
Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 34, pp. 71-114, March 2018.

RANGE-COMPATIBLE HOMOMORPHISMS OVER

THE FIELD WITH TWO ELEMENTS∗

CLÉMENT DE SEGUINS PAZZIS†

Abstract. Let U and V be finite-dimensional vector spaces over a field K, and S be a linear subspace of the space L(U, V )

of all linear operators from U to V . A map F : S → V is called range-compatible when F (s) ∈ Im s for all s ∈ S.

Previous work has classified all the range-compatible group homomorphisms provided that codimL(U,V )S ≤ 2 dimV − 3,

except in the special case when K has only two elements and codimL(U,V )S = 2 dimV − 3. This article gives a thorough

treatment of that special case. The results are partly based upon the recent classification of vector spaces of matrices with rank

at most 2 over F2.

As an application, the 2-dimensional non-reflexive operator spaces are classified over any field, and so do the affine subspaces

of Mn,p(K) with lower-rank at least 2 and codimension 3.
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1. Introduction.

1.1. Main definitions and goals. Let K be an arbitrary field. We denote by Mn,p(K) the set of

matrices with n rows, p columns and entries in K. Throughout the article, U and V denote finite-dimensional

vector spaces over K. We denote by L(U, V ) the space of linear operators from U to V . Given a linear

subspace S of L(U, V ), the codimension of S in L(U, V ) is simply denoted by codimS.

Let S be a linear subspace of L(U, V ), and F : S → V be a map. We say that F is range-compatible

when F (s) ∈ Im s for all x in S. We say that F is local when there is a vector x ∈ U such that F (s) = s(x)

for all s in S, i.e. when F is an evaluation map; in that case, we note that F is linear and range-compatible.

We adopt similar definitions for maps from a linear subspace of Mn,p(K) to Kn by using standard bases

to identify Mn,p(K) with L(Kp,Kn).

Let S be a linear subspace of L(U, V ). The set of all range-compatible linear maps on S is a linear

subspace of L(S, V ) which we denote by Lrc(S); the subset of all local maps on S is a linear subspace of

Lrc(S) which we denote by Lloc(S).

Although several authors have independently noticed that every range-compatible linear map on the

full space L(U, V ) is local (this is implicit in [5], for example), the concept of a range-compatible map has

only emerged recently. In [14], it was studied as a means to decipher the structure of large vector spaces of

matrices with an upper-bound on the rank. There, the following result was a major key in the generalization

to all fields of Atkinson and Lloyd’s classification of such spaces.
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Theorem 1.1 (Lemma 8 of [14]). Let S be a linear subspace of L(U, V ) with codimS ≤ dimV − 2.

Then, every range-compatible linear map on S is local.

Theorem 1.1 was also used in a sweeping generalization of Dieudonné’s theorem on linear bijections that

preserve non-singularity [9].

Besides their links with the theory of spaces of matrices with bounded rank and with linear preservers

problems, range-compatible linear maps are deeply connected, through duality, to the notion of algebraic

reflexivity. Recall that the reflexive closure of S, denoted by R(S), is defined as the space of all linear

operators g : U → V such that g(x) ∈ Sx for all x ∈ U . We say that S is (algebraically) reflexive when

R(S) = S. In general, the reflexivity defect of S is defined as dimR(S)− dimS. For x ∈ U , set

x̂ : s ∈ S 7−→ s(x),

so that

Ŝ :=
{
x̂ | x ∈ U

}
is a linear subspace of L(S, V ). Note that Im x̂ = Sx for all x ∈ U . From there, the link between the

reflexive closure of S and the space of all range-compatible linear maps on Ŝ is easy to see:

• Let F : Ŝ → V be a range-compatible linear map. As Im x̂ = Sx for all x ∈ U , we see that the

linear map F̌ : x ∈ U 7→ F (x̂) belongs to the reflexive closure of S.

• Conversely, let g ∈ R(S). For all x ∈ U such that Sx = {0}, we deduce that g(x) = 0; therefore,

one can find a linear map G : Ŝ → V such that G(x̂) = g(x) for all x ∈ U ; as g(x) ∈ Sx = Im x̂ for

all x ∈ U , we find that G is range-compatible.

With the above, one sees that F 7→ F̌ defines an isomorphism from Lrc(Ŝ) to R(S), and this isomorphism

maps Lloc(Ŝ) onto S. We deduce the following result.

Proposition 1.2. Let S be a linear subspace of L(U, V ). Then, the quotient spaces Lrc(Ŝ)/Lloc(Ŝ) and

R(S)/S are isomorphic through F 7→ F̌ . In particular, S is reflexive if and only if every range-compatible

linear map on Ŝ is local.

Remark 1.3. Similarly, it is easy to demonstrate that the quotient spaces R(Ŝ)/Ŝ and Lrc(S)/Lloc(S)

are isomorphic, whence Ŝ is reflexive if and only if every range-compatible linear map on S is local. Besides,

the reflexivity defect of S equals the codimension of Lloc(Ŝ) in Lrc(Ŝ).

In particular, Theorem 1.1 yields a sufficient condition for algebraic reflexivity that is based upon the

dimension of the source space of the operator space under consideration (see Theorem 9 of [14]).

In the first systematic study of range-compatible homomorphisms to date [13], the upper-bound dimV −2

from Theorem 1.1 was shown to be non-optimal. There, the following optimal result was proved:

Theorem 1.4. Let U and V be finite-dimensional vector spaces, and S be a linear subspace of L(U, V )

with either codim S ≤ 2 dimV − 3 if |K| > 2, or codim S ≤ 2 dimV − 4 if |K| = 2. Then, every range-

compatible linear map on S is local.

In [13], we went as far as to classify, for an arbitrary field with more than 2 elements, all the range-

compatible group homomorphisms on a linear subspace S of L(U, V ) with codim S ≤ 2 dimV−3 (see Theorem

1.6 of [13]). The main aim of the present article is to examine the case of fields with two elements. Note

already that only the critical case when dimS = 2 dimV − 3 needs to be considered and that the difficulty
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does not come from the generalization to group homomorphisms but from the linear maps themselves:

indeed, over F2 (as is the case over any prime field), a map between vector spaces is a group homomorphism

if and only if it is linear. In that situation, Theorem 1.6 of [13] suggests two main special cases when there

are non-local range-compatible linear maps on S (in the terminology of [13], this happens whenever S has

Type 2 or Type 3). A natural question to ask is whether those are the only non-standard cases, or if there

are other ones. Our result is that there is a limited number of other special cases, up to equivalence (five of

them, precisely). The detailed classification in given in Section 1.3.

As an application to part of these results and to those of [13], we shall classify all the 2-dimensional

non-reflexive operator spaces, up to equivalence. In [2], such a classification was given for all fields with more

than 4 elements; however, a closer examination of the arguments given there shows that this assumption

is mainly there to apply a classification theorem of Chebotar and Šemrl [3] for locally linearly dependent

triples of linear operators, a theorem which is now known to hold for all fields with more than 2 elements

[11]. However, our own strategy will not be based upon that classification; rather, we will directly use our

own classification of range-compatible linear maps over large operator spaces.

Before we can state our main classification theorem, it is necessary to go through a bit of additional

notation.

1.2. Additional definitions and notation. In this work, linear hyperplanes are simply called hyper-

planes unless specified otherwise. The entries of matrices are always denoted by small letters, e.g. the entry

of a matrix A at the (i, j)-spot is denoted by ai,j .

We denote by Mn(K) the algebra of n by n square matrices with entries in K, by GLn(K) its group of

invertible elements, by Sn(K) its subspace of symmetric matrices, and by An(K) its subspace of alternating

matrices (i.e., skew-symmetric matrices with all diagonal entries zero). The rank of M ∈ Mn,p(K) is denoted

by rk M . The trace of an endomorphism u of a finite-dimensional vector space is denoted by tr(u).

We make the group GLn(K)×GLp(K) act on the set of linear subspaces of Mn,p(K) by

(P,Q).V := P V Q−1.

Two linear subspaces of the same orbit will be called equivalent (this means that they represent, in a change

of bases, the same set of linear transformations from a p-dimensional vector space to an n-dimensional vector

space).

We shall consider the bilinear form

(u, v) ∈ L(U, V )× L(V,U) 7−→ tr(v ◦ u).

It is non-degenerate on both sides. Throughout the article, orthogonality will always refer to this bilinear

form, to the effect that, given a subset S of L(U, V ), one has

S⊥ :=
{
v ∈ L(V,U) : for all u ∈ S, tr(v ◦ u) = 0

}
.

Recall that (S⊥)⊥ = S whenever S is a linear subspace of L(U, V ).

Given non-negative integers m,n, p, q and respective subsets A and B of Mm,p(K) and Mn,q(K), one sets

A ∨ B :=

{[
A C

(0)n×p B

]
| A ∈ A, B ∈ B, C ∈ Mm,q(K)

}
⊂ Mm+n,p+q(K).
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Given non-negative integers n, p, q and respective subsets A and B of Mn,p(K) and Mn,q(K), one sets

A
∐
B :=

{[
A B

]
| A ∈ A, B ∈ B

}
.

A subspace S of L(U, V ) is called reduced when it satisfies the following conditions:

(i) No non-zero vector of U is annihilated by all the operators in S.

(ii) The sum of the ranges of the operators in S equals V .

In the general case, one sets U0 :=
⋂
f∈S Kerf and V0 :=

∑
f∈S Im f , and one sees that every operator f ∈ S

induces a linear operator

f : U/U0 → V0,

and that S := {f | f ∈ S} is a reduced subspace of L(U/U0, V0) called the reduced operator space associated

with S.

1.3. The main classification theorem. We have already seen that, on a subspace S of L(U, V ) with

codim S ≤ 2 dimV −4, every range-compatible linear map is local (see Theorem 1.4). What goes wrong then

with fields with two elements and codim S = 2 dimV − 3? First of all, in [13], the following general result

was proved in which, given vector spaces V1 and V2, a root-linear map is defined as a group homomorphism

f : V1 → V2 such that

for all (λ, x) ∈ K× V1, f(λ2x) = λf(x).

Theorem 1.5 (Corollary 3.4 of [13]). Let K be a field of characteristic 2. Let r, n, p be non-negative

integers with r ≥ 2. Set S := Sr(K) ∨Mn,p(K). Then, the group of all range-compatible homomorphisms on

S is generated by the local maps together with the maps of the form

M 7−→
[
α(m1,1) α(m2,2) · · · α(mr,r) 0 · · · 0

]T
where α : K→ K is a root-linear form.

Over F2, root-linearity is equivalent to linearity, which leads to:

Theorem 1.6. Let r, n, p be non-negative integers with r ≥ 2. Set S := Sr(F2) ∨Mn,p(F2). Then, the

vector space of all range-compatible linear maps on S is generated by the local maps together with

M 7−→
[
m1,1 m2,2 · · · mr,r 0 · · · 0

]T
.

