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NORM INEQUALITIES RELATED TO CLARKSON INEQUALITIES∗

FADI ALRIMAWI† , OMAR HIRZALLAH‡ , AND FUAD KITTANEH§

Abstract. Let A and B be n × n matrices. It is shown that if p = 2, 4 ≤ p < ∞, or 2 < p < 4, and both A + B, A − B
are positive semidefinite, then

‖A+B‖pp + ‖A−B‖pp ≤ 2p−1
(
‖A‖pp + ‖B‖pp

)
−

(
2p/2 − 2

) ∣∣∣‖A‖p − ‖B‖p∣∣∣p ,
and if p = 2, 4 ≤ p <∞, or 2 < p < 4, and both A, B are positive semidefinite, then

‖A+B‖pp + ‖A−B‖pp ≥ 2
(
‖A‖pp + ‖B‖pp

)
+ (21−p/2 − 22−p)

∣∣∣‖A+B‖p − ‖A−B‖p
∣∣∣p .

These inequalities are reversed if p = 2, 1 ≤ p ≤ 4
3

, or 4
3
< p < 2, and both A + B, A − B are positive semidefinite, and if

p = 2, 1 ≤ p ≤ 4
3

, or 4
3
< p < 2, and both A, B are positive semidefinite, respectively. Commutative (or Lp) versions of these

inequalities are also considered.
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1. Introduction. Let Mn(C) be the algebra of all n× n complex matrices. For a matrix A ∈ Mn(C),

let s1(A), s2(A), . . . , sn(A) denote the singular values of A, i.e., the eigenvalues of |A| = (A∗A)1/2.

For 0 < p <∞ and A ∈Mn(C), define ‖A‖p by

‖A‖p =

 n∑
j=1

spj (A)

1/p

.

So, ‖A‖p = (tr |A|p)
1/p

. For 1 ≤ p <∞, this is the Schatten p-norm of A.

The celebrated Clarkson inequalities for scalars assert that if a, b ∈ C, then

2(|a|p + |b|p) ≤ |a + b|p + |a− b|p ≤ 2p−1(|a|p + |b|p) (1.1)

for 2 ≤ p <∞, and

2p−1(|a|p + |b|p) ≤ |a + b|p + |a− b|p ≤ 2(|a|p + |b|p) (1.2)

for 0 < p ≤ 2.

Generalizations of the inequalities (1.1) and (1.2) to matrices can be seen as follows (see, e.g., [8]): If

A,B ∈Mn(C), then

2
(
‖A‖pp + ‖B‖pp

)
≤ ‖A + B‖pp + ‖A−B‖pp ≤ 2p−1

(
‖A‖pp + ‖B‖pp

)
(1.3)
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for 2 ≤ p <∞, and

2p−1
(
‖A‖pp + ‖B‖pp

)
≤ ‖A + B‖pp + ‖A−B‖pp ≤ 2

(
‖A‖pp + ‖B‖pp

)
(1.4)

for 0 < p ≤ 2.

The inequalities (1.3) and (1.4) play an important role in analysis, operator theory, and mathematical

physics (see, e.g., [8] and [13, p. 20]).

For generalizations of the Clarkson inequalities to several operators and unitarily invarient norms, we

refer to [1], [3], [4], [7], [10], [11], and [12].

2. Preliminary results. In this section, we introduce some basic refinements of the inequalities (1.1)

and (1.2). These refinements are the base of our results that are given in Sections 3 and 4. First, we start

with the following lemma.

Lemma 2.1. Let x ∈ [1,∞).

(a) If 1 ≤ r <∞, then (1 + x)r ≥ xr + 2r − 1.

(b) If 0 < r ≤ 1, then (1 + x)r ≤ xr + 2r − 1.

Proof. We prove part (a), the proof of part (b) is similar. If r = 1, then the inequality becomes

equality, so suppose that r > 1 and let f(x) = (1 + x)r − xr, x ∈ [1,∞). Then the derivative of f is

f
′
(x) = r

(
(1 + x)

r−1 − xr−1
)
≥ 0, x ∈ (1,∞). So, f is increasing on [1,∞), and hence, f(x) ≥ f(1) for

all x ∈ [1,∞). The last inequality implies that (1 + x)r ≥ xr + 2r − 1, as required.

