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BOUNDS FOR THE COMPLETELY POSITIVE RANK OF A SYMMETRIC

MATRIX OVER A TROPICAL SEMIRING∗
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Abstract. In this paper, an upper bound for the CP-rank of a matrix over a tropical semiring is obtained, according to the

vertex clique cover of the graph prescribed by the positions of zero entries in the matrix. The graphs that beget the matrices

with the lowest possible CP-ranks are studied, and it is proved that any such graph must have its diameter equal to 2.
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1. Introduction. In this paper, we study the completely positive rank of a matrix over the tropical

semiring T, which is the semiring (R ∪ {∞},⊕,�), with operations defined by a ⊕ b = min{a, b} and

a� b = a+ b.

For a semiring S, we say that a symmetric n× n matrix A over S is completely positive, if there exists

an n× r matrix B over S such that

A = BBT .

The minimal possible r in such factorization, is the CP-rank of A and it is denoted by CPrk (A). Equiva-

lently, a matrix A has CPrk (A) = r if and only if r is the smallest number, such that there exist vectors

b1, b2, . . . , br ∈ Tn with

A =

r∑
i=1

bib
T
i .

If matrix A is not completely positive, we denote CPrk (A) = ∞. Note that in [6], the authors refer to

CP-rank as the symmetric Barvinok rank of a matrix.

Note that over semirings, all definitions of the rank of a matrix do not coincide as in the case of matrices

over real numbers with standard operations (see e.g. [1, 9]). Thus, the CP-rank (which is a special case of a

factor rank) is just one of many possible semiring matrix ranks.

For a completely positive n × n matrix A over the field R, Drew, Johnson and Loewy [7] conjectured

that CPrk (A) ≤
⌊
n2

4

⌋
if n ≥ 4. Twenty years later, the conjectured upper bound was proved wrong and

corrected to n2

2 for all n ≥ 7 [4, 5]. However, it is still not known what is the tight upper bound and it

transpires that the problem of determining the CP-rank of any given matrix is a difficult problem [2, 3].
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Let Mn(S) denote the semiring of all n × n matrices over the semiring S. Over the tropical semiring

T, Cartwright and Chan [6] proved that max
{
n,
⌊
n2

4

⌋}
is the tight upper bound for the CP-rank of a

completely positive matrix A ∈ Mn(T). Over the Boolean semiring and the max-min semiring, the same

inequality was proved by Mohindru [11] and Shitov [14].

In [13], Shaked-Monderer introduced CPrk (G) to be the maximum CP-rank of all real matrices with the

pattern prescribed by the graph G. She proved that the CPrk (G) is equal to the to the edge clique cover

number of G, if and only if G is not a tree and does not contain a triangle.

We follow [6] to define CPrk (G) over the tropical semiring to be the maximum of CP-ranks of all

completely positive matrices A = (aij) ∈ Mn(T) such that, for i 6= j, aij = 0 if and only if {i, j} ∈ E(G).

(Note that throughout the paper, zero is a real number and not the tropical additive identity, which is ∞.)

Observe that in G, edges correspond to all entries equal to a specific element 0 distinct from the additive

identity in T. This graph is a subgraph of the weighted graph corresponding to a semiring matrix (see for

example [8]), which is also called the precedence graph.

In this paper, we find an upper bound for the CP-rank of a matrix with regards to the vertex clique

cover of the graph prescribed by the positions of zero entries in the matrix. This bound can be much lower

than the bound max
{
n,
⌊
n2

4

⌋}
from [6, Theorem 4], see Theorem 3.4 and Remark 3.5. We then proceed

to apply these results to 0/1 matrices, since it was established in [6] that CP-rank of 0/1 matrices is equal

to the edge clique cover number of the corresponding graph. We examine the connection between the ranks

of 0/1 matrices and arbitrary matrices with the same positions of zero entries. In the last section, we then

study the graphs that beget the matrices with the lowest possible CP-ranks. We prove that any such graph

must have its diameter equal to 2, and provide examples that in case of diameter 2 the rank does not seem

to be well behaved.

