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BLOCK REPRESENTATION AND SPECTRAL PROPERTIES

OF CONSTANT SUM MATRICES∗

S.L. HILL† , M.C. LETTINGTON‡ , AND K.M. SCHMIDT‡

Abstract. An equivalent representation of constant sum matrices in terms of block-structured matrices is given in this

paper. This provides an easy way of constructing all constant sum matrices, including those with further symmetry properties.

The block representation gives a convenient description of the dihedral equivalence of such matrices. It is also shown how it

can be used to study their spectral properties, giving explicit formulae for eigenvalues and eigenvectors in special situations, as

well as for quasi-inverses when these exist.
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1. Introduction. In this paper, we study square matrices with the following symmetry properties.

Definition 1.1. An n× n matrix M ∈ Rn×n is called a constant sum matrix of weight w if each of its

rows and columns sums to nw. If, in addition, each of its two principal diagonals also adds up to nw, it is

called a diagonal constant sum matrix. We call M a non-diagonal constant sum matrix if it is a constant

sum matrix which is not a diagonal constant sum matrix (see [9]).

Matrices of this type, often with additional properties, are of interest in various areas of mathematics.

For example, a constant sum matrix is called a doubly stochastic matrix if the entries are non-negative and

the sums are equal to 1, an alternating sign matrix if it is a matrix with entries in {−1, 0, 1} where each

row and column sums to 1 and the nonzero entries in each row and column alternate in sign (see [2]), and a

semimagic square if its entries are integers (see [1], [13]). The following two centre-point symmetry types of

semimagic square matrices are of interest.

Definition 1.2. Let M be an n× n constant sum matrix of weight w.

(a) The matrix M is called associated if each entry and its mirror entry with respect to the centre of the

matrix add to 2w, i.e., if

Mij +Mn+1−i,n+1−j = 2w (i, j ∈ {1, . . . , n}).

(b) The matrix M is called balanced (or centro-symmetric) if each entry is equal to its mirror entry with

respect to the centre of the matrix, i.e.,

Mij −Mn+1−i,n+1−j = 0 (i, j ∈ {1, . . . , n}).
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These properties can be equivalently expressed in a more convenient way using the following conventions.

Let 1n ∈ Rn be the vector which has all entries equal to 1. Let En = (1)ni,j=1 ∈ Rn×n be the n × n matrix

which has all entries equal to 1. Moreover, let Jn = (δi,n+1−j)
n
i,j=1 ∈ Rn×n, where δ is the Kronecker delta

symbol, be the n × n matrix which has entries 1 on the antidiagonal and 0 otherwise. Later, we shall also

use the notations 0n for the null vector in Rn, On = (0)ni,j=1 for the n × n null matrix, and In = (δij)
n
i,j=1

for the n× n unit matrix.

Note that we consider the elements of Rn as column vectors, i.e., matrices with n rows and a single

column, throughout; row vectors are represented in the form vT , where v ∈ Rn.

Lemma 1.3. Let M ∈ Rn×n.

(a) The following statements are equivalent.

(i) M is a constant sum matrix of weight w;

(ii) MEn = nwEn = MTEn;

(iii) 1n is an eigenvector, with eigenvalue nw, for both M and its transpose MT .

(b) If M is a constant sum matrix, then it is associated if and only if M + JnMJn = 2wEn.
(c) If M is a constant sum matrix, then it is balanced if and only if M = JnMJn.

Let Sn be the set of all n×n constant sum matrices, and An, Bn the subsets of associated and balanced

constant sum matrices, respectively. Then Sn is a subalgebra of the standard n× n matrix algebra, and An

and Bn are vector subspaces of Sn. Moreover, Bn is a subalgebra of Sn, and

(1.1) AnAn ⊂ Bn, AnBn ⊂ An, BnAn ⊂ An

(see [10], [4] Lemma 1.1; it was already observed in [12] that all odd powers of an associated 3×3 magic square

were associated). Furthermore, An and Bn generate the whole algebra Sn in the following way. Denoting

by So
n the subset (in fact, subalgebra) of weight 0 constant sum matrices, and setting Ao

n = An ∩ So
n,

Bo
n = Bn ∩ So

n, we have

An ∩Bn = REn, Ao
n ∩Bo

n = {On}, and Sn = Ao
n +Bo

n + REn,

where every n× n constant sum matrix of weight w can be written as a sum of unique elements of Ao
n and

Bo
n, and wEn (see [4] Lemma 2.3).

In Section 2 of the present paper, we introduce an equivalent block representation of constant sum

matrices of even dimension by means of conjugation with a fixed symmetric involution matrix Xn. In the

transformed representation, split into a 2×2 array of block matrix components, the associated and balanced

types correspond to the off-diagonal and on-diagonal blocks, respectively, so the above decomposition of

constant sum matrices can easily be read off. Moreover, the block representation provides a simple way of

constructing all constant sum matrices, and since the rationality of entries is preserved in the transformation,

also helps in the construction of semimagic squares. We mention in passing that the block representation

also makes other matrix symmetries more transparently accessible [6].

In Section 3, we provide the block representation for constant sum matrices of odd dimension. Apart from

some technical differences, it has the same essential properties and advantages as in the even-dimensional

case.

The remainder of the paper is dedicated to using the block representation as a tool to study properties

of constant sum matrices. In Section 4, we show how the dihedral symmetries are reflected in the block
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representation. This is of interest when the matrix is considered as an array of numbers irrespective of its

overall orientation, e.g. when classifying semimagic squares.

Section 5 is dedicated to the question when a constant sum matrix is a diagonal constant sum matrix.

We show how this property (which all associated constant sum matrices have due to their structure) is

characterised in terms of the block representation (Theorem 5.1), and then use this to show that some power

of a diagonal constant sum matrix is either a non-diagonal constant sum matrix or has all entries equal.

In Section 6, we consider associated constant sum matrices and their (balanced) squares, focusing on the

case of matrices with two rank-1 blocks, for which we give explicit eigenvalue formulae. Section 7 presents

the explicit construction of a two-sided eigenvector matrix (whose columns are right eigenvectors while its

rows are left eigenvectors) for the square of any rank 1 + 1 associated constant sum matrix, concluding

with concrete examples. In Section 8, we find maximal ranks for (weighted and unweighted) associated and

balanced constant sum matrices of even or odd dimension and give an explicit formula, based on the block

representation, for their quasi-inverses if they exist.