To see that the above special case of a range-compatible linear map on Sr(F2) ∨Mn,p(F2) is non-local,

note that if there is a vector X ∈ Kr+p such that

for all M ∈ Sr(F2) ∨Mn,p(F2), MX =
[
m1,1 m2,2 · · · mr,r 0 · · · 0

]T
,

then we find the last p entries of X to be zero by applying the above formula to the matrices of Sr(F2) ∨
Mn,p(F2) with all first r columns zero; then, we show that the first r entries of X are zero by considering all

the matrices of the form M =

[
A (0)r×p

(0)n×r (0)n×p

]
with A ∈ Ar(K); thus X = 0, which is absurd.

In particular, if a linear subspace S of L(U, V ) is represented by S2(F2)∨Mn,p(F2) or by S3(F2)
∐

M3,p(K)

for some pair (n, p) of non-negative integers, then there is a non-local range-compatible linear map on it.
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There are other examples. In order to discuss them, some additional notation is necessary. We define:

• V2 :=


 a b

b c

c 0

 | (a, b, c) ∈ F3
2

;

• G3 :=


 a c b

0 b+ c e

b d f

 | (a, b, c, d, e, f) ∈ F6
2

;

• H3 :=


 a b c

b d f

c e b+ c+ d

 | (a, b, c, d, e, f) ∈ F6
2

;

• I3 :=


 a d e

b c f

c a a+ c+ e+ f

 | (a, b, c, d, e, f) ∈ F6
2

;

• H4 :=


 a b+ c f h

b d a+ c i

c e g a+ b

 | (a, b, c, d, e, f, g, h, i) ∈ F9
2

.

We note that each of those spaces has codimension 3 in the full matrix space it is naturally included in.

Let S be a linear subspace of L(U, V ). We say that S has Type i when, in well-chosen bases of U and

V , it is represented by the matrix space featured in the corresponding line of the following array.

Type Matrix space representing S in well-chosen bases of U and V

1 S2(F2) ∨Mn,p(F2), with n ≥ 0 and p ≥ 0.

2 S3(F2)
∐

M3,p(F2), with p ≥ 0.

3 V2 ∨Mn,p(F2), with n ≥ 0 and p ≥ 0.

4 G3
∐

M3,p(F2), with p ≥ 0.

5 H3

∐
M3,p(F2), with p ≥ 0.

6 I3
∐

M3,p(F2), with p ≥ 0.

7 H4

∐
M3,p(F2), with p ≥ 0.

Note that in the above cases S has codimension 2 dimV − 3 in L(U, V ). Spaces of Type 1 and 2 in the

above classification correspond, respectively, to spaces of Type 2 and 3 from [13].

Theorem 1.7. Assume that K = F2. Let S be a linear subspace of L(U, V ) with codimension 2 dimV −3,

and which has none of Types 1 to 7. Then, every range-compatible linear map on S is local.

In Theorem 1.6, we have described the range-compatible linear maps on spaces of Type 1 or 2. In the

following theorem, we recall these results and describe the remaining five cases:

Theorem 1.8. Assume that K = F2. Let S be a linear subspace of L(U, V ) that has one of Types 1 to 7.

Then, Lloc(S, V ) has codimension 1 in Lrc(S, V ). In the following array, we give a non-local range-compatible

linear map from each special type of space:
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Type Matrix space Example of a non-local range-compatible linear map

1 S2(F2) ∨Mn,p(F2) M 7→

 m1,1

m2,2

(0)n×1


2 S3(F2)

∐
M3,p(F2) M 7→

 m1,1

m2,2

m3,3



3 V2 ∨Mn,p(F2) M 7→


0

m2,1 +m2,2

0

(0)n×1


4 G3

∐
M3,p(F2) M 7→

 m1,1 +m1,3

0

0


5 H3

∐
M3,p(F2) M 7→

 m1,1

m2,2

m3,3


6 I3

∐
M3,p(F2) M 7→

 0

0

m1,1 +m3,1


7 H4

∐
M3,p(F2) M 7→

(
m1,1 +m2,1 +m3,1

) 1

1

1


Finally, the above special spaces are pairwise inequivalent:

Theorem 1.9. Given distinct integers i and j in [[1, 7]], no space can have both Types i and j.

1.4. Strategy of proof, and structure of the article. Our proof of the above results is split into

two independent blocks. In the first one (Section 3), we establish Theorems 1.8 and 1.9. In the second one

(Sections 4 and 5), we prove Theorem 1.7.

For both proofs, we will need many basic results that were developed in [13], in particular quotient space

techniques. The main idea is that if F : S → V is a range-compatible linear map and y is a non-zero vector

of V , then F induces a range-compatible linear map

(F mod y) : (S mod Ky) −→ V/Ky,

where S mod Ky denotes the space of operators from U to V/Ky that is naturally associated with S. If

the codimension of S mod Ky is small enough, then we can use induction on the dimension of V to recover

precious information on F . The vectors y for which we can warrant that the codimension of S mod Ky is

small enough will be called the S-adapted vectors. A very important lemma (Lemma 2.8) that was proved

in [13] states that if codim S ≤ 2 dimV − 3 and if we can find three linearly independent S-adapted vectors

in V , then every range-compatible linear map on S is local. On the other hand, having too few S-adapted

vectors in V translates into rank properties of the dual space Ŝ⊥, and in some instances it is then possible

to show that every operator in Ŝ⊥ has rank at most 2 (this was essentially the strategy in [13]). In those
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situations, we shall appeal to the recent classification of spaces of matrices with rank at most 2 over F2 [15]

to uncover the structure of S.

In Section 2, we shall recall all the useful technical results on range-compatible linear maps that were

already established in [13], and then we shall gather the results from [15] that we will use in the proof of

Theorem 1.7.

The last two sections (Sections 6 and 7) are devoted to applications of Theorems 1.7 and 1.8, first to the

classification of non-reflexive 2-dimensional spaces of operators, and then to the one of large affine spaces in

which no matrix has rank less than 2.

2. Main tools. Here, we review some basic results that were proved in [13]. Throughout the section,

K denotes the field F2.

2.1. Range-compatible linear maps in specific cases. The first two lemmas are the most basic

results on range-compatible linear maps.

Lemma 2.1 (Corollary 2.2 in [13]). Assume that dimU = 1. Let S be a linear subspace of L(U, V ).

Then, every range-compatible linear map on S is local.

Lemma 2.2 (Proposition 2.5 in [13]). Every range-compatible linear map on L(U, V ) is local.

2.2. Embedding and splitting techniques. Here, we recall two basic techniques for dealing with

range-compatible linear maps on matrix spaces. The first one is obvious. The second one is Lemma 2.4 in

[13].

Lemma 2.3 (Embedding Lemma). Let S be a linear subspace of Mn,p(K), and let n′ be a non-negative

integer. Consider the space S ′ ⊂ Mn+n′,p(K) of all matrices of the form

[
M

(0)n′×p

]
with M ∈ S, and let

F ′ : S ′ → Kn+n′
be a range-compatible linear map. Then, there is a range-compatible linear map F : S → Kn

such that

for all M ∈ S, F ′
([

M

(0)n′×p

])
=

[
F (M)

(0)n′×1

]
.

Lemma 2.4 (Splitting Lemma). Let n, p, q be non-negative integers, and A and B be linear subspaces,

respectively, of Mn,p(K) and Mn,q(K).

Given maps f : A → Kn and g : B → Kn, set

f
∐

g :
[
A B

]
∈ A

∐
B 7−→ f(A) + g(B).

Then:

(a) The linear maps from A
∐
B to Kn are the maps of the form f

∐
g, where f ∈ L(A,Kn) and g ∈

L(B,Kn). Moreover, every linear map from A
∐
B to Kn may be expressed uniquely as f

∐
g.

(b) Given f ∈ L(A,Kn) and g ∈ L(B,Kn), the map f
∐
g is range-compatible (respectively, local) if and

only if f and g are range-compatible (respectively, local).

2.3. The projection lemma. Now, we come to the projection technique: this cornerstone of the proof

of Theorem 1.6 of [13] will remain our basic tool for proving Theorem 1.7 by induction on the dimension of

V :
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Lemma 2.5 (Projection Lemma, Lemma 2.6 of [13]). Let S be a linear subspace of L(U, V ) and V0 be

a linear subspace of V . Let F : S → V be a range-compatible linear map. Denote by π : V → V/V0 the

canonical projection, and by S mod V0 the space of all linear maps of the form π ◦ s with s ∈ S. Then, there

is a unique range-compatible linear map

(F mod V0) : S mod V0 → V/V0

such that

for all s ∈ S, (F mod V0)(π ◦ s) = π(F (s)),

i.e. the following diagram is commutative:

S F //

s7→π◦s
��

V

π

��
S mod V0

F mod V0

// V/V0.

In particular, given a non-zero vector y ∈ V , one denotes by F mod y the projected map F mod Ky, and by

S mod y the operator space S mod Ky.

In terms of matrices, the special case when V0 is a linear hyperplane of V has the following interpretation:

Lemma 2.6. Let S be a linear subspace of Mn,p(K), and F be a range-compatible linear map on S.

For i ∈ [[1, n]] and M ∈ S, denote by Ri(M) the i-th row of M . Then, there are linear forms F1, . . . , Fn,

respectively, on R1(S), . . . , Rn(S), such that

F :

 L1

...

Ln

 7−→
 F1(L1)

...

Fn(Ln)

 .

2.4. Adapted vectors. Let S be a linear subspace of L(U, V ). A non-zero vector y ∈ V is called

S-adapted whenever

codim(S mod y) ≤ 2(dimV − 1)− 3.

In general, by duality one finds

codim(S mod y) = codim S − dimS⊥y.

Therefore, in the special case when codim S = 2 dimV −3, the vector y is S-adapted if and only if dimS⊥y ≥
2.

In [13], we have proved the following result, which helps obtain many adapted vectors (this combines

[13, Lemma 4.1] with [13, Lemma 6.1]):

Lemma 2.7 (Adapted vectors lemma). Let S be a linear subspace of L(U, V ) with codim S ≤ 2 dimV−3.

Then, either the set of all non-S-adapted vectors is included in a hyperplane of V or every range-compatible

linear map on S is local.
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2.5. Sufficient conditions for localness. In [13], the following result is a major key to the proof of

Theorem 1.1; it will also be very important in the present study:

Lemma 2.8 (Lemma 4.2 of [13]). Let S be a linear subspace of L(U, V ) with codim S ≤ 2 dimV − 3.

Let F : S → V be a range-compatible group homomorphism. Assume that there are linearly independent

vectors y1, y2 and y3 of V such that F mod y1, F mod y2, F mod y3 are all local. Then, F is local.

In addition, we shall use the following known result.

Lemma 2.9 (Proposition 2.9 of [13]). Let S be a linear subspace of L(U, V ) with codim S ≤ 2 dimV −3.

Assume that there is a non-zero vector x of U such that dimSx ≤ 1. Then, every range-compatible linear

map on S is local.

