except one vertex v has the same transmission. We say this vertex v also a distinguished vertex of the graph.

Lemma 3.3. Let G be a simple connected graph of order n different from a complete graph. Then G is

a DVDR graph if and only if G is almost transmission regular graph with transmission of the distinguished

vertex is n− 1.

Proof. Suppose G is a DVDR graph with distinguished vertex v and degree of each vertex in G − v is

k (6= n − 2). Then tr(v) = n − 1 and tr(u) = k + 2(n − k − 1) for every u in V (G) \ {v}. Thus, we get

that G is an almost transmission regular graph. Conversely, suppose that in an n-vertex graph G there

exists a vertex v ∈ V (G) such that tr(v) = n − 1 and each vertex in V (G) \ {v} has transmission s. Then

for any u ∈ V (G) \ {v} we have degG(u) + 2(n − 1 − degG(u)) = s. Thus, degG(u) = 2(n − 1) − s for all

u ∈ V (G) \ {v}. That is degree of every vertex in G− v is 2(n− 1)− s− 1. Hence, G is a DVDR graph with

distinguished vertex v.

            

 

 G1 G2

 

 
G1 

G3

 

 
G1 

 

 

Figure 1. Some examples of DVDR graphs.

Next we present a theorem which gives upper and lower bounds for the distance spectral radius of a

graph.
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Theorem 3.4. Let G be a simple connected graph and u1 and u2 be vertices in G such that tr(u1) = trmin
and tr(u2) = trmax. Let m1 = max

v∈V (G)\u1

{tr(v)− d(u1, v)} and m2 = min
v∈V (G)\u2

{tr(v)− d(u2, v)}. Then the

distance spectral radius satisfies

m2 +
√
m2

2 + 4trmax
2

≤ ρ(D(G)) ≤ m1 +
√
m2

1 + 4trmine(u1)

2
,

where e(u1) is the eccentricity of the vertex u1. Moreover, equality holds on right side if and only if the graph

is a DVDR graph and equality holds on left side if and only if the graph is a complete graph.

Proof. Recall that distance matrix of a graph is nonnegative and for this matrix the parameters in

Theorem 2.4 are given by app = 0, l = m1, rmin = trmin, s = e(u1). Hence, from the upper bound of

Theorem 2.4, we get

ρ(D(G)) ≤ m1 +
√
m2

1 + 4trmine(u1)

2
.(3.5)

Suppose equality holds in (3.5). Since we are applying Theorem 2.4 taking A = D(G), we get that

ρ(D(G)) is same as the spectral radius of the matrix A1. The matrix D(G) as well as A1 are nonnegative

and irreducible. So by Theorem 1.3 we must have D(G) = A1 and then B = B1 and C = C1. As all the

entries of B1 are equal to e(u1), B = B1 is possible only when e(u1) = 1. That is u1 is adjacent to all other

vertices of the graph. Again C = C1 implies that tr(v) = m1 + 1 for all v ∈ V (G) \ u1. If m1 6= n− 2, then

by Lemma 3.3 G is a DVDR graph and if m1 = n − 2, then G is a complete graph, which is also a DVDR

graph. Again if G is a DVDR graph then obviously equality holds in (3.5).

For the lower bound of ρ(D(G)) the parameters in Theorem 2.4 are given by aqq = 0, m = m2, rmax =

trmax, t = 1. Hence, by the lower bound of Theorem 2.4, we get

ρ(D(G)) ≥ m2 +
√
m2

2 + 4trmax
2

.(3.6)

Suppose inequality (3.6) becomes equality. That is ρ(D(G)) is same as the spectral radius of the matrix

A′1 in equation (2.4). Then by Theorem 1.3 we must have D(G) = A′1. So we get B′ = B′1, and then u2 is

adjacent to all other vertices of the graph. Since tr(u2) = trmax, G must be a complete graph. Conversely,

if G is a complete graph then obviously equality holds in (3.6).

In the next two theorems, we give upper bounds for modulus of the distance eigenvalues of a graph other

than the distance spectral radius. In the literature, we do not find any bound for these eigenvalues.