2. Preliminary results. In this section, we give the basic definitions and some preliminary results.

First, we provide the characterization of completely positive matrices over the tropical semiring. The subset

of Mn(T) of all completely positive matrices will be denoted by CPn (T).

The following lemma is obvious and characterizes matrices of CP-rank equal to 1.

Lemma 2.1. A symmetric matrix A = (aij) ∈ Mn(T) has CPrk (A) = 1 if and only if aij1 � akj2 =

akj1 � aij2 for all i, j1, j2, k = 1, 2, . . . , n. (This means that the difference between any two rows of A with

finite entries is a vector with all of its entries equal.)

The following lemma characterizes completely positive matrices over the tropical semiring.

Lemma 2.2. [6, Proposition 2 and Theorem 4] A symmetric matrix A = (aij) ∈ Mn(T) is completely

positive if and only if 2aij ≥ aii + ajj for all i, j = 1, 2, . . . , n.

This lemma implies that if aii =∞ for A = (aij) ∈ CPn (T) and some i, then aij =∞ for all j. Also, if

all the diagonal elements of a completely positive matrix A are equal to 0, then all off-diagonal entries are

nonnegative. This fact makes it convenient to study such matrices, and also gives sense to studying matrices

defined by the positions of the zero entries. The next paragraph describes the procedure to transform the

completely positive matrix into a matrix with diagonal entries equal to 0, while preserving the CP-rank.

Choose A = (aij) ∈Mn(T). Let A[i] ∈Mn−1(T) be the matrix obtained from A by deleting its i-th row

and i-th column and let b[i] ∈ Tn−1 be the vector obtained from vector b ∈ Tn by deleting its i-th entry. If
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matrix A has k diagonal entries equal to ∞, let C(A) ∈Mn−k(T) be the matrix obtained from A by

• deleting i-th row and i-th column if aii =∞ for every i = 1, 2, . . . , n, and

• subtracting 1
2aii from each entry in the i-th row and i-th column of A, if aii 6= ∞ for every i =

1, 2, . . . , n. (Note that subtracting a real number from ∞ yields ∞ and that we subtract 1
2aii twice

from aii.)

The next lemma assures us that the rank of a matrix does not change with the above transformation.

Lemma 2.3. If A ∈Mn(T) is completely positive, then

CPrk (A) = CPrk (C(A)) .

Proof. Let A = (aij) =
⊕r

j=1 bj � bTj ∈ CPn(T) and suppose first that aii = ∞ for some i, 1 ≤ i ≤ n.

Observe that A[i] =
⊕r

j=1 bj [i]� bj [i]T ∈ CPn−1(T), which implies that CPrk (A) ≥ CPrk (A[i]). Similarly,

we can observe that CPrk (A[i]) ≥ CPrk (A), by inserting a component equal to ∞ to all bj at the i-th

component, since a completely positive matrix A with aii = ∞, by Lemma 2.2 must have all entries in the

i-th row and i-th column equal to ∞.

Now, suppose A =
⊕r

j=1 bj � bTj ∈ CPn(T) and aii 6= ∞ for i = 1, 2 . . . , n. Choose α ∈ R, k ∈
{1, 2, . . . , n}, and let B ∈ CPn(T) and cj ∈ Tn be defined as

Bij =


aij + 2α, if i = j = k,

aij + α, if either i = k or j = k,

aij , otherwise,

and (cj)i =

{
(bj)i + α, if i = k,

(bj)i, otherwise.

Observe that B =
⊕r

j=1 cj � cTj , and thus, CPrk (B) ≤ CPrk (A). By replacing α by −α, we obtain

CPrk (A) ≤ CPrk (B). By consecutively applying the above procedure with α = − 1
2akk for all k = 1, 2, . . . , n,

we conclude that CPrk (A) = CPrk (C(A)).