2.6. A covering lemma. The following lemma on coverings of a vector space by linear subspaces,

which is proved in [12], will be used in a few instances.

Lemma 2.10 (Lemma 2.3 of [12]). Let p be a positive integer, E be an n-dimensional vector space over

a field with more than p elements, and (Ei)i∈I be a family of (n − 1)p + 1 linear subspaces of E in which

exactly p + 1 vector spaces have dimension n − 1 and, for all k ∈ [[1, n − 2]], exactly p vector spaces have

dimension k. Then, E is not included in
⋃
i∈I Ei.

2.7. A lemma on quadratic forms over F2. The following lemma was proved in [13]:

Lemma 2.11 (Lemma 5.2 of [13]). Let q be a non-zero quadratic form on an n-dimensional vector space

E over F2. Then, q−1{1} is not included in an (n− 2)-dimensional linear subspace of E.

2.8. Primitive spaces of matrices with upper-rank 2 over F2. Here, we review some results from

[15].

The upper-rank of a linear subspace V of Mn,p(K) is defined as the maximal rank for a matrix in V: we

denote it by urk(V).

A linear subspace V of Mn,p(K) with upper-rank r is called primitive when it is reduced and satisfies

the two extra conditions below:

(i) V is not equivalent to a space T of matrices of the formM =
[
H(M) (?)n×1

]
where urkH(T ) ≤ r−1;

(ii) V is not equivalent to a space T of matrices of the form M =

[
H(M)

(?)1×p

]
where urkH(T ) ≤ r − 1.

Note that this definition is invariant under replacing V with an equivalent subspace.

The following result is a consequence of Proposition 1.1 of [15] and of the standard classification of spaces

with upper-rank 1:

Proposition 2.12. Let V be a non-primitive reduced linear subspace of Mn,p(F2) with upper-rank at

most 2. Then, either n = 2, or p = 2, or V is equivalent to a subspace of the space of all matrices of the

form [
? (?)1×(p−1)

(?)(n−1)×1 (0)(n−1)×(p−1)

]
.

We shall also need the following two results, both of which come from Theorem 1.5 of [15]:
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Proposition 2.13. Let V be a primitive linear subspace of Mn,p(F2) with upper-rank 2. Then, n = p = 3.

Proposition 2.14. Let V be a primitive linear subspace of M3(F2) with upper-rank 2. Assume that

dimV = 3 and that there is no vector x ∈ F3
2 such that dimVx = 1. Then, V is equivalent to A3(F2) or to

the space

U3(F2) :=

{ 0 a a+ c

a 0 b

a+ b c 0

 | (a, b, c) ∈ F3
2

}
.

Conversely, A3(F2) and U3(F2) are 3-dimensional primitive subspaces of M3(F2) in which every non-zero

matrix has rank 2.

Let us explain how Proposition 2.14 is derived from Theorem 1.5 of [15]: Combining the assumption

that no vector x ∈ F3
2 satisfies dimVx = 1 and the one that V is reduced, we obtain that V is not equivalent

to a subspace of upper-triangular matrices, and in particular V is not equivalent to a subspace of the space

denoted by J3(F2) in [15]. On the other hand, as V has dimension 3 it is not equivalent to the space denoted

by V3(F2) in [15], which only leaves open the possibility that V is equivalent to A3(F2) or to U3(F2).

At some point we will need the following result, which follows directly from Lemma 3.1 and Proposition

4.2 of [15].

Proposition 2.15. Let V be a 3-dimensional primitive linear subspace of M3(F2) with upper-rank 2.

Assume that there is a vector x ∈ F3
2 such that dimVx = 1. Then, V is equivalent to one of the following

four spaces:

M1 :=

{ a 0 c

0 a+ b 0

0 0 b

 | (a, b, c) ∈ F3
2

}
, M2 :=

{ a c 0

0 a+ b a

0 0 b

 | (a, b, c) ∈ F3
2

}

M3 :=

{ a b 0

0 a+ b c

0 0 b

 | (a, b, c) ∈ F3
2

}
, M4 :=

{ a c 0

0 a+ b c

0 0 b

 | (a, b, c) ∈ F3
2

}
.

Conversely, each of the Mi satisfy the given conditions.

In order to differentiate between the above special types of spaces, the following result from [15] will

also be useful.

Proposition 2.16. Let V be a linear subspace of M3(F2). Then, at most one of the following hold:

(i) V is equivalent to a linear subspace of the space J3(F2) of all upper-triangular matrices with trace 0;

(ii) V is equivalent to A3(F2);

(iii) V is equivalent to U3(F2).

3. Spaces of special type and their range-compatible linear maps. In Theorem 1.8, the results

on spaces of Type 1 or 2 follow directly from Theorem 1.6. In this section, we examine the remaining five

cases. In order to do so, we tackle each case separately. Using the splitting lemma, it is obvious that only

the five following matrix spaces need to be considered: V2, G3, H3, I3 and H4. Throughout the section, we

set K := F2 and we denote by (e1, e2, e3) the standard basis of K3.
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3.1. Spaces of Type 3. Let us describe the range-compatible linear maps on V2. Let F : V2 → K3

be a range-compatible linear map. Applying Theorem 1.6 to F mod e3 yields that F mod e3 is the sum

of a local map and, for some ε ∈ F2, of the map represented in the standard basis of K2 and in (e1, e2)

by

[
a b

b c

]
7→ ε

[
a

c

]
. Then, as we lose no generality in subtracting a local map from F , we see that no

generality is lost in assuming that

F :

 a b

b c

c 0

 7−→
 εa

εc

?

 .
Applying Lemma 2.6 to the third row, we obtain another scalar η ∈ K such that

F :

 a b

b c

c 0

 7−→
 εa

εc

ηc

 .
Then, for all (a, b, c) ∈ K3, we deduce that

0 =

∣∣∣∣∣∣
a b εa

b c εc

c 0 ηc

∣∣∣∣∣∣ = (η + ε)(a+ b)c.

It follows that η = ε. Thus, either F is local or

F :

 a b

b c

c 0

 7−→
 a

c

c

 .
In the latter case, adding the local map M 7→M ×

[
1

0

]
to F yields

G :

 a b

b c

c 0

 7−→
 0

b+ c

0

 .
Thus, in any case we have proved that every non-local range-compatible linear map on V2 is the sum of a

local map with G.

Conversely, let us prove that G is range-compatible and non-local. Let M =

 a b

b c

c 0

 ∈ V2. If b = 0,

then G(M) is the second column of M . If b = c, then G(M) = 0. The last remaining case is the one when

b = 1 and c = 0, in which G(M) = M ×
[

1

a

]
. Therefore, G(M) ∈ Im M in any case. However, it is easily

seen from the first two rows that G is non-local.

We conclude that

Lrc(V2) = Lloc(V2)⊕KG.

Using the Splitting Lemma, this settles the case of spaces of Type 3 in Theorem 1.8.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 34, pp. 71-114, March 2018.

Clément de Seguins Pazzis 82

3.2. Spaces of Type 4. Let F : G3 → K3 be a range-compatible linear map. Seeing that G3 mod e1
is equivalent to K ∨M1,2(K), we deduce from Lemma 2.9 that F mod e1 is local. Then, no generality is

lost in assuming that F mod e1 = 0. Noting that G3 mod e2 is deduced from S2(K)
∐

K2 through a simple

permutation of columns, we use Theorem 1.6 to obtain scalars α, β, γ, δ such that

F :

 a c b

0 b+ c e

b d f

 7−→ α

 a

?

b

+ β

 c

?

d

+ γ

 b

?

f

+ δ

 a

?

f

 .
Since F mod e1 = 0, we deduce that αb + βd + (γ + δ)f = 0 for all (b, d, f) ∈ K3, whence α = β = 0 and

γ = δ. It follows that F = γG where

G :

 a c b

0 b+ c e

b d f

 7−→
 a+ b

0

0

 .
Conversely, let us prove that G is range-compatible and non-local. Let

M =

 a c b

0 b+ c e

b d f

 ∈ G3.
If a = b, we have G(M) = 0. If a = 1 and b = 0, then G(M) is the first column of M . Assume now that

a = 0 and b = 1. If c = 0, then M is invertible, whence G(M) belongs to its column space. Finally if c = 1,

then one sees that G(M) = M ×

 d

1

0

. Therefore, G(M) ∈ Im M in any case.

If G were local, then we would have G = 0 as seen from the last row, which is obviously false.

We conclude that

Lrc(G3) = Lloc(G3)⊕KG.

Using the Splitting Lemma, this settles the case of spaces of Type 4 in Theorem 1.8.

3.3. Spaces of Type 5. Let F : H3 → K3 be a range-compatible linear map. We note that H3 mod e3
has Type 1. Thus, subtracting a local map if necessary, we see that no generality is lost in assuming that

there is some ε ∈ K such that

F :

 a b c

b d f

c e b+ c+ d

 7−→
 εa

εd

?

 .
Then, we find a triple (λ, µ, ν) ∈ K3 such that

F :

 a b c

b d f

c e b+ c+ d

 7−→
 εa

εd

λc+ µe+ ν(b+ c+ d)

 .
It follows that F mod e2 is represented by[

a b c

c e g

]
7−→

[
εa

λc+ µe+ νg

]
.
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With (a, b, c, e, g) = (0, 1, 0, 1, 0), we obtain µ = 0. On the other hand, F mod e1 is represented by[
b d f

c e b+ c+ d

]
7−→

[
εd

λc+ ν(b+ c+ d)

]
.

With (b, c, d, e, f) = (1, 1, 0, 0, 0), we deduce that λ = 0. Finally, with (b, c, d, e, f) = (1, 1, 1, 1, 1), we

conclude that ν = ε. Thus, F = εG, where

G :

 a b c

b d f

c e b+ c+ d

 7−→
 a

d

b+ c+ d

 .
Conversely, let us prove that G is non-local and range-compatible. From the first row, we see that if G were

local, then we would have G : M 7→Me1, which is obviously false. Now, let M =

 a b c

b d f

c e b+ c+ d

 ∈ H3

be with G(M) 6= 0. We use a reductio ad absurdum, by assuming that G(M) is not in the column space of

M . In particular, M must be singular. By Theorem 1.6, M cannot be symmetric, whence e 6= f . Noting

that H3 is invariant under conjugating by P :=

 1 0 0

0 0 1

0 1 0

, and noting that G(PMP−1) = PG(M), we

see that no generality is lost in assuming that e = 0 and f = 1.

As G(M) is not the first column of M , we have b 6= d, whence d = b+1. Then, M =

 a b c

b b+ 1 1

c 0 c+ 1


and G(M) =

 a

b+ 1

c+ 1

. If c = 0, one finds that G(M) is the sum of the first and third columns of M . Thus,

c = 1. Then, one finds detM = 1, contradicting a previous result. We conclude that G is range-compatible.

Therefore,

Lrc(H3) = Lloc(H3)⊕KG.