2. Block representation of even dimensional constant sum matrices. We first consider 2n×2n

matrices, n ∈ N. Let

X2n =
1√
2

(
In Jn
Jn −In

)
∈ R2n×2n.

Clearly X 2
2n = I2n and X T

2n = X2n, so X2n is an orthogonal symmetric involution (see [7] pp. 165–166).

Conjugation with the matrix X2n gives rise to a block representation of matrices in S2n in which the symmetry

type can easily be read off. This also provides a convenient and systematic way of constructing constant

sum matrices with (or without) centre-point symmetries.

Theorem 2.1. Let M ∈ R2n×2n.

(a) The matrix M ∈ Ao
2n if and only if

M = X2n

(
On V T

W On

)
X2n,

where V,W ∈ Rn×n have row sum 0, i.e.,

V 1n = 0n, W1n = 0n.

(b) The matrix M ∈ Bo
2n if and only if

M = X2n

(
Y On

On Z

)
X2n,

where Y ∈ So
n and Z ∈ Rn×n.

(c) The weight matrix E2n satisfies

E2n = X2n

(
2En On

On On

)
X2n.

In view of the decomposition of general constant sum matrices mentioned above, we see that, as a

consequence of Theorem 2.1, any even-dimensional, weight w constant sum matrix has, after conjugation
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with X2n, the block representation (
Y + 2wEn V T

W Z

)
,

with a weight 0 constant sum matrix Y, matrices V,W with row sum 0 and a matrix Z which can be any

n × n matrix. Evidently, this block representation clearly shows the decomposition into an associated and

a balanced matrix, corresponding to setting the two diagonal or the two off-diagonal blocks equal to 0,

respectively.

From the block representation, it is very straightforward to generate all matrices in Ao
2n (and hence, by

adding a multiple of E2n, in A2n); indeed, the conditions on the matrices V,W can very easily be satisfied, as

n−1 columns can be arbitrary when the last column is chosen so that the rows add to 0. The construction of

a general matrix in B2n is a bit more complicated, as Z can be chosen arbitrarily, but Y must be a constant

sum matrix. At least this reduces the dimension of the problem from 2n to n.

Proof of Theorem 2.1. We begin by writing the matrix M in the form

M =

(
A C

B D

)
,

where A,B,C,D ∈ Rn×n; then

J2nMJ2n =

(
JnDJn JnBJn
JnCJn JnAJn

)
.

(a) Assume that M ∈ Ao
2n. Then, by Lemma 1.3 (b), we have O2n = M + J2nMJ2n, which is equivalent to

B = −JnCJn, D = −JnAJn. Hence,

X2nMX2n =

(
On AJn − C

JnA+ JnCJn On

)
.(2.2)

By Lemma 1.3 (a), M is a weight 0 constant sum matrix if and only if 12n is an eigenvector of both M and

MT for eigenvalue 0. In view of Lemma 4.1, this is equivalent to

X2n12n =
√

2

(
1n
0n

)
(2.3)

being an eigenvector, for eigenvalue 0, of both X2nMX2n and (X2nMX2n)T . From (2.2), this corresponds to

the conditions

Jn(A+ CJn)1n = 0n, (AJn − C)T 1n = 0n.

Thus, V = (AJn − C)T and W = JnA+ JnCJn will have row sum 0.

Conversely, given V,W ∈ Rn×n with row sum 0, we take A = 1
2 (V TJn + JnW ), C = 1

2 (JnWJn − V T )

and further B = −JnCJn, D = −JnAJn, to construct a weight 0 constant sum matrix.

(b) Assume M ∈ Bo
n. Then, by Lemma 1.3 (c), we have O2n = M − J2nMJ2n, which is equivalent to

B = JnCJn, D = JnAJn. Hence,

X2nMX2n =

(
A+ CJn On

On JnAJn − JC

)
.(2.4)

As before, the condition that M is a constant sum matrix of weight 0 means that (2.3) is an eigenvector of

both X2nMX2n and (X2nMX2n)T for eigenvalue 0; by (2.4) this is equivalent to
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(A+ CJn)1n = 0n, (A+ CJ )T 1n = 0n.

By Lemma 1.3 (a), Y = A+ CJn ∈ So
n.

Conversely, given Y ∈ So
n and Z ∈ Rn×n, we take A = 1

2 (Y +JnZJn), C = 1
2 (Y Jn−JnZ), and further

B = JnCJn, D = JnAJn, to construct a weight 0 balanced constant sum matrix.

(c) This is a straightforward calculation.

3. Block representation of odd dimensional constant sum matrices. We now consider (2n +

1)× (2n+ 1) matrices, n ∈ N. Let

X2n+1 =


1√
2
In 0n

1√
2
Jn

0Tn 1 0Tn
1√
2
Jn 0n − 1√

2
In

 ∈ R(2n+1)×(2n+1).

(The matrix X2n+1 turns into X2n when its central row and column are deleted.) The matrix X2n+1 is a

symmetric involution, i.e., X T
2n+1 = X2n+1 and X 2

2n+1 = I2n+1. Conjugation with X2n+1 gives rise to the

following block representation of odd-dimensional constant sum matrices. We emphasise that despite the

presence of
√

2 in the matrix X2n+1, the constant sum matrix will have rational entries if and only if its block

representation has rational entries. This is important for the application to the construction of semimagic

square matrices.

Theorem 3.1. Let M ∈ R(2n+1)×(2n+1).

(a) The matrix M ∈ Ao
2n+1 if and only if

M = X2n+1

On 0n V T

0Tn 0 −
√

2(V 1n)T

W −
√

2W1n On

X2n+1

with matrices V,W ∈ Rn×n. Moreover, M will have rational entries if and only if V and W have

rational entries.

(b) The matrix M ∈ Bo
2n+1 if and only if

M = X2n+1

 Y −
√

2Y 1n On

−
√

2(Y T 1n)T 2 1TnY 1n 0Tn
On 0n Z

X2n+1

with matrices Y,Z ∈ Rn×n. Moreover, M will have rational entries if and only if Y and Z have

rational entries.

(c) The matrix E2n+1 satisfies

E2n+1 = X2n+1

 2En
√

2 1n On√
2 1Tn 1 0Tn
On 0n On

X2n+1.