The next example shows that in general, the positions of nonzero entries in a matrix do not determine

the CP-rank. We shall see later that this inconvenience can be circumnavigated by replacing A with C(A)

as described above, which is a transformation that preserves the CP-rank by Lemma 2.3.

example 2.4. Let

A =

0 1 2

1 2 3

2 3 4

 =

0

1

2

� [0 1 2
]
∈ CP3 (T) .

By transformation described on page 154, we obtain

C(A) =

0 0 0

0 0 0

0 0 0

 =

0

0

0

� [0 0 0
]

and have CPrk (A) = CPrk (C(A)) = 1.

Note that by changing the nonzero entries of matrix A, we obtain a matrix with different CP-rank. For

example, if

B =

0 1 1

1 1 1

1 1 1

 ,
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then

C(B) =

0 1
2

1
2

1
2 0 0
1
2 0 0

 =

0
1
2
1
2

� [0 1
2

1
2

]
⊕

∞0
0

� [∞ 0 0
]
.

Lemma 2.1 implies that CPrk (B) 6= 1. Note that CPrk (C(B)) ≤ 2 and by Lemma 2.3 it follows that

CPrk (B) = CPrk (C(B)) = 2.

3. Bounding the CP-rank by the graph structure. In this section, we find bounds for CP-ranks

of matrices with the aid of a graph structure that is prescribed to a given matrix. Namely, we define a graph

that corresponds to a matrix (depending on whether different elements of the matrix are equal to zero).

We find bounds for the CP-rank of all matrices with a given graph structure. Note that using Lemma 2.3,

we always work under the assumtpion that A ∈ CPn (T) has a zero diagonal and nonnegative offdiagonal

entries.

Given a symmetric matrix A = (aij) ∈ Mn(T), we define G(A) = (V,E) to be a simple graph with

V = {1, 2, . . . , n}, and for i 6= j we have {i, j} ∈ E if and only if aij = 0. Recall that CPrk (G) is the

maximum of CP-ranks of all symmetric matrices A = (aij) ∈Mn(T) such that, for i 6= j, aij = 0 if and only

if {i, j} ∈ E(G).

As usual, in a given graph, the path a = x0 ∼ x1 ∼ · · · ∼ xn−1 ∼ xn = b connecting vertices a and b

has length n and the length of the shortest path connecting vertices a and b is called the distance between

a and b and denoted by d(a, b). We let d(a, b) = ∞ if there is no path connecting a and b, and we let

d(a, a) = 0. The diameter of a graph is a maximal distance between any two of its vertices. An empty graph

is a graph consisting of isolated nodes with no edges. A complete graph on n vertices will be denoted by Kn

and a path with n vertices will be denoted by Pn. The edge clique cover number cc (G) of a graph G is the

minimal cardinality of the collections of complete subgraphs such that every edge of G is in one element of

the collection.

The following two lemmas give us some bounds for the CP-rank of graphs and their subgraphs.

Lemma 3.1. If H is an induced subgraph of the graph G, then

CPrk (H) ≤ CPrk (G) .

Proof. Let H be an induced subgraph of G and suppose without loss of generality that V (H) =

{1, 2, . . . ,m} and V (G) = {1, 2, . . . , n}, m ≤ n. Choose any A ∈ Mn(T) with G(A) = G, and let B be its

m×m leading principal submatrix. It is clear that G(B) = H. If A =
⊕k

i=1 ai�aTi , then B =
⊕k

i=1 bi� bTi ,

where bi is a vector obtained from ai by deleting its last n −m components. Hence, CPrk (B) ≤ CPrk (A)

and so CPrk (H) ≤ CPrk (G).

Recall that the join G ∨H of graphs G and H, is the graph union G ∪H together with all the possible

edges joining the vertices in G to the vertices in H. We show in the next lemma that joining a graph with

a single vertex does not change the CP-rank.