Using the Splitting Lemma, the case of spaces of Type 5 in Theorem 1.8 ensues.

3.4. Spaces of Type 6. Let F : I3 → K3 be a range-compatible linear map. Note that I3 mod e3 is

the space of all linear maps from K3 to K3/Ke3, whence F mod e3 is local. We deduce that no generality is

lost in assuming that F maps every matrix of I3 into Ke3. Thus, we have scalars λ, µ, ν such that

F :

 a d e

b c f

c a a+ c+ e+ f

 7−→
 0

0

λa+ µc+ ν(e+ f)

 .

Taking (a, b, c, d, e, f) = (0, 0, 0, 0, 0, 1), we find a matrix whose column space is spanned by

 0

1

1

, whence

ν = 0. Taking (a, b, c, d, e, f) = (1, 1, 1, 1, 0, 0), we find a matrix whose column space is spanned by

 1

1

1

,
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whence λ+ µ = 0. Therefore, F = λG, where

G :

 a d e

b c f

c a a+ c+ e+ f

 7−→
 0

0

a+ c

 .
Conversely, let us prove that G is range-compatible and non-local. If there exists a vector X ∈ K3 such

that G : M 7→ MX, then X = 0 by considering the first row, whence G = 0, which is obviously false.

Therefore, G is non-local.

Now, let M =

 a d e

b c f

c a a+ c+ e+ f

 ∈ I3 be such that G(M) 6= 0. Then, a + c = 1, whence

(a, c) = (1, 0) or (a, c) = (0, 1). Note that none of the first two columns of M is zero, and that they are

different, judging from the last row. Therefore, they are linearly independent. If bd = 0, then we see that∣∣∣∣∣∣
a d 0

b c 0

c a 1

∣∣∣∣∣∣ = ac+ bd = 0,

which yields that G(M) is a linear combination of the first two columns of M . Assume now that bd = 1, so

that b = d = 1. Then,

det(M) = ac(1 + e+ f) + cf + ae+ ec2 + fa2 + (1 + e+ f) = f(a+ c+ 1) + e(a+ c+ 1) + 1 = 1,

whence G(M) ∈ Im M . Therefore, G is range-compatible.

We conclude that

Lrc(I3) = Lloc(I3)⊕KG.
Using the Splitting Lemma, the case of spaces of Type 6 in Theorem 1.8 ensues.

3.5. Spaces of Type 7. Let F : H4 → K3 be a range-compatible linear map. For y := e1 + e2 + e3, we

compute that H⊥4 y =
{[

0 a b c
]T | (a, b, c) ∈ K3

}
has dimension 3, whence codim(H4 mod y) = 0.

It follows from Lemma 2.2 that F mod y is local. Thus, no generality is lost in assuming that F mod y = 0.

This yields a linear form ϕ on H4 such that

F : M 7→

 ϕ(M)

ϕ(M)

ϕ(M)

 .
Then, ϕ is a linear function of the first row of matrices of G, and the same holds for the second and third

rows. Obviously, the only possibility is that there is a triple (λ, µ, ν) ∈ K3 such that

ϕ :

 a b+ c f h

b d a+ c i

c e g a+ b

 7→ λ a+ µ b+ ν c.

Applying Lemma 2.6 to the first row, we find µ = ν. Similarly, we obtain λ = ν by applying it to the second

row, and we conclude that F = λG, where

G :

 a b+ c f h

b d a+ c i

c e g a+ b

 7→
 a+ b+ c

a+ b+ c

a+ b+ c

 .
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If G is local, looking at the first row yields that G maps every matrix of H4 to the sum of its first two

columns, which is obviously false.

We finish by proving that G is range-compatible. Let

M =

 a b+ c f h

b d a+ c i

c e g a+ b

 ∈ H4 be such that G(M) 6= 0.

If a = b = c = 1, then G(M) is the first column of M . Assume now that (a, b, c) 6= (1, 1, 1). Since G(M) 6= 0,

we deduce that exactly one of the scalars a, b, c is non-zero. From the symmetry of the situation, we see that

no generality is lost in assuming that a = 1 and b = c = 0. In that case, if g = 0, then the 3 × 3 matrix

obtained by deleting the second column of M is seen to be invertible, whence G(M) ∈ Im M . If g = 1, then

G(M) = (f + 1)C1(M) +C3(M), where Cj(M) denotes the j-th column of M for all j ∈ [[1, 4]]. In any case,

we have seen that G(M) ∈ Im M .

Therefore,

Lrc(H4) = Lloc(H4)⊕KG.

Using the Splitting Lemma, the case of spaces of Type 7 in Theorem 1.8 ensues.

3.6. On the equivalence between spaces of special type. Let S be a linear subspace of L(U, V ).

We note that the matrix spaces representing S⊥ are pairwise equivalent, and hence, their reduced subspaces

are pairwise equivalent. For each special type, we give such reduced subspaces:

Type of S Reduced matrix subspace associated with S⊥

1, with n rows A2(F2)
∐

M2,n−2(F2)

2 A3(F2)

3, with n rows
{[ 0 a b

a b c

]
| (a, b, c) ∈ F3

2

}∐
M2,n−3(F2)

4 G⊥3 =

{ 0 a b+ c

b b 0

c 0 0

 | (a, b, c) ∈ F3
2

}

5 H⊥3 =

{ 0 a+ b c

b a 0

a+ c 0 a

 | (a, b, c) ∈ F3
2

}

6 I⊥3 =

{ a+ c 0 b

0 b+ c a

c c c

 | (a, b, c) ∈ F3
2

}

7 H⊥4 =

{
b+ c a+ c a+ b

a 0 0

0 b 0

0 0 c

 | (a, b, c) ∈ F3
2

}

Note that H⊥3 is equivalent to the space denoted by U3(F2) in Proposition 2.14, which one obtains by

performing the column and row operations C2 ↔ C3, C3 ↔ C1 and L1 ↔ L3.

From there, we can prove the following result.
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Proposition 3.1. Let S be a linear subspace of L(U, V ). Then, S is of at most one of Types 1 to 7.

Proof. Two matrix spaces which represent the reduced space associated with S⊥ must be equivalent.

Therefore, in order to prove the claimed result, it suffices to show that the spaces listed in the above array

are pairwise inequivalent. By considering the number of rows, we deduce that a space of Type 7 can be of

none of Types 1 to 6, and that a space of Type 2, 4, 5 or 6 can be of none of Types 1 and 3. If S has Type

1, then we see that the set
{
y ∈ V : dimS⊥y < 2

}
is a 2-dimensional linear subspace of V ; whereas if S has

Type 3, one checks that this space has dimension 1 (for the special case given in the above array, this space

is spanned by the first vector of the canonical basis). Thus, a space of Type 1 cannot be of Type 3.

To conclude the proof, we need to differentiate between spaces of Types 2, 4, 5 and 6. Noting that G⊥3
is equivalent to a subspace of the space J3(F2) from Proposition 2.16, we deduce from Proposition 2.16 that

a space can have at most one of Types 2, 4 or 5.

Finally, using Propositions 2.14 and 2.15, we know that, in each space A3(F2), G⊥3 and H⊥3 , every matrix

has rank at most 2. However, the space I⊥3 contains the rank 3 matrix

 1 0 0

0 1 0

1 1 1

. Therefore, a space of

Type 6 can have neither Types 2, 4 nor 5.

3.7. An additional property of spaces of special type. The following result will be used later in

our proof of Theorem 1.7.

Proposition 3.2. Let S be one of the spaces A3(F2), G⊥3 , H⊥3 , I⊥3 or H⊥4 . Then, dimSx ≥ 2 for all

x ∈ F3
2\{0}, unless S equals G⊥3 in which case exactly one vector x ∈ F3

2\{0} satisfies dimSx ≤ 1. Moreover,

dim
(
span{Ny | N ∈ S, y ∈ K3}

)
≥ 3.

To prove this result, we start with an interesting observation, which is obtained by straightforward

computations:

Lemma 3.3. Let S be one of the spaces A3(F2), G⊥3 , H⊥3 or H⊥4 . Then, Ŝ is equivalent to S; and if

S = I⊥3 , then Ŝ is represented by the matrix space{ a b a

b c c

0 0 a+ b+ c

 | (a, b, c) ∈ F3
2

}
.

Proof of Proposition 3.2. The second statement is obvious. For the first one, we use Lemma 3.3. As

H⊥3 is equivalent to the space U3(F2) from Proposition 2.14, every non-zero matrix that belongs to A3(F2)

or H⊥3 has rank 2. Moreover, it is easily seen that H⊥4 contains no rank 1 matrix, for if the matrix

M =


b+ c a+ c a+ b

a 0 0

0 b 0

0 0 c


has rank 1, then exactly one of a, b, c equals 1 (as seen from the last three rows), and then one sees that M

has two linearly independent columns. Finally,

 0 1 0

0 0 0

0 0 0

 is the sole rank 1 matrix of G⊥3 (indeed, a rank
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1 matrix of the form

 0 a b+ c

b b 0

c 0 0

 should have at most one non-zero entry among b, c and b + c, and

hence, b = c = 0).

Thus, by Lemma 3.3 we find that S satisfies the first statement provided that it is not equivalent to I⊥3 .

Finally, if a matrix

 a b a

b c c

0 0 a+ b+ c

 has rank 1, then (a, b, c) 6= (0, 0, 0), and hence,

[
a b

b c

]
has

rank 1 and a+ b+ c = 0. As

[
1 0

0 0

]
,

[
0 0

0 1

]
and

[
1 1

1 1

]
are the sole rank 1 matrices in S2(F2), we

conclude that no 3× 3 rank 1 matrix of the above form exists. Thus, by using Lemma 3.3 we conclude that

dim(I⊥3 y) ≥ 2 for all y ∈ F3
2 \ {0}.

4. Proof of the main theorem (Theorem 1.7). In this section, we prove Theorem 1.7 in the special

case when n = 2, and we show that if it holds for n = 3, then it also holds for all greater values of n.

Throughout the section, we set K = F2.

4.1. The case n = 2. Here, we assume that n = 2. Let S be a linear subspace of Mn,p(K) with

codimension 2n− 3. Then, S⊥ contains exactly one non-zero matrix B, and hence:

• Either B has rank 2, whence it is equivalent to

[
I2

(0)(p−2)×2

]
, which shows that S is equivalent to

S2(K)
∐

M2,p−2(K), i.e., S has Type 1;

• Or B has rank 1, whence S is equivalent to K ∨M1,p−1(K), and one deduces from Lemma 2.9 that

every range-compatible linear map on S is local.

4.2. General considerations. In the rest of this section and in the next one, we assume that n > 2.

We also assume that Theorem 1.7 holds for all matrix spaces with n− 1 rows. Let S be a linear subspace of

Mn,p(K) with codimension 2n− 3, interpreted as a space of linear maps from Kp to Kn, and let

F : S → Kn

be a non-local range-compatible linear map. To simplify the notation, we set

U := Kp and V := Kn.