Theorem 3.5. Let G be a simple connected graph and λ be any eigenvalue of D(G) other than the

distance spectral radius. Then the eigenvalue λ satisfies

|λ| ≤ trmax − n+ 2.

Moreover, equality holds for all λ simultaneously if and only G is a complete graph.

Proof. We can write the distance matrix as D(G) = A + B, where A is the matrix whose all diagonal

entries are zero and all other entries are one and B is a non-negative symmetric matrix.

For the matrix A we have λ1(A) = n− 1 and λj(A) = −1 for j = 2, 3, . . . , n. The maximum row sum of

the matrix B is trmax − n+ 1.
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Now applying Theorem 1.5, we get for j ∈ {2, 3, . . . , n},

λj(D(G)) = λj(B +A) ≤ λ1(B) + λj(A).(3.7)

As B is a nonnegative matrix so we have λ1(B) ≤ trmax−n+ 1. Hence, putting the value of λj(A) in (3.7),

we get for j ∈ {2, 3, . . . , n},

λj(D(G)) ≤ trmax − n.(3.8)

Again by applying Theorem 1.5, we get for j ∈ {2, 3, . . . , n},

λj(D(G)) = λj(A+B) ≥ λj(A) + λn(B) = −1 + λn(B).(3.9)

For the matrix B we have

|λn(B)| ≤ λ1(B) ≤ trmax − n+ 1(3.10)

⇒ λn(B) ≥ −(trmax − n+ 1).(3.11)

From (3.9) and (3.11), we get for j ∈ {2, 3, . . . , n},

λj(D(G)) ≥ −(trmax − n+ 2).(3.12)

Hence, from (3.8) and (3.12), the distance eigenvalue λ satisfies

|λ| ≤ trmax − n+ 2.(3.13)

Suppose that equality holds in (3.13) for all λ, that is |λj(D(G))| = trmax − n+ 2 for all j = 2, 3, . . . , n. If

for some j, 2 ≤ j ≤ n, λj is positive, then we get contradiction from (3.8) because trmax−n+ 2 can not be

smaller or equal to trmax − n. Thus, we get λj(D(G)) = −(trmax − n+ 2) for all j = 2, 3, . . . , n. Then the

graph G has only two distinct distance eigenvalues, and hence, G is a complete graph.

Conversely, assume that G is a complete graph. Then for the graph G, |λj(D(G))| = | − 1| = 1 for all

j = 2, 3, . . . , n. Also in this case, trmax = n − 1. So trmax − n + 2 = 1 and equality holds in (3.13) for all

such distance eigenvalues.

Theorem 3.6. Let G be a simple connected graph and λ be any eigenvalue of D(G) other than the

distance spectral radius. Then λ satisfies

|λ| ≤
m1 − n+ 2 +

√
(m1 − n+ 2)2 + 4(trmin − n+ 1)(e(u1)− 1)

2
+ 1,

where the parameters are the same as given in Theorem 3.4. Moreover, equality holds for all λ simultaneously

if and only if G a is complete graph.

Proof. We follow the same steps up to inequality (3.10) of Theorem 3.5. Then, by the upper bound of

Theorem 2.4, we get

λ1(B) ≤
m1 − n+ 2 +

√
(m1 − n+ 2)2 + 4(trmin − n+ 1)(e(u1)− 1)

2
.

Hence, in equations (3.7) and (3.10), replacing the upper bound of λ1(B) by this new upper bound, we get

the desired bound of λj(D(G)) for j ∈ {2, 3, . . . , n}.

By the similar argument as in the previous theorem, we get that equality holds for all λ if and only if

the graph G is a complete graph.
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4. Bounds on eigenvalues of the distance signless Laplacian matrix. The result below is an

application of Theorem 2.4 and its proof technique is analogous to that of Theorem 3.4.

Theorem 4.1. Let G be a simple connected graph with u1 and u2 be two vertices in G such that tr(u1) =

trmin and tr(u2) = trmax. Let l1 = max
v∈V (G)\u1

{2tr(v)−d(u1, v)} and l2 = min
v∈V (G)\u2

{2tr(v)−d(u2, v)}. Then

the distance signless Laplacian spectral radius satisfies

l2 + trmax +
√

(l2 − trmax)2 + 4trmax
2

≤ ρ(DQ(G)) ≤
l1 + trmin +

√
(l1 − trmin)2 + 4trmine(u1)

2
.