Lemma 3.2. For any graph G and w a vertex not in G, we have

CPrk (G ∨ w) = CPrk (G) .

Proof. Take any A ∈ Mn+1(T) with G(A) = G ∨ w. Hence, A is a direct sum of matrix B ∈ Mn(T),

G(B) = G, with the size one zero matrix. There exist bi ∈ Tn, i = 1, 2, . . . , k, k ≤ CPrk (G), such that
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B =
⊕k

i=1 bi�bTi . Define ai =
[
bTi 0

]T ∈ Tn+1 and observe that A =
⊕k

i=1 ai�aTi and hence, CPrk (A) ≤ k.

This implies that CPrk (G ∨ w) ≤ CPrk (G). By Lemma 3.1, it follows that CPrk (G ∨ w) = CPrk (G).

Now, we define the vertex clique cover γ of a graph G as a collection of r complete subgraphs such that

every vertex of G is in some element of the collection. One can always assume that the vertices of G are

labeled so that

γ = (Kq1 ,Kq2 , . . . ,Kqk ,K1, . . . ,K1︸ ︷︷ ︸
l

) = (Kq1 ,Kq2 , . . . ,Kqk , lK1),

where q1 ≥ q2 ≥ · · · ≥ qk ≥ 2. Define the vertex clique cover number of γ as

θ(γ) = k +

k∑
i=1

(i− 1)qi + kl +

⌊
l2

4

⌋
.

It is worth noting that a vertex clique cover number is the same as a chromatic number of the complement

of the graph. In Theorem 3.4, we will prove that CP-rank of a matrix A is bounded by θ(γ) for any vertex

clique cover γ of G = G(A).

example 3.3. Note that a vertex clique cover is not unique. Let G be a paw graph:

G =

Its vertex clique covers are

γ1 = (K3,K1) and γ2 = (2K2),

so θ(γ1) = 2 and θ(γ2) = 4.

The next theorem specifies an upper bound for the CP-rank of a matrix according to the vertex clique

cover number of a graph corresponding to the matrix.

theorem 3.4. Choose A ∈ CPn (T). If G(A) is a nonempty graph or n ≥ 5, then for every vertex clique

cover γ of G(A), we have

CPrk (A) ≤ θ(γ).

Otherwise, if G(A) is an empty graph with n ≤ 4, then

CPrk (A) = n.

Proof. Suppose first that G = G(A) is nonempty graph. We will construct n × n matrices A1, A2, A3

and A4, A = A1 ⊕ A2 ⊕ A3 ⊕ A4, which will correspond to subgraphs of G, and their CP-ranks will be

bounded by k,
k∑

i=1

(i− 1)qi, kl and
⌊
l2

4

⌋
, respectively.

1. If k = 0, then A1 is a zero matrix. Suppose k ≥ 1. For i = 1, 2, . . . , k denote the components of

x(i) ∈ Tn by

x
(i)
j =

{
0, if q1 + · · ·+ qi−1 + 1 ≤ j ≤ q1 + · · ·+ qi−1 + qi,

∞, otherwise,
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for all j = 1, 2, . . . , n. Define

A1 =

k⊕
i=1

x(i) �
(
x(i)
)T

is a sum of k matrices of CP-rank one. Note that A1 coincides with A at all elements that correspond

to the edges of cliques Kq1 to Kqk of G .

2. If k ≤ 1, then A2 is a zero matrix. Suppose that k ≥ 2. For i = 1, 2, . . . , k− 1, j = i+ 1, i+ 2, . . . , k

and s = 1, 2, . . . , qj denote the components of y(i,j,s) ∈ Tn by

y
(i,j,s)
t =


0, if t = q1 + · · ·+ qj−1 + s,

at,q1+···+qj−1+s, if q1 + · · ·+ qi−1 + 1 ≤ t ≤ q1 + · · ·+ qi,

∞, otherwise.