As a consequence of Lemma 2.9, the assumption that F is non-local yields:

Claim 1. There is no non-zero vector x ∈ U such that dimSx ≤ 1.

Throughout the proof, it will be necessary to discuss the nature of S-adapted vectors. As dimS = 2n−3,

a vector y ∈ V is S-adapted if and only if

dimS⊥y ≥ 2.

We distinguish such vectors according to the nature of the map F mod y that they induce: Let y be an

S-adapted vector of V . We say that y has Type 0 for F whenever F mod y is local. Given i ∈ [[1, 7]], we say

that y has Type i for F whenever the space S mod y has Type i and F mod y is non-local.
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In particular, since F is non-local the following result is a consequence of Lemma 2.8:

Claim 2. The set of all S-adapted vectors of Type 0 is included in a 2-dimensional subspace of V .

In addition, we need to introduce another special type of vector: A vector z of V is called super-S-adapted

when dimS⊥z ≥ 3.

Given a super-S-adapted vector z, we see by duality that dim(S mod z) < 2(n − 1) − 3, and hence,

Theorem 1.4 yields:

Claim 3. For every super-S-adapted vector z ∈ V , the map F mod z is local.

4.3. The case when n ≥ 4. In this section, we prove the inductive step in the case when n ≥ 4. We

start by discarding most types of S-adapted vectors:

Claim 4. Every S-adapted vector has Type 0, 1 or 3 for F .

Proof. Assume on the contrary that some S-adapted vector y0 has Type 2 or one of Types 4 to 7 for

F . Then, n = 4. We shall prove that there exists a linearly independent triple of super-S-adapted vectors,

which will contradict Claim 2.

Without loss of generality, we may assume that y0 is the last vector of the canonical basis (y1, y2, y3, y4)

of V . Then, no further generality is lost in assuming that every matrix M of S splits up as

M =

[
K(M)

(?)1×p

]
and either

K(S) = V
∐

M3,p−3(F2),

where V is one of the spaces S3(F2), G3, H3 or I3, or

K(S) = H4

∐
M3,p−4(F2).

We denote by T the space of all matrices N of S⊥ such that Ny4 = 0. Then, either S mod y4 has Type 2

or one of Types 4 to 6, and hence, T is the space of all matrices of the form[
A (0)3×1

(0)(p−3)×3 (0)(p−3)×1

]
with A ∈ V⊥,

or S mod y4 has Type 7 and T is the space of all matrices of the form[
A (0)4×1

(0)(p−4)×3 (0)(p−4)×1

]
with A ∈ H⊥4 .

As y4 is S-adapted and codim(S mod y4) = 3 = codim S − 2, the space

P := S⊥y4

has dimension 2. Let y ∈ span(y1, y2, y3) \ {0} be such that dim T y ≥ 2. We claim that one of the following

conditions must hold:

(i) y is super-S-adapted;
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(ii) y + y4 is super-S-adapted;

(iii) T y = P .

Assume that none of y and y+y4 is super-S-adapted. Then, dimS⊥y ≤ 2 and dimS⊥(y+y4) ≤ 2. However,

as T y ⊂ S⊥y and dim T y ≥ 2, we find T y = S⊥y. By the very definition of T , we see that T (y+ y4) = T y,

and hence, T y = T (y+ y4) = S⊥(y+ y4) with the above line of reasoning. In particular, for all N ∈ S⊥, we

have Ny4 = N(y+ y4)−Ny ∈ T y, whence P ⊂ T y. As the dimensions are equal on both sides, we conclude

that condition (iii) holds.

Now, we can conclude. By Proposition 3.2, the space span{Ny | y ∈ span(y1, y2, y3), N ∈ T } has

dimension greater than 2, and hence, the set of all vectors y ∈ span(y1, y2, y3) \ {0} for which T y = P is

included in a hyperplane H of span(y1, y2, y3). On the other hand, denoting by D the set of all non-zero

vectors z ∈ span(y1, y2, y3)\{0} for which dim T z ≤ 1, we know from Proposition 3.2 that D has at most one

element; by Lemma 2.10, the set span(y1, y2, y3)\ (D∪H) is not included in a hyperplane of span(y1, y2, y3).

It follows that we can extract a basis (z1, z2, z3) of span(y1, y2, y3) from this set, to the effect that, for each

i ∈ {1, 2, 3}, we can find a scalar ti ∈ K such that zi + tiy4 is super-S-adapted. Then, (zi + ti y4)1≤i≤3 is

obviously a linearly independent triple of super-S-adapted vectors, contradicting Claim 2. Therefore, every

S-adapted vector has Type 0, 1 or 3 for F .

In the next step, we reduce the situation to the case p = 2.

Claim 5. There is at least one S-adapted vector of Type 1 or 3 for F , and there exists a 2-dimensional

subspace P of U which contains the range of every matrix of S⊥.

Proof. Given an S-adapted vector y of Type 1 or 3 for F , we denote by S⊥y the space of all matrices

N ∈ S⊥ for which Ny = 0. Then, it is obvious from the definition of spaces of Types 1 and 3 that S⊥y has

dimension 2n−5 and that there is a unique 2-dimensional subspace Py of U that contains the image of every

matrix of S⊥y . On top of that, assume that we have a vector z of V \Ky such that:

(i) z is S-adapted of Type 1 or 3;

(ii) z is (S mod y)-adapted, where z denotes the class of z modulo Ky;

(iii) There is a rank 2 matrix N in S⊥ such that Ny = Nz = 0.

As S mod y has Type 1 or 3, it is obvious that dim(S mod y)⊥y′ ≤ 2 for every non-zero vector

y′ ∈ V/Ky. Thus, as z is (S mod y)-adapted we have dim(S mod y)⊥z = 2, whence the space of all matrices

N ∈ S⊥y for which Nz = 0 has codimension 2 in S⊥y . In other words, dim(S⊥y ∩ S⊥z ) = 2(n− 2)− 3, whence

dim(S⊥y +S⊥z ) = 2
(
2(n−1)−3

)
−
(
2(n−2)−3

)
= 2n−3 and it follows that S⊥y +S⊥z = S⊥. As assumption

(iii) yields Py = Pz, we deduce from S⊥y + S⊥z = S⊥ that Py contains the range of every matrix of S⊥.

In the rest of the proof, we demonstrate the existence of a pair (y, z) satisfying conditions (i) to (iii)

above, which will complete the proof.

We know from Claim 2 that the set of all S-adapted vectors of Type 0 for F is included in a 2-dimensional

subspace G1 of V . Moreover, as F is non-local, Lemma 2.7 shows that the set of all non-S-adapted vectors

is included in a hyperplane H of V . By Lemma 2.10, H ∪ G1 is a proper subset of V , which shows that

some S-adapted vector y has Type 1 or 3 for F . Without loss of generality, we may assume that y is the

last vector of the canonical basis (y1, . . . , yn) of V .
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Therefore, by further reducing the situation, we see that no generality is lost in assuming that every

matrix of S splits up as

M =

[
K(M)

(?)1×p

]
and that

K(S) = S2(K) ∨Mn−3,p−2(K) or K(S) = V2 ∧Mn−4,p−2(K).

Given y′ ∈ V , we shall denote by y′ its class in V/Kyn. Set W1 := span(y1, y2, yn). As W1 is included

in a hyperplane of Kn, Lemma 2.10 yields a vector z in V \ (H ∪G1 ∪W1), to the effect that z 6∈W1 and z

is an S-adapted vector of Type 1 or 3 for F .

As z 6∈ W1, we see that z 6∈ span(y1, y2). Then, we note that S mod span(y, z) has Type 1 or Type 3.

Indeed:

• Either S mod y is represented by S2(K)∨Mn−3,p−2(K), and hence, it is obvious that S mod span(y, z)

has Type 1.

• Or S mod y is represented by V2 ∨Mn−4,p−2(K); if in addition z 6∈ span(y1, y2, y3), then S mod

span(y, z) has Type 3; otherwise z = λy1 +µy2 +y3 for some (λ, µ) ∈ K2, and then S mod span(y, z)

is represented by the matrix space W ∨Mn−4,p−2(K), where

W =

{[
a+ λc b

b+ µc c

]
| (a, b, c) ∈ K3

}
.

Then, using the column operation C1 ← C1 + µC2 yields that W is equivalent to S2(K), and we

deduce that S mod span(y, z) has Type 1.

It follows that z is (S mod y)-adapted and that S⊥ contains a rank 2 matrix which vanishes at z and y (as

this is equivalent to the existence of a rank 2 operator in (S mod span(y, z))⊥). Thus, the pair (y, z) satisfies

conditions (i) to (iii) above, which completes our proof.

From there, no generality is lost in assuming that the range of every matrix of S⊥ is included in K2×{0},
to the effect that S splits up as T

∐
Mn,p−2(K) for some 3-dimensional subspace T of Mn,2(K), and F splits

up as F = G
∐
H, where G and H are range-compatible linear maps, respectively, on T and Mn,p−2(K). As

H is local by Theorem 2.2, the map G is non-local. If we demonstrate that T has Type 1 or 3, then we will

obtain that S has Type 1 or 3, and the proof will be complete.

Thus, from now on we can assume that p = 2. Consider the space

S ′ :=
{[

M F (M)
]
|M ∈ S

}
⊂ Mn,3(K).

As F is range-compatible, every matrix in S ′ has rank less than 3. We shall complete the proof by using

some results from the classification of matrix spaces with upper-rank at most 2.

Note first that no non-zero vector belongs to the kernel of every matrix of S ′. Indeed, if such a vector

x existed, then x ∈ K2 × {0} otherwise F would be local, and then we would find Sx = {0}, contradicting

Claim 1. Thus, S ′ satisfies condition (i) in the definition of a reduced space. Without loss of generality, we

can assume that the sum of the ranges of the matrices in S ′ equals Km × {0} for some m ∈ [[2, n]] (we must

have m ≥ 2 because of Claim 1).
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Assume that n = m, to the effect that S ′ is reduced. As n ≥ 2, we see that S ′ cannot have upper rank

1, whence S ′ has upper rank 2. As n ≥ 4 and S ′ is reduced, Proposition 2.13 shows that S ′ cannot be

primitive. As S ′ is reduced and n ≥ 3, we deduce from Proposition 2.12 that S ′ must be equivalent to a

linear subspace of the space of all matrices of the form[
? (?)1×2

(?)(n−1)×1 (0)(n−1)×2

]
,

yielding a 2-dimensional subspace P of K3 such that

for all x ∈ P, dimS ′x ≤ 1.

However, we would then find a non-zero vector x ∈ P ∩ (K2 × {0}), yielding a non-zero vector x′ ∈ K2 such

that dimSx′ ≤ 1, in contradiction with Claim 1.

We deduce that m < n. Then, we write every matrix M of S as M =

[
H(M)

(0)(n−m)×2

]
, with H(M) ∈

Mm,2(K), and we recover a non-local range-compatible linear map f : H(S)→ Km such that

F : M 7→
[

f(H(M))

(0)(n−m)×1

]
.