Based on Lemma 2.1, we have the following result.

Theorem 2.2. Let a, b ∈ [0,∞).

(b) If 1 ≤ r <∞, then

ar + br ≤ (a + b)r − (2r − 2) min(ar, br).

In particular,

ar + br ≤ (a + b)r

with equality if and only if a = 0, b = 0, or r = 1.

(b) If 0 < r ≤ 1, then

ar + br ≥ (a + b)r − (2r − 2) min(ar, br).

In particular,

ar + br ≥ (a + b)r

with equality if and only if a = 0, b = 0, or r = 1.

Proof. We prove part (a), the proof of part (b) is similar. The result is trivial if either a or b is zero, so

suppose that both a and b are non-zero. Let c = max (a, b) and d = min (a, b) . Then c
d ≥ 1 and by letting

x = c
d in Lemma 2.1(a), we have (

1 +
c

d

)r
≥
( c
d

)r
+ 2r − 1,

and so,

(c + d)r ≥ cr + dr(2r − 1) = cr + dr + dr(2r − 2). (2.5)
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Since c+ d = a+ b and cr + dr = ar + br, the result follows from the inequality (2.5). Moreover, the equality

conditions follow from the fact that (2r − 2) min(ar, br) = 0 if and only if a = 0, b = 0, or r = 1. This

completes the proof of part (a).

Based on Theorem 2.2, refinements of the Clarkson inequalities (1.1) and (1.2) can be seen in the next

theorem. Let cp (s, t) = (2p/2 − 2) min(|s|p , |t|p) for 0 < p <∞ and s, t ∈ C.

Theorem 2.3. Let a, b ∈ C. Then:

(a) For 2 ≤ p <∞,

2(|a|p + |b|p) + 2cp (a, b) ≤ |a + b|p + |a− b|p ≤ 2p−1(|a|p + |b|p)− cp (a + b, a− b) . (2.6)

(b) For 0 < p ≤ 2,

2p−1(|a|p + |b|p)− cp (a + b, a− b) ≤ |a + b|p + |a− b|p ≤ 2(|a|p + |b|p) + 2cp (a, b) . (2.7)

Proof. We prove part (a), the proof of part (b) is similar. We have

|a + b|p + |a− b|p = (|a + b|2)p/2 + (|a− b|2)p/2

≤ (|a + b|2 + (|a− b|2)p/2 − (2p/2 − 2) min(|a + b|p , |a− b|p) (by Theorem 2.2 (a))

= (2 |a|2 + 2 |b|2)p/2 − cp (a + b, a− b)

= 2p

(
|a|2 + |b|2

2

)p/2

− cp (a + b, a− b) . (2.8)

The convexity of the function f (t) = tp/2 on [0,∞) implies that(
|a|2 + |b|2

2

)p/2

≤ (|a|2)p/2 + (|b|2)p/2

2
=
|a|p + |b|p

2
. (2.9)

Now, the second inequality in (2.6) follows from the inequalities (2.8) and (2.9). On the other hand, the

first inequality in (2.6) follows from the second inequality in (2.6) by replacing a and b by a+b
2 and a−b

2 ,

respectively.

Based on Theorem 2.3, the equality conditions of the inequalities (1.1) and (1.2) are given in the following

result.

Corollary 2.4. Let a, b ∈ C, and let 0 < p <∞. Then:

(a) |a + b|p + |a− b|p = 2p−1(|a|p + |b|p) if and only if a = b, a = −b, or p = 2.

(b) |a + b|p + |a− b|p = 2(|a|p + |b|p) if and only if a = 0, b = 0, or p = 2.

Proof. We prove parts (a) and (b) when 2 ≤ p <∞. The proof of parts (a) and (b) when 0 < p ≤ 2 is

similar. So, suppose that 2 ≤ p <∞.

(a) (=⇒) If |a + b|p + |a− b|p = 2p−1(|a|p + |b|p), then the second inequality in (2.6) implies that

cp (a + b, a− b) = 0, and so (2p/2− 2) min(|a + b|p , |a− b|p) = 0, which implies that a = b, a = −b, or p = 2.