Let us define

A2 =

k−1⊕
i=1j

k⊕
=i+1

qj⊕
s=1

y(i,j,s) �
(
y(i,j,s)

)T
.

Note that A2 is a sum of

k∑
j=1

(j − 1)qj matrices of CP-rank one, that coincides with the matrix A at

all elements that correspond to the edges between any of the cliques Kq1 to Kqk of G.

3. If k = 0 or l = 0, then A3 is a zero matrix. Suppose that k, l ≥ 1. For i = 1, . . . , k and j = 1, . . . , l

denote the components of z(i,j) ∈ Tn by

z
(i,j)
t =


0, if t = q1 + · · ·+ qk + j,

at,q1+···+qk+j , if q1 + · · ·+ qi−1 + 1 ≤ t ≤ q1 + · · ·+ qi,

∞, otherwise.

Let

A3 =

k⊕
i=1

l⊕
j=1

z(i,j) �
(
z(i,j)

)T
be a matrix defined as a sum of kl matrices of CP-rank one. Note that A3 coincides with the matrix

A at all elements that correspond to the edges between any of the clique K1 and any of the cliques

Kq1 to Kqk of G.

4. If l ≤ 1, then A4 is a zero matrix and for l ≥ 4 let the matrix A4 be defined by

(A4)ij =

{
∞, if i ≤ q1 + · · ·+ qk or j ≤ q1 + · · ·+ qk,

aij , otherwise.

Note that A4 coincides with the matrix A at all elements that correspond to the edges between any

of the cliques K1 of G.

If l ≥ 4, then note that A4 can be written as a sum of at most
⌊
l2

4

⌋
CP-rank one matrices by [6,

Theorem 4].

In the case 2 ≤ l ≤ 3, observe that n ≥ 5 implies that k > 0. This further implies that A3 6= 0,

and thus, (A3)ii = 0 for i ≥ q1 + · · · + qk + 1, by the construction of A3 above. For l = 2,

matrix A4 is of CP-rank
⌊
22

4

⌋
= 1, since A4 = [∞, . . . ,∞, 0, an−1,n]T � [∞, . . . ,∞, 0, an−1,n]. For

l = 3, assume without loss of generality that an−1,n = max{an−2,n−1, an−2,n, an−1,n}. In this

case, we have A4 = a � aT ⊕ b � bT , where a =
[
∞ · · · ∞ 0 an−2,n−1 ∞

]T ∈ Tn and

b =
[
∞ · · · ∞ an−2,n an−1,n 0

]T ∈ Tn. It follows that CPrk (A4) = 2 =
⌊
32

4

⌋
.
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Observe that

A = A1 ⊕A2 ⊕A3 ⊕A4,

and therefore, the inequality in the statement follows.

If G is an empty graph, then k = 0. In addition, if n = l ≥ 5, we construct A4 as above, and then

A = A4 is a sum of at most
⌊
n2

4

⌋
matrices of CP rank one. If n ≤ 4, then observe that

⌊
n2

4

⌋
≤ n, so by [6,

Theorem 4] A can be written as a sum of at most n matrices of CP rank one. However, since G is an empty

graph, each summand with CP rank one can have at most one zero element. Since A = A4 has zeroes on

the diagonal, this implies that there must be exactly n summands with CP rank one.

remark 3.5. Note that θ(γ) is a much smaller number than
⌊
n2

4

⌋
whenever k ≥ 1, so there are infinite

families of graphs and consequently infinite families of matrices for which we have found a much lower

bound for their CP rank. For example, when k = 1 (and similarly, one can reason for all other k ≥ 1),

θ(γ) = 1+ l+
⌊
l2

4

⌋
, which (since q1 can be arbitrarly large) can actually be arbitrarily smaller than

⌊
(q1+l)2

4

⌋
.

example 3.6. Theorem 3.4 implies that any matrix

A =


0 0 0 a

0 0 0 b

0 0 0 0

a b 0 0

 ∈ CP4 (T) ,

where a, b > 0, which corresponds to the paw graph from Example 3.6, has CPrk (A) ≤ θ(γ1) < θ(γ2). Note

that by Lemma 2.1 it follows that CPrk (A) = 2.