Note that there are no conditions on the matrices V,W, Y and Z in Theorem 3.1, so the block represen-

tation gives a very simple way of constructing all odd-dimensional constant sum matrices (with or without
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centre-point symmetries). Indeed, it is evident from the theorem that the general element of S2n+1 will be

of the form

M = X2n+1

 Y + 2wEn
√

2(wIn − Y )1n V T
√

2((wIn − Y )1n)T w + 2 1TnY 1n −
√

2(V 1n)T

W −
√

2W1n Z

X2n+1

with arbitrary V,W, Y, Z ∈ Rn×n. Note that, in contrast to the even-dimensional case, adding the weight w

to M is not equivalent to adding a weight to the matrix Y.

Proof of Theorem 3.1. Writing M in the form

M =

 A v C

wT x yT

B z D


with x ∈ R, v, w, y, z ∈ Rn and A,B,C,D ∈ Rn×n, we find

J2n+1MJ2n+1 =

JnDJn Jnz JnBJn
yTJn x wTJn
JnCJn Jnv JnAJn

 .

(a) The weight 0 association condition O2n+1 = M + J2n+1MJ2n+1 of Lemma 1.3 (b) hence gives x = 0,

y = −Jnw, z = −Jnv, B = −JnCJn and D = −JnAJn. Thus, if M is a weight 0 associated constant sum

matrix, then

X2n+1MX2n+1 =

 On 0n AJn − C
0Tn 0

√
2wTJn

JnA+ JnCJn
√

2Jnv On

 .

By Lemma 1.3 (a), M ∈ So
2n+1 if and only if 12n+1 is an eigenvector with eigenvalue 0 of M and of MT .

Since

X2n+112n+1 =


√

2 1n
1

0n

 ,(3.5)

we see that

02n+1 = M12n+1 = MX2n+1X2n+112n+1

if and only if 0n = W
√

2 1n +
√

2Jnv, where we set W = JnA+JnCJn; this gives Jnv = −W1n. Similarly,

setting V = (AJn − C)T ,

02n+1 = MT 12n+1 = MTX2n+1X2n+112n+1

if and only if 0n = V
√

2 1n +
√

2Jnw, and hence, wTJn = −(V 1n)T .

Conversely, given matrices V,W ∈ Rn×n, we take A = 1
2 (JnW + V TJn), C = 1

2 (JnWJn − V T ) and

further B = −JnCJn, D = −JnAJn, x = 0, v = −JnW1n, w = −JnV 1n, y = V 1n and z = W1n to
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construct a weight 0 associated constant sum matrix. From these formulae, it is evident that M has rational

entries if and only if V,W have rational entries.

(b) The balanced condition O2n+1 = M − J2n+1MJ2n+1 of Lemma 1.3 (c) gives z = Jnv, y = Jnw,
B = JnCJn and D = JnAJn; there is no condition on x. Then

X2n+1MX2n+1 =

A+ CJn
√

2v On√
2wT x 0Tn
On 0n JnAJn − JnC


and hence, using Lemma 1.3 (a) and (3.5), 02n+1 = M12n+1 if and only if

0n+1 =

(√
2((A+ CJn)1n + v)

2wT 1n + x

)
,

giving x = −2wT 1n and v = −Y 1n, where we set Y = A+ CJn. Similarly, 02n+1 = MT 12n+1 if and only if

0n+1 =

(√
2(Y T 1n + w)

2vT 1n + x

)
,

so x = −2vT 1n and w = −Y T 1n. This determines v and w and gives two conditions on x, which turn out to

be each equivalent to x = 2 1TnY 1n.

For the converse, we takeA = 1
2 (Y+JnZJn), C = 1

2 (Y Jn−JnZ), and furtherB = JnCJn, D = JnAJn,
v = −Y 1n, w = −Y T 1n, x = 2 1TnY 1n, y = −JnY T 1n and z = −JnY 1n to construct a weight 0 balanced

constant sum matrix. From these formulae it is evident that M ∈ Q(2n+1)×(2n+1) if and only if Y, Z ∈ Qn×n.

(c) This is a straightforward calculation.

4. Dihedral symmetry. As the matrix Xn is symmetric (i.e., equal to its transpose) and involutory

(i.e., its own inverse matrix), the following observation is straightforward.

Lemma 4.1. (a) The block representation is an algebra isomorphism; indeed,

Xn(αM +N)Xn = αXnMXn + XnNXn (α ∈ R, M,N ∈ Rn×n)

and

Xn(MN)Xn = XnMXnXnNXn (M,N ∈ Rn×n).

(b) The block representation of the transposed matrix is the transpose of the block representation of the

original matrix; indeed,

XnM
TXn = (XnMXn)T (M ∈ Rn×n).

The unique decomposition of an n × n constant sum matrix into weightless associated and balanced

constant sum matrices and a multiple of En can easily be read off its block representation. Associated and

balanced constant sum matrices are clearly identified by the presence and position of null blocks in their block

representation. Moreover, the block representation can be used to characterise other matrix symmetries in

a convenient manner. For example, in the study of semimagic or magic squares, it is usually the relative
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arrangement of numbers in the square which is the object of interest, not their fixed positioning in a matrix;

therefore matrices which differ only by rotation or reflection will be identified with one another. In other

words, the equivalence classes in Sn with respect to the dihedral group for the n×n square will be considered.

In the block representation, the action of the dihedral group translates into transposition and sign inversion

of the right or bottom half of the block matrix. Thus, we have the following result.

Theorem 4.2. Let M ∈ Sn and

M = Xn

(
Ỹ Ṽ T

W̃ Z

)
Xn(4.6)

its block representation. Then the dihedral equivalence class of M is{
Xn

(
Ỹ sṼ T

tW̃ stZ

)
Xn,Xn

(
Ỹ T sW̃T

tṼ stZT

)
Xn | s, t ∈ {1,−1}

}
.

Remark 4.3. If n is even, then Ỹ , Ṽ , W̃ are the matrices Y, V,W of Theorem 2.1; if n is odd, then they

include parts of the centre row and column in the block representation of Theorem 3.1. (In particular, Ṽ

and W̃ will then no longer be square matrices.) In either case, Z is the matrix denoted by the same letter

in Theorems 2.1, 3.1.