(⇐=) If b = a, b = −a, or p = 2, then by direct computations it can be seen that |a + b|p + |a− b|p =

2p−1(|a|p + |b|p), as required.
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(b) (=⇒) If |a + b|p + |a− b|p = 2(|a|p + |b|p), then it follows from the first inequality in (2.6) that

cp (a, b) = 0, and so (2p/2 − 2) min(|a|p , |b|p) = 0, which implies that a = 0, b = 0, or p = 2.

(⇐=) If a = 0, b = 0, or p = 2, then by direct computations it can be seen that |a + b|p + |a− b|p =

2(|a|p + |b|p), as required.

3. Clarkson-type inequalities for the Schatten p-norms. In this section, we give refinements of

the inequalities (1.3) and (1.4) under additional conditions. These refinements are based on the following

lemma (see e.g., [2] and [5]), which can be considered as a matrix version of Hanner’s inequality [9]. Our

new inequalities may be useful in the geometry of certain Banach spaces, regarding the uniform convexity

and smoothness of these spaces.

Though we confine our discussion to matrices regarded as operators on a finite-dimensional Hilbert space,

by slight modifications the inequalities in this section can be extended to operators on an infinite-dimensional

Hilbert space.

Lemma 3.1. Let A,B ∈Mn(C). Then:

(a)

‖A + B‖pp + ‖A−B‖pp ≤ (‖A‖p + ‖B‖p)p +
∣∣∣‖A‖p − ‖B‖p∣∣∣p

holds if p = 2, 4 ≤ p <∞, or 2 < p < 4, and both A + B,A−B are positive semidefinite.

(b)

‖A + B‖pp + ‖A−B‖pp ≥ (‖A‖p + ‖B‖p)p +
∣∣∣‖A‖p − ‖B‖p∣∣∣p

holds if p = 2, 1 ≤ p ≤ 4
3 , or 4

3 < p < 2, and both A + B,A−B are positive semidefinite.

Based on Theorem 2.3 and Lemma 3.1, our new refinements of the inequalities (1.3) and (1.4) can be

seen in the following result.

Theorem 3.2. Let A,B ∈Mn(C). Then:

(a)

‖A + B‖pp + ‖A−B‖pp ≤ 2p−1
(
‖A‖pp + ‖B‖pp

)
− (2p/2 − 2)

∣∣∣‖A‖p − ‖B‖p∣∣∣p (3.10)

holds if p = 2, 4 ≤ p <∞, or 2 < p < 4, and both A + B,A−B are positive semidefinite.

(b)

‖A + B‖pp + ‖A−B‖pp ≥ 2p−1
(
‖A‖pp + ‖B‖pp

)
− (2p/2 − 2)

∣∣∣‖A‖p − ‖B‖p∣∣∣p (3.11)

holds if p = 2, 1 ≤ p ≤ 4
3 , or 4

3 < p < 2, and both A + B,A−B are positive semidefinite.

Proof. We prove part (a), the proof of part (b) is similar. If p = 2, then the result is trivial. So, suppose

that 4 ≤ p <∞ (or 2 < p < 4, and both A + B,A−B are positive semidefinite). Then

‖A + B‖pp + ‖A−B‖pp ≤ (‖A‖p + ‖B‖p)p +
∣∣∣‖A‖p − ‖B‖p∣∣∣p (by Lemma 3.1(a))

≤ 2p−1
(
‖A‖pp + ‖B‖pp

)
− cp

(
‖A‖p + ‖B‖p , ‖A‖p − ‖B‖p

)
(by (2.6)).

But

cp

(
‖A‖p + ‖B‖p , ‖A‖p − ‖B‖p

)
= (2p/2 − 2) min

((
‖A‖p + ‖B‖p

)p
,
∣∣∣‖A‖p − ‖B‖p∣∣∣p)

= (2p/2 − 2)
∣∣∣‖A‖p − ‖B‖p∣∣∣p .
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This proves the inequality (3.10).

An immediate consequences of Theorem 3.2 are the following two corollaries.