Moreover, equality holds on right side if and only if the graph is DVDR graph and equality holds on left side

if and only if the graph is a complete graph.

In the following, we give upper and lower bounds to distance signless Laplacian eigenvalues other than

the distance signless Laplacian spectral radius of graphs. This result is analogous to Theorem 3.5, but proof

technique is slightly different.

Theorem 4.2. Let G be a simple connected graph and λ be any eigenvalue of DQ(G) other than the

distance signless Laplacian spectral radius. Then λ satisfies

max{(2trmin − 2trmax + n− 2), 0} ≤ λ ≤ 2trmax − n.

Moreover, equality holds on both sides for all λ simultaneously if G is a complete graph.

Proof. We partition the distance signless Laplacian matrix as DQ(G) = A + B, where A is the matrix

whose all diagonal entries are trmin and all other entries are equal to one, and B is a non-negative symmetric

matrix.

For the matrix A we have λ1(A) = trmin + n − 1 and λj(A) = trmin − 1 for j = 2, 3, . . . , n. Then

maximum row sum of the matrix B is 2trmax − trmin − n+ 1.

Now applying Theorem 1.5, we get for j ∈ {2, 3, . . . , n},

λj(DQ(G)) = λj(B +A) ≤ λ1(B) + λj(A).(4.14)

As B is a nonnegative matrix, we get λ1(B) ≤ 2trmax − trmin − n+ 1. Hence, putting the value of λj(A) in

(4.14) we get, for j ∈ {2, 3, . . . , n},

λj(DQ(G)) ≤ 2trmax − n.(4.15)

Applying Theorem 1.5 we get, for j ∈ {2, 3, . . . , n},

λj(DQ(G)) = λj(A+B) ≥ λj(A) + λn(B) = trmin − 1 + λn(B).(4.16)

For the matrix B, we have

|λn(B)| ≤ λ1(B) ≤ 2trmax − trmin − n+ 1(4.17)

⇒ λn(B) ≥ −(2trmax − trmin − n+ 1).(4.18)

From (4.16) and (4.18), we get, for j ∈ {2, 3, . . . , n},

λj(DQ(G)) ≥ 2trmin − 2trmax + n− 2.(4.19)
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Again distance signless Laplacian matrix is a nonnegative diagonally dominant symmetric matrix, so all of

its eigenvalues are nonnegative. Hence, from (4.15) and (4.19), the distance signless Laplacian eigenvalue λ

satisfies

max{(2trmin − 2trmax + n− 2), 0} ≤ λ ≤ 2trmax − n.(4.20)

If G is a complete graph then obviously both the inequalities in (4.20) become equality.

Our next result is analogous to Theorem 3.6 and proof technique is also similar to its proof.

Theorem 4.3. Let G be a simple connected graph and λ be any eigenvalue of DQ(G) other than the

distance signless Laplacian spectral radius. Then λ satisfies

max{(trmin − 1− S), 0} ≤ λ ≤ trmin − 1 + S,

where

S =
l1 − trmin − n+ 2 +

√
(l1 − trmin − n+ 2)2 + 4(trmin − n+ 1)(e(u1)− 1)

2
,

and the parameters in S are the same as defined in Theorem 4.1. Moreover, equality holds on both sides for

all λ simultaneously if G is a complete graph.

5. Distance and distance signless Laplacian eigenvalues and the Gerŝgorin discs. The fol-

lowing well known Gerŝgorin disc theorem guarantees that eigenvalues of a square matrix are contained in

some easily computed discs.

Theorem 5.1. (Gerŝgorin) Let A = [aij ] ∈Mn, Ri(A) =
∑
j 6=i |aij |, i = 1, 2, . . . , n, and consider the n

Gerŝgorin discs

{z ∈ C : |z − aii| ≤ Ri(A)}, i = 1, 2, . . . , n.

Then the eigenvalues of A are in the union of Gerŝgorin discs

G(A) =

n⋃
i=1

{z ∈ C : |z − aii| ≤ Ri(A)}.