Then, by induction, we know that H(S) must be of Type 1 or 3, whence S has Type 1 or 3.

This completes the proof for n > 3, assuming that Theorem 1.7 holds in the case n = 3.

5. Proof of the main theorem (2): the case n = 3. Our aim in this section is to prove Theorem

1.7 in the special case n = 3. By the results of the preceding section, we know that doing so will complete

the proof of Theorem 1.7. Throughout the section, we set K := F2. Let S be a linear subspace of M3,p(K)

with codimension 3, and assume that there is a non-local range-compatible linear map

F : S → K3.

Our goal is to prove that S has one of Types 1 to 7. We shall do this by slowly gathering information on

the structure of the S⊥ space and of its dual space Ŝ⊥. Remember the notation

U = Kp and V = K3.

Note that Claims 1 and 2 hold. As n = 3, remark also that any S-adapted vector must have one of Types 0

or 1 for F .

Let us quickly explain the structure of the proof. In Section 5.1, we gather some general results on S⊥.

In Section 5.2, we obtain information on the possible rank 1 matrices of S⊥. Afterwards, we shall split the

discussion into four cases (Sections 5.3, 5.4, 5.5 and 5.6), whether S⊥ contains rank 1 matrices or not, and

whether there is a super-S-adapted vector or not.

5.1. Preliminary results. We start by stating obvious corollaries of Claim 1, Lemma 2.7 and Lemma

2.9:

Claim 6. Distinct rank 1 matrices of S⊥ have distinct ranges.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 34, pp. 71-114, March 2018.

Clément de Seguins Pazzis 92

Claim 7. The set of all non-S-adapted vectors is included in a 2-dimensional subspace of V .

Next, we investigate the possible dimensions of S⊥y for y ∈ V .

Claim 8. There is no vector y ∈ V \ {0} such that S⊥y = {0}.

Proof. Assume that there is such a vector y. Let z be an S-adapted vector. Then, z 6∈ Ky. We contend

that F mod z is local. Indeed, if this were not the case, then the induction hypothesis would yield that

S mod z is represented by S2(K)
∐

M2,p−2(K) in some bases of U and V/Kz, yielding some A ∈ S⊥ such

that KerA = Kz. Then, Ay 6= 0, contradicting our assumptions.

We know that some 2-dimensional subspace P of V contains every non-S-adapted vector. By Lemma

2.10, the set V \ P is not included in a hyperplane of V , whence we may find three linearly independent

vectors of V outside of P . Then, by Lemma 2.8, F is local. This is a contradiction.

As a consequence, we obtain:

Claim 9. For every non-zero vector y ∈ V that is not S-adapted, the space S contains a (p − 1)-

dimensional subspace in which all the matrices have their image included in Ky.

Now, we examine the super-S-adapted vectors more closely.

Claim 10. Let y1 and y2 be distinct S-adapted vectors, with y1 super-S-adapted. Then, y2 has Type 1

for F .

Proof. Assume on the contrary that y2 does not have Type 1 for F . Then, by induction the map

F mod y2 is local.

Note that y1 and y2 are linearly independent since the underlying field is F2. As y1 is super-S-adapted,

we have codim(S mod y1) ≤ 3 − 3 = 0, whence S mod y1 = L(S, V/Ky1). In particular, F mod y1 is

local. As F mod y2 is local, we can subtract a local map from F to reduce the situation to the one where

F mod y2 = 0. Then, we have a vector x ∈ U such that

for all s ∈ S, F (s) = s(x) mod Ky1 and F (s) ∈ Ky2.

In particular, this yields s(x) ∈ span(y1, y2) for all s ∈ S. If x = 0, then F = 0 as Ky1 ∩ Ky2 = {0},
contradicting the fact that F is non-local. Thus, x 6= 0. Then, as n = 3 and S mod y1 = L(S, V/Ky1), we

can choose s ∈ S such that s(x) 6∈ span(y1, y2), contradicting the above result.

Therefore, y2 has Type 1 for F .

As a super-S-adapted vector is always of Type 0 for F , we deduce:

Claim 11. There is at most one super-S-adapted vector.

We finish with a counting result that will be used in several instances:

Claim 12. For every positive integer i, denote by mi the number of rank i matrices in S⊥, and by ni
the number of vectors y ∈ V for which dimS⊥y = i. Then,

3m1 +m2 = 3n1 + n2.

Proof. We count the set N := {(N, y) ∈ (S⊥ \{0})× (V \{0}) : Ny = 0} in two different ways. For each

y ∈ V \ {0}, the linear map ŷ : N ∈ S⊥ 7→ Ny has exactly 23−dimS
⊥y − 1 non-zero vectors in its kernel, that
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is, there are as many matrices N ∈ S⊥ for which (N, y) ∈ N . Therefore, |N | = 3n1 +n2. On the other hand,

for each N ∈ S⊥, there are 23−rk N − 1 elements y of V \ {0} such that (N, y) ∈ N . Thus, |N | = 3m1 +m2,

and the claimed result ensues.

5.2. General results on the rank 1 matrices in S⊥. Here, we consider the existence of rank 1

matrices in S⊥ and we gather additional information on the situation where we can find one or several

adapted vectors in the kernel of such a matrix.

Claim 13. Let A be a rank 1 matrix of S⊥. Let y be an S-adapted vector in KerA. Then, F mod y

is local and y is not super-S-adapted. Moreover, if there is a 1-dimensional subspace D of V/Ky such that

(F mod y)(s) ∈ D for all s ∈ S mod y, and D 6= KerA/Ky, then F mod y = 0.

Proof. Set x ∈ Im A \ {0}. By Claim 1, we have dimSx ≥ 2, and obviously Sx ⊂ KerA, whence

Sx = KerA. As y ∈ KerA, it follows that (S mod y)x = KerA/Ky has dimension 1, whence F mod y cannot

have Type 1 and y is not super-S-adapted. By induction, F mod y is local, which yields x′ ∈ U such that

for all s ∈ S, F (s) = s(x′) mod Ky.

We have seen that codim(S mod y) = 1 and S mod y is included in the space T of all linear maps

s : U → V/Ky for which s(x) ∈ KerA/Ky, which also has codimension 1 in L(U, V/Ky). Therefore,

S mod y = T .

Assume now that x′ 6= 0 and let D be a 1-dimensional subspace of V/Ky such that (F mod y)(s) ∈ D
for all s ∈ S mod y. If x′ 6= x, then we use S mod y = T to find that {s(x′) | s ∈ S mod y} has dimension

2, which contradicts our assumption on D. Therefore, x′ = x; choosing s ∈ S mod y such that s(x) 6= 0, we

deduce that D = KerA/Ky, which concludes the proof.

Claim 14. Let A be a rank 1 matrix of S⊥. Let z be an S-adapted vector of V \ KerA. Assume that

some y ∈ KerA is S-adapted. Then, F mod z is non-local.

Proof. Assume on the contrary that F mod z is local. Then, we lose no generality in assuming that

F mod z = 0, whence F (s) ∈ Kz for all s ∈ S. Denoting by z the class of z in V/Ky, we deduce that

(F mod y)(s) ∈ Kz for all s ∈ S mod y. However, it is obvious that Kz 6= KerA/Ky, whence Claim 13 yields

F mod y = 0. As Ky ∩Kz = {0}, we recover F = 0 from F mod y = 0 and F mod z = 0, contradicting our

assumption that F be non-local.

Claim 15. Let A and B be distinct rank 1 matrices of S⊥. Let y ∈ (KerA∩KerB)\{0}. Then, F mod y

is local and y is non-S-adapted.

Proof. By Claim 6, the matrices A and B do not have the same image. Set x1 ∈ Im A \ {0} and

x2 ∈ Im B \ {0}. Then, we see that (S mod y)x1 ∈ KerA/Ky and (S mod y)x2 ∈ KerB/Ky. On the other

hand, the space T of all linear maps u from U to V/Ky which satisfy u(x1) ∈ KerA/Ky and u(x2) ∈ KerB/Ky
has obviously codimension 2 in L(U, V/Ky), and, as S⊥y 6= {0} by Claim 8, we see that codim(S mod y) ≤ 2,

whence S mod y = T . Thus, in well-chosen bases, S mod y is represented by D1

∐
D2

∐
M2,p−2(K), where

each Di is a 1-dimensional subspace of K2. As each range-compatible linear map on D1 (respectively D2,

respectively M2,p−2(K)) is local, we conclude that F mod y is local. As codim(S mod y) = 2, we also see

that y is non-S-adapted.

Claim 16. There do not exist rank 1 matrices A and B in S⊥ with distinct kernels.
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Proof. Assume to the contrary that such matrices A and B exist. Claim 6 yields Im A 6= Im B. On the

other hand, D := KerA ∩KerB has dimension 1. Define y1 as the sole non-zero vector of D. By Claim 15,

the map F mod y1 is local.

Moreover, y1 is not S-adapted. If we could find S-adapted vectors y2 ∈ KerA\{y1} and y3 ∈ KerB\{y1},
then Claim 13 would yield that F mod y2 and F mod y3 are local, and obviously (y1, y2, y3) would be a

basis of V ; then Lemma 2.8 would yield that F is local, contradicting our assumptions.

It follows that one of the planes KerA or KerB contains only non-S-adapted vectors. Without loss of

generality, we may assume that all the vectors of KerA are non-S-adapted. Replacing S with an equivalent

space, we may also assume that

A =

 0 0 0

0 0 1

(0)(p−2)×1 (0)(p−2)×1 (0)(p−2)×1

 and B =

 0 1 0

0 0 0

(0)(p−2)×1 (0)(p−2)×1 (0)(p−2)×1

 .
Thus, KerA = K2 × {0} and every matrix of S has the form ? ? (?)1×(p−2)

0 ? (?)1×(p−2)
? 0 (?)1×(p−2)

 .
Denote by (f1, f2, f3) the canonical basis of K3. From there, every rank 1 matrix of S with image spanned

by f1 + f2 =

 1

1

0

 must have its first column zero. The vector f1 + f2 is non-S-adapted as it belongs to

KerA, whence S contains every matrix of the form

 0 L

0 L

0 (0)1×(p−1)

 with L ∈ M1,p−1(K) (this uses Claim

9). As f2 is non-S-adapted, we also obtain that S contains every matrix of the form

 0 (0)1×(p−1)
0 L

0 (0)1×(p−1)

 with

L ∈ M1,p−1(K). In particular, S contains every matrix of the form 0 x (0)1×(p−2)
0 y (0)1×(p−2)
0 0 (0)1×(p−2)

 with (x, y) ∈ K2.

Thus, there is a subspace T of M3,p−1(K) with codimension 2 such that S is equivalent to D
∐
T , where D

is the space of all vectors

 x

y

0

 with (x, y) ∈ K2. By Theorem 1.4, every range-compatible linear map on

T is local. As this is also the case for D, we deduce that F is local, contradicting our initial assumption.