Corollary 3.3. Let A,B ∈Mn(C). Then:

(a)

‖A + B‖pp + ‖A−B‖pp ≥ 2
(
‖A‖pp + ‖B‖pp

)
+ (21−p/2 − 22−p)

∣∣∣‖A + B‖p − ‖A−B‖p
∣∣∣p (3.12)

holds if p = 2, 4 ≤ p <∞, or 2 < p < 4, and both A,B are positive semidefinite.

(b)

‖A + B‖pp + ‖A−B‖pp ≤ 2
(
‖A‖pp + ‖B‖pp

)
+ (21−p/2 − 22−p)

∣∣∣‖A + B‖p − ‖A−B‖p
∣∣∣p (3.13)

holds if p = 2, 1 ≤ p ≤ 4
3 , or 4

3 < p < 2, and both A,B are positive semidefinite.

Proof. The inequalities (3.12) and (3.13) follows from the inequalities (3.10) and (3.11) by replacing A

and B by A+B
2 and A−B

2 , respectively.

Corollary 3.4. Let A,B ∈Mn(C).

(a) If 4 ≤ p <∞ or 2 < p < 4, and both A + B,A−B are positive semidefinite such that ‖A + B‖pp +

‖A−B‖pp = 2p−1
(
‖A‖pp + ‖B‖pp

)
, then ‖A‖p = ‖B‖p .

(b) If 4 ≤ p <∞ or 2 < p < 4, and both A,B are positive semidefinite such that ‖A + B‖pp+‖A−B‖pp =

2
(
‖A‖pp + ‖B‖pp

)
, then ‖A + B‖p = ‖A−B‖p .

(c) If 1 ≤ p ≤ 4
3 or 4

3 < p < 2, and both A + B,A−B are positive semidefinite such that ‖A + B‖pp +

‖A−B‖pp = 2p−1
(
‖A‖pp + ‖B‖pp

)
, then ‖A‖p = ‖B‖p .

(d) If 1 ≤ p ≤ 4
3 or 4

3 < p < 2, and both A,B are positive semidefinite such that ‖A + B‖pp+‖A−B‖pp =

2
(
‖A‖pp + ‖B‖pp

)
, then ‖A + B‖p = ‖A−B‖p .

It should be mentioned here that Hanner’s inequality for any functions f, g ∈ Lp (see, e.g., [5]) states

that

‖f + g‖pp + ‖f − g‖pp ≤ (‖f‖p + ‖g‖p)p +
∣∣∣‖f‖p − ‖g‖p∣∣∣p (3.14)

for 2 ≤ p <∞. The inequality reverses for 1 ≤ p ≤ 2.

Also Clarkson’s inequalities for Lp functions assert that (see, e.g., [6])

2
(
‖f‖pp + ‖g‖pp

)
≤ ‖f + g‖pp + ‖f − g‖pp ≤ 2p−1

(
‖f‖pp + ‖g‖pp

)
(3.15)

for 2 ≤ p <∞. The inequalities reverse for 1 ≤ p ≤ 2.

We can give refinements of the inequalities (3.15) depending on Theorem 2.3 and the inequality (3.14).

Theorem 3.5. Let f, g ∈ Lp. Then

‖f + g‖pp + ‖f − g‖pp ≤ 2p−1
(
‖f‖pp + ‖g‖pp

)
− (2p/2 − 2)

∣∣∣‖f‖p − ‖g‖p∣∣∣p (3.16)

and

‖f + g‖pp + ‖f − g‖pp ≥ 2
(
‖f‖pp + ‖g‖pp

)
+ (21−p/2 − 22−p)

∣∣∣‖f + g‖p − ‖f − g‖p
∣∣∣p (3.17)

for 2 ≤ p <∞. The inequalities reverse for 1 ≤ p ≤ 2.
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Proof. In the case when 2 ≤ p <∞, the proof of the inequality (3.16) is similar to the proof of part (a)

of Theorem 3.2, and the inequality (3.17) follows from the inequality (3.16) by replacing f and g by f+g
2

and f−g
2 , respectively.

4. Other related inequalities. In this section, we give further upper and lower bounds for ‖A + B‖pp+

‖A−B‖pp by dropping some of the conditions given in Theorem 3.2 that are imposed on the values of p and

on the matrices A and B. Based on Theorem 2.3, we start with the following result.

Theorem 4.1. Let A,B ∈Mn(C).