Furthermore, if the union of k of the n discs that comprise G(A) forms a set Gk(A) that is disjoint from the

remaining n− k discs, then Gk(A) contains exactly k eigenvalues of A, counted according to their algebraic

multiplicities.

The distance matrix D(G) of a simple connected graph G is real symmetric and having diagonal entries

all zero. Thus, all the Gerŝgorin discs of D(G) are concentric circles with center at zero and radius of

the discs are the transmissions of the vertices of G (see Figure 2). So, according to Theorem 5.1 all the

eigenvalues of D(G) are contained in the circle having center at zero and radius trmax of G. Again all the

Gerŝgorin discs for distance signless Laplacian matrix of a graph are circles passing through the origin with

centers on the real axis and radius of the discs are the transmissions of the vertices of the graphs (see Figure

3).

The following result is immediate from Theorem 3.5.

Theorem 5.2. If G is a simple connected graph satisfying trmax−trmin ≤ n−2, then all the eigenvalues

of D(G), other than the distance spectral radius, lie in the smallest Gerŝgorin disc.
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Figure 2. Gerŝgorin discs for distance matrix of a graph.

 

Figure 3. Gerŝgorin discs for distance signless Laplacian matrix of a graph.

For any nonnegative square matrix A we denote property P as below.

P: All eigenvalues of the matrix A other than the spectral radius lie inside the smallest Gerŝgorin disc

of A.

Next we give an example of a graph, namely the path Pn, n ≥ 5, for which trmax − trmin > n − 2 and

its distance matrix satisfies the property P. The path Pn on n vertices is a graph in which trmax = n2−n
2
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and trmin = n2

4 or n2−1
4 according as n is even or odd. Then for Pn with n ≥ 5, trmax − trmin > n− 2. In

[29], Ruzieh and Powers have found all the distance eigenvalues of Pn, which are given below.

Theorem 5.3. [29] The distance eigenvalues di, i = 1, 2, . . . , n, of the path Pn with n > 2 are as follows.

1. d1 = 1/(cosh θ − 1), where θ is the positive solution of tanh(θ/2) tanh(nθ/2) = 1/n.

2. di = 1/(cos θ−1), where (a) θ is the one of the [(n−1)/2] solutions of tanh(θ/2) tanh(nθ/2) = −1/n

in the interval (0, π), or (b) θ = (2m− 1)π/n for m = 1, 2, . . . , [n/2].

One sees that d1 is the distance spectral radius of Pn and other distance eigenvalues are given by

1/(cos θ−1), where θ lies in the interval [πn ,
(n−1)π

n ]. We note that f(θ) = 1/(cos θ−1) is a strictly increasing

function and f(θ) < 0 in [πn ,
(n−1)π

n ]. So among all distance eigenvalues of Pn, other than the spectral radius,

f(π/n) is the smallest one. As all of them are negative so the eigenvalue f(π/n) have maximum modulus.

Now

1− cos(π/n) = 1−
[
1− π2

n22!
+

π4

n44!
− π6

n66!
+

π8

n88!
− · · ·

]
=

(
π2

n22!
− π4

n44!

)
+

(
π6

n66!
− π8

n88!

)
+ · · ·

>
π2

2n2
− π4

24n4

=
1

n2 − 1

[
π2(n2 − 1)

2n2
− π4(n2 − 1)

24n4

]
>

4

n2 − 1
for n ≥ 5.

Thus, we get 1
1−cos(π/n) <

n2−1
4 for n ≥ 5. Hence, | 1

cos(π/n)−1 | <
n2−1

4 < n2

4 for n ≥ 5. Therefore, distance

matrix of the path Pn, n ≥ 5, satisfies the property P.

Next we get that property P also holds true for distance signless Laplacian matrix of some classes of

graphs. The result below is immediate from Theorem 4.2.

Theorem 5.4. If G is a simple connected graph satisfying 2trmax−2trmin ≤ n, then all the eigenvalues

of DQ(G), other than the distance signless Laplacian spectral radius, lie in the smallest Gerŝgorin disc.