Proof of Theorem 4.2. The dihedral group is generated by the two operations of reflection along the

diagonal and reflection along the horizontal centreline. In matrix terms, these correspond to taking the

transpose of the matrix and to left multiplication with the matrix Jn, respectively. Transposition carries

over directly to the block representation, as seen in Lemma 4.1 (b). By the product formula in Lemma 4.1

(a), left multiplication of M with Jn translates into left multiplication of its block representation with the

matrix

XnJnXn =

(
Ik Ok

Ok −Ik

)
in the even-dimensional case n = 2k, and

XnJnXn =

(
Ik+1 Ok+1,k

Ok,k+1 −Ik

)
in the odd-dimensional case n = 2k+1; here Ok,l denotes the null matrix with k rows and l columns. Hence,

JnM = Xn

(
Ỹ Ṽ T

−W̃ −Z

)
Xn.(4.7)

Similarly, reflection of M along the vertical centreline corresponds to multiplication with Jn on the right,

and hence to inverting the sign of the rightmost k columns in the block representation. (This operation is

of course derived from the group generators as (JnMT )T = MJn.)

5. Diagonal constant sum matrices. In a diagonal constant sum matrix, its two main diagonals

also need to add up to the row and column sum. For associated constant sum matrices, this is always the

case. However, for balanced constant sum matrices, which, since En is a diagonal constant sum matrix, we

can assume without loss of generality to have weight 0, this gives an additional condition.
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The sum of the diagonal entries of the matrix M is equal to its trace, trM ; the sum of the entries on

the second diagonal is the trace of the matrix after reflection along the horizontal (or vertical) centreline,

i.e., equal to tr(JnM). As the trace of a product of matrices is invariant under cyclic permutations of its

factors, and hence, the trace of a constant sum matrix is equal to the trace of its block representation, we

see that for a weight 0 balanced constant sum matrix M, using the representation (4.6),

trM = tr(Xn

(
Ỹ O
O Z

)
Xn) = tr Ỹ + trZ,

and by (4.7),

tr(JnM) = tr(Xn

(
Ỹ O
O −Z

)
Xn) = tr Ỹ − trZ.

As both must vanish for the matrix to be a weight 0 diagonal constant sum matrix, this means that the

traces of Ỹ and of Z must separately be 0. This gives rise to the following statement.

Theorem 5.1. (a) A 2n× 2n matrix M is a balanced diagonal constant sum matrix of weight w if and

only if

M = X2n

(
Y On

On Z

)
X2n,

where Y is an n× n constant sum matrix of weight 2w and trY = 2nw, and Z is any n× n matrix

with trZ = 0.

(b) A (2n+ 1)× (2n+ 1) matrix M is a balanced diagonal constant sum matrix of weight w if and only if

M = X2n+1

(
Ỹ On+1,n

On,n+1 Z

)
X2n+1,

where

Ỹ =

(
Y + 2wEn

√
2(wIn − Y )1n√

2((wIn − Y )1n)T w + 2 1TnY 1n

)
,

Y, Z are any n × n matrices such that trY = −2 1TnY 1n (corresponding to tr Ỹ = (2n + 1)w) and

trZ = 0.

Remark 5.2. The condition on the matrix Y in Theorem 5.1 (a) almost makes it a diagonal constant

sum matrix, but not quite. For example, the matrix

Y =

 1 2 −3

−6 1 5

5 −3 −2


is a weight 0 constant sum matrix with vanishing trace, but its second diagonal does not add up to 0.

Nevertheless, this matrix is a suitable upper block Y for the block representation of a 6 × 6 balanced

diagonal constant sum matrix, choosing any 3× 3 matrix Z of vanishing trace for the lower block.

Remark 5.3. Bearing in mind that 1TnY 1n is just the sum of all entries of Y, the condition on the matrix

Y in Theorem 5.1 (b) means that the off-diagonal entries of Y sum to − 3
2 times its trace. For example,

Y =

(
1 −2

−1 1

)
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has this property, and picking a matrix Z with vanishing trace, we obtain a balanced diagonal constant sum

matrix by the calculation

X5


1 −2

√
2 0 0

−1 1 0 0 0

0
√

2 −2 0 0

0 0 0 1 3

0 0 0 2 −1

X5 =


0 0 1 −2 1

1 1 0 0 −2

0 1 −2 1 0

−2 0 0 1 1

1 −2 1 0 0

 .

Remark 5.4. Theorem 5.1 gives a simple method of constructing balanced diagonal constant sum matri-

ces. General diagonal constant sum matrices can be obtained by adding any associated constant sum matrix,

or equivalently by filling in the off-diagonal blocks in the block representation with matrices satisfying the

conditions in Theorem 2.1 (a) or 3.1 (a).

Definition 5.5. We call an n× n diagonal constant sum matrix trivial if it is a multiple of the matrix

En.

Any associated constant sum matrix is a diagonal constant sum matrix; by (1.1), its square will be a

balanced constant sum matrix. One may wonder whether it is again a diagonal constant sum matrix. For

the case of even-dimensional associated diagonal constant sum matrices with rank 1 blocks (and, without

loss of generality, weight 0), the following alternative holds.

Theorem 5.6. Consider the (non-trivial, weight 0) 2n× 2n associated diagonal constant sum matrix

M = X2n

(
On V T

W On

)
X2n

with rank 1 blocks V,W. Then exactly one of the following statements is true.

(a) M2 has rank 2 and is a non-diagonal constant sum matrix, and all its powers are non-diagonal constant

sum matrices;

(b) M2 has rank 0 or 1 and is a nilpotent (see [7] p. 4) diagonal constant sum matrix, in fact M4 = O2n.

Proof. There are vectors u, v, x, y ∈ Rn \ {0n} such that V = uvT , W = xyT . The block representation

of M2 is

M2 = X2n

(
V TW On

On WV T

)
X2n(5.8)

with blocks

V TW = vuTxyT , WV T = xyT vuT .

If uTx = 0 and yT v 6= 0, then V TW = On and WV T is a rank 1 matrix; it only has eigenvalue 0. Hence,

both V TW and WV T have vanishing trace, so by Theorem 5.1, M2 is a diagonal constant sum matrix.

Furthermore, WV TWV T = On, so the matrix is nilpotent.

The case where yT v = 0 and uTx 6= 0 is analogous. If both uTx = 0 and yT v = 0, then M2 = O2n.

If both uTx 6= 0 and yT v 6= 0, then both V TW and WV T have a non-zero eigenvalue (uTx)(yT v) with

eigenvector v 6= 0n, x 6= 0n, respectively. Hence, each block in (5.8) has rank 1 and a non-zero trace, so M2
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has rank 2 and, by Theorem 5.1, is a non-diagonal constant sum matrix. For any N ∈ N, its Nth power has

block representation

M2N = X2n

(
(V TW )N On

On (WV T )N

)
X2n,

and as both blocks have the non-zero eigenvalue ((uTx)(vT y))N , M2N is a non-diagonal constant sum

matrix.