(a) If 2 ≤ p <∞, then

‖A + B‖pp + ‖A−B‖pp ≤ 23p/2−2
(
‖A‖pp + ‖B‖pp

)
− ncp(sn(A + B), sn(A−B)) (4.18)

and

‖A + B‖pp + ‖A−B‖pp ≥ 22−p/2
(
‖A‖pp + ‖B‖pp

)
+ n22−p/2cp(sn(A), sn(B)). (4.19)

(b) If 1 ≤ p ≤ 2, then

‖A + B‖pp + ‖A−B‖pp ≥ 23p/2−2
(
‖A‖pp + ‖B‖pp

)
− ncp(sn(A + B), sn(A−B)) (4.20)

and

‖A + B‖pp + ‖A−B‖pp ≤ 22−p/2
(
‖A‖pp + ‖B‖pp

)
+ n22−p/2cp(sn(A), sn(B)). (4.21)

Proof. We prove part (a), the proof of part (b) is similar.

Since ncp(sn(A + B), sn(A−B)) ≤ cp

(
‖A + B‖p , ‖A−B‖p

)
, we have

‖A + B‖pp + ‖A−B‖pp + ncp(sn(A + B), sn(A−B))

≤ ‖A + B‖pp + ‖A−B‖pp + cp

(
‖A + B‖p , ‖A−B‖p

)
=
(
‖A + B‖2p

)p/2
+
(
‖A−B‖2p

)p/2
+ cp

(
‖A + B‖p , ‖A−B‖p

)
≤
(
‖A + B‖2p + ‖A−B‖2p

)p/2
(by Theorem 2.2 (a))

≤ 2p/2−1
(
‖A + B‖pp + ‖A−B‖pp

)
(by the convexity of f(t) = tp/2 on [0,∞))

≤ 2p/2−1
(

2p−1
(
‖A‖pp + ‖B‖pp

))
(by the second inequality in (1.3))

= 23p/2−2
(
‖A‖pp + ‖B‖pp

)
.

This proves the inequality (4.18). The inequality (4.19) follows from the inequality (4.18) by replacing A

and B by A+B
2 and A−B

2 , respectively.

To complete our work, we need the following lemma (see [2]).

Lemma 4.2. Let A,B ∈Mn(C). Then:

(a) 1
2

(
‖A + B‖2p + ‖A−B‖2p

)
≤ ‖A‖2p + (p− 1) ‖B‖2p for 2 ≤ p <∞.

(b) 1
2

(
‖A + B‖2p + ‖A−B‖2p

)
≥ ‖A‖2p + (p− 1) ‖B‖2p for 1 ≤ p ≤ 2.
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Other related upper and lower bounds for ‖A + B‖pp + ‖A−B‖pp are given in the following result.

Theorem 4.3. Let A,B ∈Mn(C).

(a) If 2 ≤ p <∞, then

‖A + B‖pp + ‖A−B‖pp ≤ 2p−1
(
‖A‖pp + (p− 1)p/2 ‖B‖pp

)
− ncp(sn(A + B), sn(A−B)).

(b) If 1 ≤ p ≤ 2, then

‖A + B‖pp + ‖A−B‖pp ≥ 2p−1
(
‖A‖pp + (p− 1)p/2 ‖B‖pp

)
− ncp(sn(A + B), sn(A−B)).

Proof. We prove part (a), the proof of part (b) is similar. We have

‖A + B‖pp + ‖A−B‖pp + ncp(sn(A + B), sn(A−B))

≤
(
‖A + B‖2p

)p/2
+
(
‖A−B‖2p

)p/2
+ cp(‖A + B‖p , ‖A−B‖p)

≤
(
‖A + B‖2p + ‖A−B‖2p

)p/2
(by Theorem 2.2 (a))

≤
(

2
(
‖A‖2p + (p− 1) ‖B‖2p

))p/2
(by Lemma 4.2 (a))

= 2p/2
(
‖A‖2p + (p− 1) ‖B‖2p

)p/2
≤ 2p−1

(
‖A‖pp + (p− 1)p/2 ‖B‖pp

)
(by the convexity of f(t) = tp/2 on [0,∞)),

as required.
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