This concludes the proof.

5.3. Case 1. Several rank 1 matrices in S⊥. In this section, we make the following assumption:

(A1) The space S⊥ contains distinct rank 1 matrices A and B.
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We shall prove that S has Type 1.

Combining Claims 6 and 16, we find

Im A 6= Im B and KerA = KerB.

By Claim 15, no vector of KerA is S-adapted. As the set of all non-S-adapted vectors does not span V , we

deduce that KerA is exactly the set of all non-S-adapted vectors of V .

Let y3 ∈ V \ KerA. Assume that F mod y3 is local. Choosing a basis (y1, y2) of KerA, we know from

Claim 15 that F mod y1 and F mod y2 are local, whence Lemma 2.8 would yield that F is local, contradicting

our assumptions. Therefore, F mod y3 is non-local. As y3 is S-adapted, it follows that F mod y3 has Type

1. In particular, varying y3 shows that there is no super-S-adapted vector. Fixing y3 once and for all, we

find a matrix C ∈ S⊥ with rk C = 2 and KerC = Ky3.

From there, we prove that Im A + Im B = Im C. Let indeed y ∈ KerA \ {0}. Then, A(y + y3) = Ay3,

B(y + y3) = By3 and C(y + y3) = Cy. However dimS⊥(y + y3) ≤ 2 as there is no super-S-adapted vector.

As Ay3 and By3 are obviously linearly independent, we deduce that Cy ∈ span(Ay3, By3) = Im A+ Im B.

Since V = KerA ⊕ KerC, varying y yields Im C ⊂ Im A + Im B, and hence, Im C = Im A + Im B as the

dimensions are equal on both sides. As on the other hand (A,B,C) is obviously linearly independent, we

obtain S⊥ = span(A,B,C).

Replacing S with an equivalent space, we can assume that Im C = K2×{0}, KerA = KerB = K2×{0}
and KerC = {0} ×K. Then, S⊥ contains every matrix of the form 0 0 ?

0 0 ?

(0)(p−2)×1 (0)(p−2)×1 (0)(p−2)×1

 .
Moreover,

C =

[
K (0)2×1

(0)(p−2)×2 (0)(p−2)×1

]
for some rank 2 matrix K. Then, changing the chosen basis of U once more, we can assume that K =[

0 1

1 0

]
on top of the previous assumptions. From there, it follows that S⊥ is the set of all matrices of the

form  0 a b

a 0 c

(0)(p−2)×1 (0)(p−2)×1 (0)(p−2)×1

 with (a, b, c) ∈ K3,

and we conclude that

S = S2(F2) ∨M1,p−2(F2).

Thus, S has Type 1, as claimed.

5.4. Case 2. Exactly one rank 1 matrix in S⊥. In this section, we make the following extra

assumption:

(A2) There is a sole rank 1 matrix in S⊥, denoted by A.
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Our goal is to prove that S has Type 3 or 4.

We start with a lemma:

Claim 17. There is no super-S-adapted vector.

Proof. Assume that the contrary holds. By Claim 11, there is a unique super-S-adapted vector, and we

denote it by y3. Then, we know from Claim 13 that y3 6∈ KerA. It follows from Claim 14 that no vector of

KerA is S-adapted, whence Claim 8 yields dimS⊥y = 1 for all y ∈ KerA. Thus,

W :=
{
N ∈ S⊥ 7→ Ny | y ∈ KerA

}
is a 2-dimensional space of linear operators of rank at most 1. Applying the classification of spaces of linear

operators with rank at most 1, we deduce that one of the following two situations holds:

(i) There is a hyperplane H of S⊥ on which all the operators of W vanish.

(ii) There is a 1-dimensional subspace D of U that contains the range of every operator of W.

However, if condition (i) were satisfied, then we would find some B ∈ H \ KA, and B would be a rank 1

matrix of S⊥ that is different from A, contradicting assumption (A2).

Thus, condition (ii) holds, and we obtain that Ny ∈ D for all y ∈ KerA and all N ∈ S⊥. In particular,

every matrix of S⊥ vanishes at some non-zero vector of KerA. It follows that every matrix of S⊥ has rank at

most 2, and the kernel of a rank 2 matrix of S⊥ must be included in KerA. As A is the sole rank 1 matrix of

S⊥, it follows that for every y ∈ V \KerA, no matrix of S⊥ annihilates y, whence dimS⊥y = dimS⊥ = 3 and

y is super-S-adapted. This would yield four super-S-adapted vectors, contradicting Claim 11. We conclude

that there is no super-S-adapted vector.

As an immediate consequence of the above result and of Claim 8, we obtain:

Claim 18. For every non-zero vector y ∈ V , either dimS⊥y = 2 or dimS⊥y = 1, whether y is S-adapted

or not.

Now, we investigate the S-adapted vectors in KerA.

Claim 19. At least one non-zero vector y of KerA is non-S-adapted. If y is the sole non-S-adapted

vector in KerA \ {0}, then S⊥y = Im A.

Proof. Assume that there are distinct S-adapted vectors y1 and y2 in KerA. Then, we prove that y1 +y2
is non-S-adapted and that S⊥(y1 + y2) = Im A, yielding all the claimed results.

We know that there is a 2-dimensional subspace P of V that contains all the non-S-adapted vectors.

By Lemma 2.10, we can find a vector y3 ∈ V \ (P ∪KerA). Then, y3 is S-adapted; as y1 is S-adapted and

belongs to KerA, Claim 14 shows that F mod y3 is non-local. In particular, S mod y3 has Type 1. Thus,

we lose no generality in assuming that (y1, y2, y3) is the standard basis of K3 and that every matrix M of S

splits up as M =

[
K(M)

(?)1×p

]
, and K(S) = S2(K)

∐
M2,p−2(K).

Then, by Theorem 1.8 we see that, by subtracting a well-chosen local map from F mod y3, no generality

is lost in assuming that

F : M 7−→

 m1,1

m2,2

g(M)

 for some linear form g : S → K.
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Denote by (x1, . . . , xp) the standard basis of U = Kp. Adding M 7→ Mx1 to F , we find that F ′ : M 7→ 0

m2,2 +m2,1

g(M) +m3,1

 is range-compatible (and still non-local). Thus, F ′ mod y2 maps every operator into the

line Ky3. Applying the last statement of Claim 13 to F ′, we obtain F ′ mod y2 = 0, whence g(M) = m3,1

for all M ∈ S. With the same line of reasoning applied to y1 instead of y2, we find that g(M) = m3,2 for all

M ∈ S, whence m3,1 = m3,2 for all M ∈ S. Therefore, S⊥ contains the rank 1 matrix 0 0 1

0 0 1

(0)(p−2)×1 (0)(p−2)×1 (0)(p−2)×1

 ,
and by assumption (A2) this matrix equals A. It follows that Im A = K(x1 + x2).

Assume now that y1 + y2 is also S-adapted. Then the same line of reasoning yields g(M) = m3,1 +m3,2

for all M ∈ S, whence m3,1 = m3,2 = 0 for all M ∈ S, contradicting the fact that S⊥ contains a unique

rank 1 matrix.

Thus, y1 + y2 is not S-adapted. Then, from the above shape of S, it is obvious that every rank 1 matrix

M of S with image K(y1 + y2) must satisfy m1,1 = m2,2 = m1,2 = m2,1, whence S⊥(y1 + y2) contains

K(x1 +x2). As y1 + y2 is not S-adapted, we conclude that S⊥(y1 + y2) = K(x1 +x2) = Im A, as claimed.

Claim 20. Exactly one non-zero vector y of V is non-S-adapted; moreover, y ∈ KerA and S⊥y = Im A.

Every matrix of S⊥ has rank at most 2.

Proof. With the notation from Claim 12, we deduce from our assumptions and from the above results

that m1 = 1, n1 + n2 = 7, and n1 ≥ 1. Claim 12 then yields 3 +m2 = 3n1 + 7− n1, whence m2 = 2n1 + 4.

As m2 ≤ 6, we have n1 ≤ 1 whence n1 = 1 and m2 = 6. In other words, every matrix of S⊥ has rank at

most 2 and V \ {0} contains a unique non-S-adapted vector y. By Claim 19, we must have y ∈ KerA and

S⊥y = Im A.

Now, we consider the reduced space S⊥ associated with S⊥ and we apply the classification of matrix

spaces with upper-rank 2 (see Section 2.8). Note that by Claim 8, the domain of the operators of S⊥ is the

3-dimensional space V , and hence, by Proposition 2.12, only three possibilities can occur:

(1) The sum of the ranges of the operators in S⊥ has dimension at most 2.

(2) The operator space S⊥ is represented, in well-chosen bases, by a space of matrices of the form[
? (?)1×2

(?)(p−1)×1 (0)(p−1)×2

]
.

(3) The space S⊥ is primitive.

Let us immediately discard option (2). Indeed, if it held true, then we would have a whole 2-dimensional

subspace P of V in which every non-zero vector is non-S-adapted, contradicting Claim 20.

Thus, only two possibilities remain. We shall examine them separately in the remainder of this section.

Claim 21. Assume that S⊥ is primitive. Then, S has Type 4.

Proof. As there is a non-S-adapted non-zero vector y, we have dim(S⊥y) = dim(S⊥y) = 1, and hence,

Proposition 2.15 shows that S⊥ is equivalent to one of the spaces Mi, i = 1, . . . , 4, listed there. As
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dim(S⊥z) ≤ 2 for all z ∈ V , whereas, with the canonical basis of K3 denoted by (e1, e2, e3), one checks

that M1(e2 + e3) =M3(e1 + e3) =M4(e1 + e3) = K3, we deduce that S⊥ is equivalent to M2. Using the

elementary operation L3 ← L3 + L2 and then C1 ↔ C3, we see that M2 is equivalent to the space{ 0 c a

a+ b a+ b 0

b 0 0

 | (a, b, c) ∈ K3

}
.

Thus, p ≥ 3 and S⊥ is equivalent to the space of all matrices of the form
0 c a+ b

b b 0

a 0 0

(0)(p−3)×1 (0)(p−3)×1 (0)(p−3)×1

 with (a, b, c) ∈ K3.

Using the results from Section 3.6, we deduce that S is equivalent to G3
∐

M3,p−3(K), i.e. it has Type 4.

Claim 22. Assume that there is a 2-dimensional subspace of U which contains the image of every N ∈
S⊥. Then, S has Type 3.

Proof. Without loss of generality, we may assume that Im N ⊂ K2×{0} for all N ∈ S⊥. In that reduced

situation, S splits up as T
∐

M3,p−2(K) for some 3-dimensional subspace T of M3,2(K), and F splits up as

f
∐
g, where f and g are range-compatible linear maps, respectively, on T and M3,p−2(K). Then, g is local,

and hence, f is non-local. If we prove that T has Type 3, then it is obvious that S will have Type 3 as well.