It is an open question whether Theorem 5.6 generalises to higher-rank matrices. It is generally true that

if WV T = On, then V TW has no non-zero eigenvalues, so M2 will then be a nilpotent diagonal constant

sum matrix; and similarly if V TW = On.

We have, however, the following general result.

Theorem 5.7. Let M be a balanced diagonal constant sum matrix of size m × m, where m = 2n or

m = 2n − 1. Then there is N ∈ {1, . . . , n} such that MN is either trivial or a non-diagonal constant sum

matrix.

Remark 5.8. Higher powers of M may again be diagonal constant sum matrices. For example, for the

balanced diagonal constant sum matrix
0 −1 1 0

1 0 0 −1

−1 0 0 1

0 1 −1 0

 = X4


0 0 0 0

0 0 0 0

0 0 0 2

0 0 −2 0

X4

the even powers are non-diagonal, the odd powers diagonal constant sum matrices. On the other hand,

triviality, i.e., the property of being a multiple of E , obviously persists to all higher powers.

Proof of Theorem 5.7. We can assume without loss of generality that M has weight 0. By Theorem 2.1

(b) or Theorem 3.1 (b),

M = Xm

(
Ỹ O
O Z

)
Xm,

where Ỹ is an n × n matrix and Z is an n × n or an (n − 1) × (n − 1) matrix, depending on whether m

is even or odd. If we assume that the powers M,M2, . . . ,Mn are all diagonal constant sum matrices, then

Ỹ , Ỹ 2, . . . , Ỹ n and Z,Z2, . . . , Zn all have trace 0, by Theorem 5.1. This implies that Ỹ and Z are nilpotent

(see [5] Lemma 6.16, bearing in mind the Cayley-Hamilton theorem); in particular, Ỹ n = O, Zn = O, and

hence, Mn = Om.

For the case of a general diagonal constant sum matrix, we can apply the idea of the proof of Theorem 5.7

directly to the whole matrix, using the fact that for a weight 0 diagonal constant sum matrix it is necessary,

though not sufficient, that its trace vanish. This gives the following general statement, with a less tight

upper bound on the number N.

Theorem 5.9. Let M be a diagonal constant sum matrix. Then there is some positive integer N, not

greater than the dimension of M, such that MN is either trivial or a non-diagonal constant sum matrix.
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6. Properties of constant sum matrices with rank 1 blocks. Constant sum matrices with rank

1 blocks, as described in Theorem 5.6, are of interest since the case where the entries of v and y are ±1,

such that they sum to 0, and the absolute values of the entries of u and x form a sum-and-distance system

(see [8]), gives rise to traditional magic squares with consecutive integer entries. In Examples 7.3 and 7.4 of

Section 7 below, the matrices 1
2 (M + 65E8) are of this form.

When considering the spectral properties of constant sum matrices, it is sufficient to study the weightless

case. Indeed, if M0 is a weightless n× n constant sum matrix, then by Lemma 1.3 (a), 1n is an eigenvector

of M0 with eigenvalue 0. As En = 1n1Tn , it follows by a theorem of Brauer (see [11] Theorem 2; [3] Theorem

27) that the weighted matrix M0 +wEn will have the same non-zero eigenvalues (including multiplicities) as

M0, and the additional eigenvalue nw, while the multiplicity of the eigenvalue 0 is reduced by 1. Moreover,

the eigenvectors of M0 + wEn will be independent of w. In particular, rk(M0 + wEn) = rkM0 + 1.

Starting from the block representation of a weightless associated constant sum matrix M0, and then

considering the block matrix for its square M2
0 , we have

M0 = X2n

(
On V T

W On

)
X2n, M2

0 = X2n

(
V TW On

On WV T

)
X2n.

Hence, M2
0 is the direct sum of the matrices V TW and WV T , so it will be diagonalisable if both V TW and

WV T are diagonalisable, in particular if they are symmetric. This motivates the following definition.

Definition 6.1. We call the associated constant sum matrix M parasymmetric if its square M2 is a

symmetric matrix.

In terms of the block representation, parasymmetry can be characterised as follows if the two constituent

blocks of M have rank 1. Example 7.3 in Section 7 below gives an example of a parasymmetric constant

sum matrix of this form.

Lemma 6.2. Let V,W ∈ Rn×n have row sum 0 and rank 1, and consider the associated constant sum

matrix

M = X2n

(
On V T

W On

)
X2n.

If M2 6= O2n, then M is parasymmetric if and only if W is a multiple of V.

Proof. We can write V = uvT , W = xyT with non-null vectors u, v, x, y ∈ Rn \ {0n}; then V T = vuT

and WT = yxT . Now if V TW is symmetric, then

(uTx)vyT = V TW = WTV = (xTu)yvT ,

so either uTx = 0 or vyT = yvT ; but in the latter case we see, multiplying by y on the right, that v(yT y) =

y(vT y), so v and y are linearly dependent. Similarly, if WV T is symmetric, then either vT y = 0 or u and x

are linearly dependent.

Now, if uTx = 0, then also vT y = 0 (since otherwise, by the above, the non-null vectors u, x would be

simultaneously orthogonal and linearly dependent), and vice versa; and in this situation V TW = On = WV T ,

which would imply M2 = O2n.

Hence, we find that x, y are multiples of u, v, respectively, so W is a multiple of V. The converse statement

is obvious.
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More generally, a matrix is diagonalisable by conjugation with an orthogonal matrix if it commutes with

its transpose, i.e., if it is normal. If M is normal, then it is easy to see that M2 is normal, too; the converse

is not so clear. In analogy to parasymmetry, we call the matrix M paranormal if M2 is normal. However,

this turns out to be no more general than parasymmetry as far as associated constant sum matrices with

rank 1 blocks are concerned, as the following result shows.

Lemma 6.3. Let M ∈ R2n×2n be a weightless associated constant sum matrix with rank 1 blocks V,W

such that M2 6= O2n. If M is paranormal, then it is parasymmetric.