The next example shows that CP-rank of a matrix A with an empty graph can be strictly greater than

n, when n > 4.

example 3.7. Let

A =


0 1 1 3 3

1 0 3 1 1

1 3 0 1 1

3 1 1 0 3

3 1 1 3 0

 ∈ CP5 (T) ,

and let us prove that CPrk (A) = 6.

Suppose there exist vectors b1, b2, . . . , b5 ∈ T5 such that

A =

5⊕
i=1

bi � bTi .

Since all diagonal entries of A = (aij) are equal to zero and all offdiagonal entries are nonzero, it follows

that each bi = [bi1, bi2, . . . , bi5]T has nonnegative entries with exactly one zero entry. Without any loss of

generality, we asume that bii = 0, i = 1, 2, . . . , 5.

Let us define E = {(1, 2), (1, 3), (2, 4), (2, 5), (3, 4), (3, 5)} the set of indices such that, for k < l, we have

akl = 1 if and only if (k, l) ∈ E . Note that bkl = bkk + bkl ≥ akl for all 1 ≤ k < l ≤ 5, which gives us bkl ≥ 1

for (k, l) ∈ E and bkl ≥ 3 for (k, l) /∈ E .
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Moreover, for any pair (k, l) /∈ E , 1 ≤ k < l ≤ 5, and any i, we have bki + bil ≥ akl = 3. This gives us

b21 + b24 ≥ 3, b31 + b34 ≥ 3, b21 + b25 ≥ 3,

b31 + b35 ≥ 3, b12 + b13 ≥ 3, b42 + b43 ≥ 3,(3.1)

b52 + b53 ≥ 3, b24 + b25 ≥ 3, b34 + b35 ≥ 3.

Note that bik + bil ≥ 2 for all i distinct from k and l, and thus,

(3.2) min{bkl, blk} = 1.

for any (k, l) ∈ E .

Choose (k, l) = (1, 2) and by (3.2) we have b21 = 1 or b12 = 1. In the case b21 = 1, we apply (3.1) and

(3.2) for several times, to observe that b24 ≥ 2, b25 ≥ 2, b42 = 1, b43 ≥ 2, b34 = 1, b35 ≥ 2, b53 = 1, b52 ≥ 2

and so b25 = 1, a contradiction. Similar arguments give us a contradiction also in the case b12 = 1. Hence,

we proved that CPrk (A) ≥ 6 and by Theorem 3.4, it follows that CPrk (A) = 6.

In the rest of this section, we apply the above results to the study of the CP-rank of 0/1 matrices over

T. Note again that 0 and 1 here represent real numbers. Equivalently, one could also study 0/∞ matrices,

where 0 and ∞ represent the tropical identity and tropical zero.

It can be seen that CP-rank of a 0/1 matrix A is equal to the edge clique cover number of G(A), denoted

by cc (G(A)) [6, Proposition 3]. Note that it was proved that the edge clique cover number of a graph is equal

to the intersection number of the graph [10]. Since determining the intersection number is an NP-complete

problem [12], it seems useful to obtain some easily calculable bounds for the CP-rank of a 0/1 matrix and

the following two propositions offer some results in this direction, by using the same approach as in the proof

of Theorem 3.4.

Proposition 3.8. If A ∈ CPn (T) is a 0/1 matrix such that G(A) is an empty graph, then

CPrk (A) = n.

Proof. Let us define v(i) ∈ Tn, i = 1, 2, . . . , n, by

v
(i)
j =

{
0, if i = j,

1, if i 6= j.