Property P obviously holds true for distance and distance signless Laplacian matrix of transmission

regular graphs. Based on the above discussions we leave the following questions for further research.

Problem 5.1. Whether property P holds true for distance matrix of an arbitrary graph?

Problem 5.2. Whether property P holds true for distance signless Laplacian matrix of an arbitrary

graph?

We notice that distance matrix of an n-vertex connected graph is symmetric, and its diagonal entries

are all zero and non-diagonal entries vary from 1 to n− 1.

Problem 5.3. There are many examples of symmetric n × n square matrices with diagonal entries all

zero and non-diagonal entries vary from 1 to n − 1, which do not satisfy property P. What are all such

matrices satisfying property P?
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[9] D. Cvetković, P. Rowlinson, and S. Simić. An Introduction to the Theory of Graph Spectra. Cambridge University Press,

Cambridge, 2010.

[10] K.C. Das. Proof of conjectures on the distance signless Laplacian eigenvalues of graphs. Linear Algebra Appl., 467:100–115,

2015.

[11] K.C. Das. On the largest eigenvalue of the distance matrix of a bipartite graph. MATCH Commun. Math. Comput.

Chem., 62:667–672, 2009.

[12] M. Fiedler, F.J. Hall, and R. Marsli. Gershgorin discs revisited. Linear Algebra Appl., 438:598–603, 2013.

[13] P.W. Fowler, G. Caporossi, and P. Hansen. Distance matrices, wiener indices, and related invariants of fullerenes. J. Phys.

Chem. A, 105:6232–6242, 2011.

[14] R.L. Graham and L. Lovasz. Distance matrix polynomials of trees. Adv. Math., 29:60–88, 1978.

[15] I. Gutman and M. Medeleanu. On the structure-dependence of the largest eigenvalue of the distance matrix of an alkane.

Indian J. Chem. A, 37:569–573, 1998.

[16] L. Hogben (editor). Handbook of Linear Algebra, second edition. CRC Press, Boca Raton, 2014.

[17] W. Hong and L. You. Further results on the spectral radius of matrices and graphs. Appl. Math. Comput., 239:326–332,

2014.

[18] R.A. Horn and C.R. Johnson. Matrix Analysis. Cambridge University Press, Cambridge, 2012.

[19] A . Ilic̃. Distance spectra and distance energy of integral circulant graphs. Linear Algebra Appl., 433:1005–1014, 2010.

[20] G. Indulal. Sharp bounds on the distance spectral radius and the distance energy of graphs. Linear Algebra Appl.,

430:106–113, 2009.

[21] X. Li, Y. Fan, and S. Zha. A lower bound for the distance signless Laplacian spectral radius of graphs in terms of chromatic

number. J. Math. Res. Appl., 14(3):289–294, 2014.

[22] H.Q. Lin, Y. Hong, J.F. Wang, and J.L. Shu. On the distance spectrum of graphs. Linear Algebra Appl., 439:1662–1669,

2013.

[23] H. Lin and B. Zhou. On least distance eigenvalues of trees, unicyclic graphs and bicyclic graphs. Linear Algebra Appl.,

443:153-163, 2014.

[24] R. Marsli and F.J. Hall. Some new inequalities on geometric multiplicities and Gershgorin discs. Int. J. Algebra, 8:135–147,

2014

[25] R. Marsli and F.J. Hall. Geometric multiplicities and Gershgorin discs. Amer. Math. Monthly, 120:452–455, 2013.

[26] R. Marsli and F.J. Hall. Further results on Gershgorin discs. Linear Algebra Appl., 439:189–195, 2013.

[27] R. Marsli and F.J. Hall. Some refinements of Gershgorin discs. Int. J. Algebra, 7:573–580, 2013.

[28] H. Minc. Nonnegative Matrices. Wiley, New York, 1988.

[29] S.N. Ruzieh and D.L. Powers. The distance spectrum of the path Pn and the first distance eigenvector of connected graphs.

Linear Multilinear Algebra, 28:75–81, 1990.

[30] R. Todeschini and V. Consonni. Handbook of Molecular Descriptors. Wiley-VCH, Weinheim, 2000.
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