Proof. Let V,W and u, v, x, y be as in the proof of Lemma 6.2. Then the paranormality means that

V TWWTV = WTV V TW, WV TVWT = VWTWV T ;

in terms of the generating vectors, this gives the two identities

v(uTx)(yT y)(xTu)vT = y(xTu)(vT v)(uTx)yT ,

x(yT v)(uTu)(vT y)xT = u(vT y)(xTx)(yT v)uT ,

and by the same reasoning as above, this implies that uTx = 0 or v, y are linearly dependent, and that vT y = 0

or x, u are linearly dependent. As before, the cases of orthogonality can only occur together and then give

a trivial M2; it follows that V,W are linearly dependent and hence that the matrix is parasymmetric.

The following observation on the eigenvalues of a squared weightless associated constant sum matrix

with rank 1 blocks follows from the proof of Theorem 5.6.

Theorem 6.4. If M is the weightless associated constant sum matrix

(6.9) M = X2n

(
On vuT

xyT On

)
X2n

with rank 1 block components V = uvT , W = xyT , then M2 has eigenvalues 0 and (uTx)(yT v) = trV TW.

In particular, if V,W have integer entries, then the eigenvalues of M2 are integers.

Remark 6.5. If the eigenvalue (uTx)(yT v) is non-zero, then its (algebraic and geometric) multiplic-

ity will be 2, as it will be an eigenvalue of both the upper left and the lower right blocks in the block

representation of M2, with eigenvectors

(
v

0n

)
and

(
0n
x

)
, respectively. However, when exactly one of the

products V TW,WV T vanishes, then its geometric multiplicity will only be 1. This can happen in the non-

parasymmetric case, as the non-orthogonality of generating vectors for non-trivial diagonal constant sums,

found in the proof of Lemma 6.2, need not hold in this case. Note that in this situation, this eigenvalue

will indeed be 0, so the matrix M2 will have eigenvalue 0 only with algebraic multiplicity 2n and geometric

multiplicity 2n− 1. For example, consider

V = uvT =


1

−3

−5

7

 (1,−1,−1, 1), W = xyT = 8


1

−3

−5

7

 (1,−1, 1,−1);
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here x is a multiple of u, but yT v = 0, so WV T = 0. The resulting weightless associated constant sum matrix

M =
1

2



63 −61 53 −55 −57 59 −51 49

−47 45 −37 39 41 −43 35 −33

−31 29 −21 23 25 −27 19 −17

15 −13 5 −7 −9 11 −3 1

−1 3 −11 9 7 −5 13 −15

17 −19 27 −25 −23 21 −29 31

33 −35 43 −41 −39 37 −45 47

−49 51 −59 57 55 −53 61 −63


has rank 2, but its square M2 only has rank 1.

Remark 6.6. If (uTx)(yT v) 6= 0, then corresponding linearly independent (right) eigenvectors of M2

will be

√
2X2n

(
v

0n

)
=

(
v

Jnv

)
, −

√
2X2n

(
0n
x

)
=

(
−Jnx
x

)
;(6.10)

the first of these is even, the other odd under reflection (i.e., multiplication with J2n). These eigenvectors

are orthogonal for structural reasons, reflecting the fact that they belong to different direct summands in

the block representation of M2. Clearly, if v, x have integer entries, then so do these eigenvectors.

We note that the left eigenvectors (i.e., eigenvectors of (M2)T ) are given by(
y

Jny

)
,

(
−Jnu
u

)
;(6.11)

again, these eigenvectors are structurally orthogonal.

Remark 6.7. In the parasymmetric case y = v, x = ku, where u, v ∈ Rn \ {0} and k 6= 0, the matrix

M2 always has a non-zero eigenvalue k(uTu)(vT v).

Remark 6.8. In the situation of Theorem 6.4 with uTx 6= 0, yT v 6= 0, the matrix M has the two simple

non-zero eigenvalues
√

(uTx)(yT v),−
√

(uTx)(yT v). Indeed, any eigenvector of the block representation(
On vuT

xyT On

)

for non-zero eigenvalue λ can easily be seen to be of the form

(
αv

βx

)
with α, β 6= 0, and hence, λ2 =

(uTx)(yT v). As the trace of the matrix vanishes and 0 is the only other eigenvalue, both signs of the square

root occur. The coefficients for the eigenvectors can be chosen as α = λ, β = yT v, so if u, v, x, y are integer

vectors and λ is an integer, then there are integer eigenvectors as well. In the parasymmetric case with

integer vectors u, v and integer parasymmetry factor k, the eigenvalues will be integers if and only if the

square-free part of k is equal to the square-free part of the product (vT v)(uTu).

7. A two-sided eigenvector matrix. In this section, we show a construction yielding a two-sided,

regular eigenvector matrix for M2, where M is the rank 1 + 1 associated constant sum matrix as defined in

(6.9). Here ‘two-sided’ means that the columns of the matrix are right eigenvectors of M2 while its rows are
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left eigenvectors of M2. We begin by considering the two right eigenvectors (6.10) of M2 corresponding to

the non-zero eigenvalue λ = (uTx)(yT v). These eigenvectors are placed side by side to form a 2n× 2 matrix

P1 =

B1

A1

C1

 =

(
v −Jnx
Jnv x

)
,

where A1 =

(
vn −x1
vn x1

)
and B1 and C1 are (n − 1) × 2 matrices such that C1 = Jn−1B1σ3 (with σ3 =(

1 0

0 −1

)
). We make the assumption that vn, x1 6= 0, so that the matrix A1 is regular. The construction

below can be generalised to the case where A1 is any regular matrix composed of two rows of P1 (and indeed

one can always find two linearly independent rows of P1 because its columns are linearly independent), but

we take the centre rows in the following for simplicity.

Now define

P̃1 = −P1A
−1
1 =

−B1A
−1
1

−I2
−C1A

−1
1

 .(7.12)

Similarly, starting from the matrix of left eigenvectors (6.11), we set

P2 =

B2

A2

C2

 =

(
y −Jnu
Jny u

)
,

and assuming yn, u1 6= 0, so that A2 =

(
yn −u1
yn u1

)
is regular, we define

P̃2 = −P2A
−1
2 =

−B2A
−1
2

−I2
−C2A

−1
2

 .(7.13)

The columns of P̃1 and P̃2 will still be linearly independent eigenvectors, for eigenvalue λ, of M2 and of

(M2)T , respectively, but in general they will no longer be orthogonal unless v2n = x21 and y2n = u21. However,

due to the special structure of our chosen matrices Aj , they will have the symmetry that the second column

is the reversal of the first. Indeed, J2Ajσ3 = Aj , so σ3A
−1
j J2 = A−1j (j ∈ {1, 2}), and it follows that

J2nP̃jJ2 =

−Jn−1CjA
−1
j

−J2
−Jn−1BjA

−1
j

J2 =

−Bjσ3A
−1
j J2

−I2
−Cjσ3A

−1
j J2

 = P̃j (j ∈ {1, 2}).