It is easy to verify that

A =

n⊕
i=1

v(i) �
(
v(i)
)T

,

and so CPrk (A) ≤ n. Suppose now A =
n−1⊕
i=1

u(i) �
(
u(i)
)T

. Since A has n diagonal entries equal to 0, there

exists j such that u
(j)
t = u

(j)
s = 0 for some 1 ≤ s, t ≤ n. It follows that

(
u(i) �

(
u(i)
)T)

ts
= 0, and thus,

ats 6= 0, a contradiction. Therefore, CPrk (A) = n.

Note that the above proposition is not valid for matrices which are not 0/1, as Example 3.7 shows.

For any given matrix A ∈Mn(T), we define its support, Supp(A) ∈Mn(T), by

Supp(A)ij =

{
0, if aij = 0,

1, if aij 6= 0.
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In Example 2.4, we showed that the CP-rank of A and Supp(A) do not necessarily coincide.

Lemma 3.9. If G is a graph with CPrk (G) = cc (G), then for every A = (aij) ∈ CPn (T) with G(A) = G

choose edge clique cover Q1, Q2, . . . , Qcc(G). Then

(3.3) A =

cc(G)⊕
i=1

bi � bTi ,

and the following two statements hold:

(a) We have a bijective correspondence between the cliques Q1, Q2, . . . , Qcc(G) and the summands bi of

the sum, where the vertices of the clique i correspond to the zero entries of bi.

(b) If auv is the minimal nonzero entry in A, then for every i = 1, 2, . . . , cc (G) and j = 1, 2, . . . , n, we

have (bi)j = 0 or (bi)j ≥ au,v.

Proof. Since G(A) = G and CPrk (G) = cc (G), we know that A =
⊕cc(G)

i=1 bi � bTi for some vectors

bi ∈ Tn. For every clique Q from the clique cover Q1, Q2, . . . , Qcc(G), we have ajk = 0 for all j, k,∈ Q.

This implies that there exists i such that (bi)j = (bi)k = 0 for all j, k ∈ Q. The fact that the number of

summands of rank one matrices is exactly equal to cc (G), implies that for every clique Qi in G, there exists

some vector bi with components equaling zero at least at all positions corresponding to the vertices of clique

Qi. By Lemma 2.3 and the definition of operations in Mn(T), we know that all positions that correspond

to vertices outside clique Qi, have to be nonzero. This yields the desired bijective correspondence.

Now, suppose auv is the minimal nonzero entry in A and choose i such that (bi)j > 0. By the above, bi
corresponds to a clique Qi in G, so there exist indices k1, k2, . . . , kr such that (bi)kt

= 0 for all t = 1, 2, . . . , r

and j /∈ Qi. Then ajkt ≤ (bi�bTi )j,kt = (bi)j for all t = 1, 2, . . . , r. Since vertices corresponding to j and kt do

not belong to the same clique, there exists at least one t such that ajkt 6= 0, and therefore auv ≤ ajkt ≤ (bi)j .

By [6, Proposition 3], we have that the CP-rank of Supp(A), which is a 0/1 matrix, is equal to the edge

clique cover number of G(A). Therefore it follows that in order to find lower bounds for the CP-rank of any

matrix, it suffices to study the CP-rank of its corresponding support as the following shows.

Corollary 3.10. For any matrix A ∈ CPn (T), we have

CPrk (G(A)) ≥ CPrk (A) ≥ CPrk (Supp(A)) = cc (G(A)) .

Note that Example 2.4 shows that the inequality in Corollary 3.10 is not necessarily true if we omit the

condition A = C(A).

4. Graphs with CP-rank equal to the clique cover number. In Lemma 3.9, we proved that the

lower bound for CP-rank of a graph is its clique cover number. Therefore, we now proceed by studying the

graphs that define matrices with the CP-ranks that are as close as possible to the bound from Corollary

3.10.