Hence, swapping the columns of P̃j is equivalent to turning them upside down.
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The matrices P̃1 and P̃2 have the following remarkable connection with the matrix M . Using the notation

(· | · | ·) to express that the three matrices are juxtaposed to form one 2n× 2n matrix, we calculate

(O2n,n−1 | P̃1 | O2n,n−1)M(7.14)

= −1

2
P1

(
O2,n−1 | A−11 X2 | O2,n−1

)(On vuT

xyT On

)(
In Jn
Jn −In

)
= −1

2
P1

(
A−11

(
x1
−x1

)
yT | A−11

(
vn
vn

)
uT
)(
In Jn
Jn −In

)
= −1

2

(
In Jn
Jn −In

)(
v 0n
0n −x

)(
0Tn uT

−yT 0Tn

)(
In Jn
Jn −In

)
= −M,

and similarly (O2n,n−1 | P̃2 | O2n,n−1)MT = −MT .

Theorem 7.1. Let u, v, x, y ∈ Rn such that λ := (uTx)(yT v) 6= 0 and u1, vn, x1, yn are non-zero. Let

M be the matrix (6.9), and let P̃1 and P̃2 be defined as in (7.12), (7.13). Then

P = I2n + (O2n,n−1 | P̃1 | O2n,n−1) +

On−1,2n
P̃T
2

On−1,2n


is a two-sided eigenvector matrix for M2, so that

M2P = P diag(0n−1, λ12, 0n−1) and PM2 = diag(0n−1, λ12, 0n−1)P.

Moreover, P has the inverse

P−1 = diag(1n−1, 02, 1n−1)− M2

λ
.

Proof. Using the second of the above identities and the fact that the columns of P̃1 are eigenvectors of

M2, we find

M2P = M2 +M2(O2n,n−1 | P̃1 | O2n,n−1) +MM

On−1,2n
P̃T
2

On−1,2n


= M2 + λ(O2n,n−1 | P̃1 | O2n,n−1) +M(−M);

on the other hand, since the central 2× 2 part of P̃2 is equal to −I2, we have

P diag(0n−1, λ12, 0n−1)(7.15)

= diag(0n−1, λ12, 0n−1) + λ(O2n,n−1 | P̃1 | O2n,n−1)− diag(0n−1, λ12, 0n−1).

The relation for PM2 follows by a pair of completely analogous calculations.

To verify the formula for the inverse P−1, we note that

(diag(1n−1, 02, 1n−1)− M2

λ
)P = diag(1n−1, 02, 1n−1)P − P diag(0n−1, 12, 0n−1)

= diag(1n−1, 02, 1n−1) +
(

(O2n,n−1 | P̃1 | O2n,n−1) + diag(0n−1, 12, 0n−1)
)

+O2n

− diag(0n−1, 12, 0n−1)− (O2n,n−1 | P̃1 | O2n,n−1) + diag(0n−1, 12, 0n−1) = I2n.

The opposite product follows similarly.
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Remark 7.2. In the parasymmetric case, we have y = v, x = ku, which, following the above construc-

tion, gives rise to the eigenvector matrices

P1 =

(
y −Jnku
Jny ku

)
= P2

(
1 0

0 k

)
.

However, in this situation the vector

(
−Jnu
u

)
will be an eigenvector just as well as

(
−Jnku
ku

)
, so we can

begin with this vector and take P1 = P2 instead of the above. Hence, in this instance, P = I2n + (On−1 |
P̃1 | On−1) + (On−1 | P̃2 | On−1)T will be a symmetric matrix.

We now illustrate these results with a parasymmetric and a non-parasymmetric example.

Example 7.3. Let uT = (11,−13,−19, 21), x = 2u and vT = yT = (−1, 1, 1,−1) be our vectors in R4,

and

M = X8

(
O4 vuT

xyT O4

)
X8 =

1

2



−63 61 55 −53 −31 29 23 −21

59 −57 −51 49 27 −25 −19 17

47 −45 −39 37 15 −13 −7 5

−43 41 35 −33 −11 9 3 −1

1 −3 −9 11 33 −35 −41 43

−5 7 13 −15 −37 39 45 −47

−17 19 25 −27 −49 51 57 −59

21 −23 −29 31 53 −55 −61 63


.

Then M2 has the symmetric block representation

M2 = 8X8



273 −273 −273 273 0 0 0 0

−273 273 273 −273 0 0 0 0

−273 273 273 −273 0 0 0 0

273 −273 −273 273 0 0 0 0

0 0 0 0 121 −143 −209 231

0 0 0 0 −143 169 247 −273

0 0 0 0 −209 247 361 −399

0 0 0 0 231 −273 −399 441


X8.

The matrix M2 has the eigenvectors (6.10) (dividing b2 by k, as suggested in the above remark)

b1 =

(
v

Jnv

)
, b2 =

(
−Jnu
u

)

for the eigenvalue λ = k(uTu)(vT v) = 8736.

Applying the construction of Theorem 7.1, we obtain the rational symmetric (left and right) eigenvector

matrix

P =
1

11



11 0 0 −16 5 0 0 0

0 11 0 15 −4 0 0 0

0 0 11 12 −1 0 0 0

−16 15 12 −11 0 −1 −4 5

5 −4 −1 0 −11 12 15 −16

0 0 0 −1 12 11 0 0

0 0 0 −4 15 0 11 0

0 0 0 5 −16 0 0 11


.
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We note that Theorem 7.1 also gives the inverse for P , indeed

P−1 = diag(13, 02, 13)− M2

λ

=
8

λ



735 336 273 −252 −21 0 −63 84

336 775 −260 241 32 −13 44 −63

273 −260 871 208 65 −52 −13 0

−252 241 208 −197 −76 65 32 −21

−21 32 65 −76 −197 208 241 −252

0 −13 −52 65 208 871 −260 273

−63 44 −13 32 241 −260 775 336

84 −63 0 −21 −252 273 336 735


.

Example 7.4. Let uT = (10,−14,−18, 22), xT = (23,−25,−39, 41) and vT = yT = (−1, 1, 1,−1) ∈ R4,

and

M = X8

(
O4 vuT

xyT O4

)
X8 =



−63 59 55 −51 −31 27 23 −19

61 −57 −53 49 29 −25 −21 17

47 −43 −39 35 15 −11 −7 3

−45 41 37 −33 −13 9 5 −1

1 −5 −9 13 33 −37 −41 45

−3 7 11 −15 −35 39 43 −47

−17 21 25 −29 −49 53 57 −61

19 −23 −27 31 51 −55 −59 63


.

Then M2 has the block representation

M2 = 8X8



273 −273 −273 273 0 0 0 0

−273 273 273 −273 0 0 0 0

−273 273 273 −273 0 0 0 0

273 −273 −273 273 0 0 0 0

0 0 0 0 115 −161 −207 253

0 0 0 0 −125 175 225 −275

0 0 0 0 −195 273 351 −429

0 0 0 0 205 −287 −369 451


X8,

which is clearly non-symmetric. The non-zero eigenvalue is λ = (uTx)(yT v) = 8736, and the (right and left)

eigenvector matrix constructed as in Theorem 7.1 has the form

P =
1

115



115 0 0 −160 45 0 0 0

0 115 0 155 −40 0 0 0

0 0 115 120 −5 0 0 0

−184 161 138 −115 0 −23 −46 69

69 −46 −23 0 −115 138 161 −184

0 0 0 −5 120 115 0 0

0 0 0 −40 155 0 115 0

0 0 0 45 −160 0 0 115


.

8. Ranks and quasi-inverses. In the beginning of Section 6, we observed that adding a non-zero

weight increases the rank of a weightless constant sum matrix by 1. However, for an even-dimensional

associated constant sum matrix, this can never lead to full rank. Indeed, since the block component matrices

V,W in the block representation (
2wEn V T

W On

)
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have row sum 0 and therefore rank ≤ n − 1, the total rank of the matrix is at most 2n − 2 if the weight is

0, and 2n− 1 otherwise. In particular, an even-dimensional associated constant sum matrix is never regular

and does not have an inverse.

An n × n constant sum matrix with weight zero will always have the vector 1n in its null space and

therefore cannot be regular; however we can define a (left or right) quasi-inverse to be a matrix which

multiplies the given matrix (to the left or right) to give the weightless part of the (constant sum) unit

matrix,

Un := In −
1

n
En.

An even-dimensional associated constant sum matrix, weighted or not, will have neither a left nor a

right quasi-inverse, as can be seen from the block representation

U2n = X2n

(
Un On

On In

)
X2n;(8.16)

the upper right-hand block of a right quasi-inverse of the block representation would have to be a right

inverse of W, while the lower left-hand block of a left quasi-inverse would have to be a left inverse of V, and

clearly neither is possible.

In the odd-dimensional case, the block representation is (see Theorem 3.1) 2wEn w
√

2 1n V T

w
√

2 1Tn w −
√

2(V 1n)T

W −
√

2W1n On

 ,

where the matrices V,W may have full rank n. Hence, the maximal rank is 2n if the weight is 0 and 2n+ 1

otherwise; in the latter case, the matrix has full rank and therefore an inverse.

For a rank 2n, (2n+ 1)× (2n+ 1) associated constant sum matrix with weight 0, a right quasi-inverse

can always be constructed, bearing in mind that V,W have full rank n and the matrix In + 2En is regular,

as − 1
2 is not an eigenvalue of En. Indeed, we find(

0 0 V T

0 0 −
√

2(V 1n)T

W −
√

2W1n 0

)(
0 0 V ′T

0 0 −
√

2(V ′1n)T

W ′ −
√

2W ′1n 0

)
= X2n+1U2n+1X2n+1,

taking W ′ := (V T )−1(1 − 2En
2n+1 ), V ′

T
:= (1 + 2En)−1W−1. Note that the quasi-inverse is again the block

structure matrix of a weight 0 associated constant sum matrix. Here

X2n+1U2n+1X2n+1 =

 1− 2En
2n+1 −

√
2 1n
2n+1 On

−
√

2
1Tn

2n+1 1− 1
2n+1 0Tn

On 0n In

 .

In summary, we have the following statement.

Theorem 8.1. (a) Even-dimensional associated constant sum matrices, with or without weight, never

have full rank, nor a quasi-inverse.
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(b) Odd-dimensional associated constant sum matrices may have full rank if weighted; if the weight is 0,

then the maximal rank is 1 less than the dimension, and in this case left and right quasi-inverses

exist.

Turning to the case of (weightless) balanced constant sum matrices, we note that in the block represen-

tation for the odd-dimensional case,  Y −
√

2Y 1n 0

−
√

21TnY 2 1TnY 1n 0

0 0 Z

 ,

the top left (n+ 1)× (n+ 1) matrix Ỹ has maximal rank n (when Y has rank n), because the n+ 1st row is

a linear combination of the first n rows. Therefore the maximal rank of the balanced constant sum matrix,

achieved if both Y, Z have full rank n, is 2n, and there is no inverse. However, there is always a quasi-inverse

in this case; with Y ′ := (1 + 2En)−1Y −1(In − 2
2n+1En),(

Y −
√

2Y 1n
−
√

2 1TnY 2 1TnY 1n

)(
Y ′ −

√
2Y ′1n

−
√

2 1TnY
′ 2 1TnY

′1n

)
=

(
In − 2

2n+1En
−
√
2

2n+11n
−
√
2

2n+11Tn 1− 1
2n+1

)
,

and completing a (2n + 1) × (2n + 1) matrix with Z−1 in the lower right corner, we obtain the block

representation of a right quasi-inverse which is again a weightless balanced constant sum matrix.

The block representation of a 2n-dimensional weightless balanced constant sum matrix is(
Y 0

0 Z

)
,

where Y is a weightless constant sum matrix. Hence, the maximal possible rank is 2n−1, and there will not

be an inverse. Regarding a quasi-inverse, we see from (8.16) that Z must be invertible and Y must have a

quasi-inverse. If n is odd and Y has maximal rank n−1 and is either associated or balanced, then there exists

a quasi-inverse by the above considerations. If n is even and Y is associated, then no quasi-inverse exists. If

n is even and Y is balanced, then we can apply these considerations recursively to the block structure of Y.

Unfortunately, the case of mixed type, i.e., of a general weightless constant sum matrix, seems rather

more difficult to analyse; this case will generally occur when applying the above reduction to an even-

dimensional balanced constant sum matrix.
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