The following theorem shows that if we aspire to characterize graphs with the lowest possible CP-ranks,

we can limit ourselves to graphs which are very well connected, i.e. their diameters are at most 2. However,

the situation in the case diam(G) ≤ 2 appears to be quite complex. We provide examples of acyclic and

cyclic graphs with diameter 2 where either CPrk (G) = cc (G) or CPrk (G) > cc (G).

theorem 4.1. If G is a connected graph with CPrk (G) = cc (G), then diam(G) ≤ 2.
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Proof. Suppose CPrk (G) = cc (G) and diam(G) ≥ 3. Thus, there exist vertices u, v ∈ V (G) with

d(u, v) ≥ 3.

Define A = (aij) ∈Mn(T) by

aij =


0, if {i, j} ∈ E(G) or i = j,

1, if {i, j} = {u, v},
2, if {i, j} /∈ E(G) and i 6= j.

Observe that G(A) = G and A ∈ CPn (T). Let A be of the form (3.3). Since au,v = 1 is the minimal nonzero

entry of A and (bi � bTi )u,v = (bi)u + (bi)v = 1 for some i, then by Lemma 3.9 (b), (bi)u = 0 and (bi)v = 1

or (bi)v = 0 and (bi)u = 1. Suppose without loss of generality that (bi)u = 0 and (bi)v = 1. By Lemma 3.9

(a), (bi)l = 0 for some l 6= u, and thus, av,l ≤ (bi � bTi )v,l = (bi)v + (bi)l = 1. Hence, by definition of A,

{v, l} ∈ E(G), which contradicts d(u, v) ≥ 3.

example 4.2. If G = P3 is a path on 3 vertices, then all matrices A ∈ CP3 (T) with G(A) = P3 have

(up to a permutational conjugation) the form

A =

0 a 0

a 0 0

0 0 0

 =

a0
0

� [a 0 0
]
⊕

 0

∞
0

� [0 ∞ 0
]

for some 0 6= a ∈ T. By Lemma 2.1, CPrk (A) 6= 1, so it follows that CPrk (A) = 2, and thus, CPrk (P3) =

cc (P3) = 2.

example 4.3. If G is a paw graph (see Example 3.6), then cc (G) = 2. Since every matrix B ∈ CP4 (T),

G(B) = G, has (up to permutational conjugation) the form

B =


0 a b 0

a 0 0 0

b 0 0 0

0 0 0 0

 =


∞
0

0

0

� [∞ 0 0 0
]
⊕


0

a

b

0

� [0 a b 0
]

for some 0 6= a, b ∈ T. By Lemma 2.1, we have CPrk (B) 6= 1 and so it follows that CPrk (G) = cc (G) = 2.

example 4.4. Let E5 = 5K1 be an empty graph with 5 vertices and let

S6 = E5 ∨ w =

be a star graph with six vertices. By Lemma 3.2 and Example 3.7, it follows that

CPrk (S6) = CPrk (E5) = 6 > 5 = cc (S6) .

example 4.5. Let

H =
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and assume that CPrk (H) = cc (H) = 2. Let

D =


0 0 0 0 0

0 0 0 1 2

0 0 0 2 2

0 1 2 0 0

0 2 2 0 0

 ∈ CP5 (T) ,

and observe that G(D) = H. By Lemma 3.9 (a),

D =


0 0 0 0 0

0 0 0 1 2

0 0 0 2 2

0 1 2 0 0

0 2 2 0 0

 =


0

0

0

x

y

�
[
0 0 0 x y

]
⊕


0

w

t

0

0

�
[
0 w t 0 0

]
.

Since 1 = D2,4 = min{x,w}, it follows that x = 1 or w = 1. If x = 1, then 2 = D3,4 = min{1, t} ≤ 1 and if

w = 1, then 2 = D2,5 = min{y, 1} ≤ 1, both contradictions. Hence, CPrk (H) > 2 = cc (H).
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