Thus, in the rest of the proof we can simply assume that p = 2.

Without further loss of generality, we may assume that Im A = {0} ×K = Kx2, where (x1, x2) denotes

the canonical basis of U = K2. As A is the sole rank 1 matrix of S⊥, we see that M ∈ S 7→Mx has rank 3

for all x ∈ K2 \Kx2, whereas the range of M ∈ S 7→Mx2 is KerA. Consider the operators

ϕ : M ∈ S 7→Mx1 and ψ : M ∈ S 7→Mx2.

Note that

S =
{[

ϕ(M) ψ(M)
]
|M ∈ S

}
.

Then, ϕ and ϕ+ψ are isomorphisms, whereas ψ has rank 2 and its image is KerA. Thus, the endomorphism

u := ψ ◦ ϕ−1 ∈ L(V )

has rank 2, whereas u− id is invertible. It follows that 1 is not an eigenvalue of u.

Let us now consider the sole non-S-adapted vector y ∈ V \ {0}. We know that S⊥y = Im A = Kx2,

whence S contains a rank 1 matrix M with image Ky and kernel Kx2. In particular ψ(M) = 0, whereas

ϕ(M) = Mx1 = y, leading to u(y) = 0. Thus, Keru = Ky. As Im u = KerA, it follows that Keru ⊂ Im u,

and hence, 0 is not a semi-simple eigenvalue of u. Therefore, 0 is a multiple eigenvalue of u, and one concludes

that u is triangularizable since dimV = 3. As on the other hand, 1 is not an eigenvalue of u, we conclude

that u is nilpotent. As rk u = 2, we deduce that, in some basis (e1, e2, e3) of V , the endomorphism u is

represented by

 0 1 0

0 0 1

0 0 0

. It follows that S is the set of all matrices of the form
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{[
a.e1 + b.e2 + c.e3 b.e1 + c.e2

]
| (a, b, c) ∈ K3

}
,

which is obviously equivalent to V2. Therefore, S has Type 3.

The case when S⊥ contains a rank 1 matrix is now settled.

5.5. Case 3. No rank 1 matrix in S⊥, no super-S-adapted vector. In this section, we make the

following additional assumption:

(A3) The space S⊥ contains no rank 1 matrix, and there is no super-S-adapted vector.

From there, our aim is to prove that S is of Type 2 or 5.

Claim 23. All the non-zero matrices of S⊥ have rank 2, and all the vectors y ∈ V \{0} satisfy dimS⊥y =

2.

Proof. With the notation from Claim 12, we have m1 = 0 and n1 +n2 = 7. Thus, m2 = 3n1 +(7−n1) =

2n1 + 7. As m2 ≤ 7, the only possibility is that n1 = 0 and m2 = 7, which yields the claimed results.

It follows that the reduced space S⊥, in which the domain of the operators is V , has upper-rank 2,

dimension 3, and there is no vector y ∈ V such that dim(S⊥y) = 1. Thus, combining Propositions 2.12 and

2.14, we see that one of the following four situations holds:

(1) There is a 2-dimensional subspace P of U which contains the image of every matrix of S⊥.

(2) The operator space S⊥ is represented, in well-chosen bases, by a space of matrices of the form[
? (?)1×2

(?)(p−1)×1 (0)(p−1)×2

]
.

(3) The operator space S⊥ is represented by the matrix space A3(F2).

(4) The operator space S⊥ is represented by the matrix space U3(F2).

However, option (2) can be discarded as it would yield some y ∈ V \ {0} such that dim(S⊥y) ≤ 1.

If option (3) holds true, then p ≥ 3 and S⊥ is equivalent to the space of all matrices of the form[
A

(0)3×(p−3)

]
with A ∈ A3(F2),

and one concludes that S is equivalent to S3(F2)
∐

M3,p−3(F2), i.e. it has Type 2.

If option (4) holds true, then as H⊥3 is equivalent to U3(F2) (see Section 3.6) we deduce that S⊥ is

equivalent to the space of all matrices of the form[
A

(0)3×(p−3)

]
with A ∈ H⊥3 ,

and hence, S is equivalent to H3

∐
M3,p−3(F2), i.e. it has Type 5.

In order to conclude under assumption (A3), we assume that outcome (1) holds and we try to find a

contradiction. As in the proof of Claim 22, no generality is lost in assuming that p = 2. Then, we use the
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same strategy as in that proof. As S⊥ contains no rank 1 matrix, we see that M ∈ S 7→Mx has rank 3 for

all x ∈ K2 \ {0}. Denote by (e1, e2) the standard basis of K2, and consider the isomorphisms

ϕ : M ∈ S 7→Me1 and ψ : M ∈ S 7→Me2.

Then, u := ψ ◦ϕ−1 is an automorphism of V . Moreover, since M ∈ S 7→M(e1− e2) ∈ V is an isomorphism,

we also obtain that u− id is an automorphism of V . It follows that u has no eigenvalue in F2. As dimV = 3,

the characteristic polynomial of u must then be irreducible over F2, whence u is cyclic and its characteristic

polynomial χu(t) equals either t3 + t + 1 or t3 + t2 + 1 (these are the sole polynomials of degree 3 over F2

with no root in F2). However, as no generality is truly lost in replacing u with u − id (this means that we

perform an elementary column operation on S), we see that we may assume that tru = 0, in which case

χu(t) = t3 + t + 1. Thus, in a well-chosen basis of V , the companion matrix

 0 0 1

1 0 1

0 1 0

 represents u.

Without loss of generality, we may assume that this basis is the standard one of V = K3. Then, we are

reduced to the situation where

S =

{ a c

b a+ c

c b

 | (a, b, c) ∈ K3

}
.

Considering F mod y2 and noting that S mod y2 has Type 1, we can subtract a local map from F so as to

reduce the situation to the one where

F :

 a c

b a+ c

c b

 7→
 α(a+ c)

βb+ γ(a+ c)

0

 for some (α, β, γ) ∈ K3.

From there, using the identity s2 = s for all s ∈ K, we obtain: for all (a, b, c) ∈ K3,

0 = det

a c α(a+ c)

b a+ c βb+ γ(a+ c)

c b 0


= γ abc+ (α+ β + γ)ab+ (α+ β)bc+ (α+ γ)ac+ (α+ γ)c.

As we are dealing with a polynomial of degree at most one in each variable, we deduce that its coefficients

are all zero, and in particular γ = 0, α + γ = 0 and α + β = 0, which yields α = β = γ = 0. Therefore,

F = 0, contradicting the assumption that F should be non-local.

This completes the proof in the case when S⊥ contains no rank 1 matrix and there is no super-S-adapted

vector.

5.6. Case 4. No rank 1 matrix in S⊥, one super-S-adapted vector. In this section, we make

the following assumption:

(A4) The space S⊥ contains no rank 1 matrix, and there is a super-S-adapted vector.

Under this new assumption, we shall prove that F has Type 6 or 7. By Claim 11, there is a unique

super-S-adapted vector, and we denote it by y0.
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We can readily describe the various possibilities for the ranks of the operators in S⊥ and in Ŝ⊥:

Claim 24. All the non-zero vectors of V are S-adapted, and S⊥ contains one rank 3 matrix and six

rank 2 matrices.

Proof. With the notation from Claim 12, we have m1 = 0 and n1 +n2 = 6 from assumption (A4). Thus,

m2 = 3n1 + (6 − n1) = 2n1 + 6. As m2 ≤ 7, the only option is that n1 = 0 and m2 = 6, which is precisely

the claimed result.

Claim 25. The intersection of all the spaces S⊥y, with y ∈ V \ {0, y0}, is zero.

Proof. Assume on the contrary that some non-zero vector x belongs to all the spaces S⊥y with y ∈
V \{0, y0}. Let us consider the operator space T := Ŝ⊥ mod x, and the canonical projection π : U → U/Kx.

For y ∈ V , denote by ŷ the operator N ∈ S⊥ 7→ Ny. For every y ∈ V \ {0, y0}, we have rk(π ◦ ŷ) = rk ŷ− 1,

and we have rk(π ◦ ŷ0) ≥ 2, whence T has dimension 3 and contains exactly six rank 1 operators. Using

Lemma 2.11, we see that this is absurd: indeed, we can find a quadratic form on T that does not vanish at

the sole operator in T which has rank greater than 1, and that vanishes at every rank 1 operator.

The next result is the key to the rest of our study:

Claim 26. Let P be a non-linear affine hyperplane of V which contains y0. Then, some non-zero vector

x belongs to all the spaces S⊥y with y ∈ P \ {y0}.

Proof. This amounts to finding a non-zero vector which belongs to the kernel of every rank 1 matrix of

S whose image is spanned by a vector of P \ {y0}. Denote by P the translation vector space of P. Then, we

may assume that the first two vectors of the standard basis of K3 span P and that the third one is y0. As

y0 is super-S-adapted, F mod y0 is local, and hence, we can actually assume that F mod y0 = 0. As F is

non-zero, it follows that there exists a non-zero linear form ϕ on M1,p(K) such that, for all M ∈ S, we have

F : M 7−→

 0

0

ϕ(L3(M))

 ,
where L3(M) denotes the last row of M . Changing the basis of U further, we can actually assume that

F : M 7−→

 0

0

m3,1

 .
In that situation, we prove that the first vector x1 of the standard basis of U has the required properties.

Let M ∈ S be a rank 1 matrix whose image is Ky for some y ∈ P \ {y0}. Then, F (M) ∈ Ky ∩Ky0, whence

F (M) = 0. Therefore, m3,1 = 0. Thus, Mx1 ∈ P , whence Mx1 = 0 as P ∩ Ky = {0}. This concludes our

proof.

As every non-zero vector of V is S-adapted, no non-zero vector of V belongs to the kernel of two distinct

non-zero matrices of S⊥. This yields:

Claim 27. The matrices of S⊥ have pairwise distinct kernels.

From now on, we split the discussion into two main cases, whether the first or the second one of the

following two conditions holds:

(B1) There are distinct matrices A and B in S⊥ such that Im A = Im B.
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(B2) The matrices of S⊥ have pairwise distinct images.

We shall prove that S has Type 6 or 7, whether condition (B1) or condition (B2) holds.

Claim 28. Assume that condition (B1) holds. Then, S has Type 6.

Proof. Choose distinct matrices A and B in S⊥ such that Im A = Im B. As S⊥ contains exactly one

rank 3 matrix, exactly one rank 0 matrix, and all the other ones have rank 2, we obtain that rk A = rk B = 2.

Then, Im (A+B) ⊂ Im A with A+B ∈ S⊥ \ {0}, whence rk(A+B) = 2.

This means that we have 2-dimensional subspaces P and Q, respectively, of S⊥ and U , such that

Im N = Q for all N ∈ P \ {0}. Without loss of generality, we may assume that Q = K2 × {0}. From there,

we choose a basis of P and extend it into a basis B of S⊥. Now, for all y ∈ V , we denote by N(y) the matrix

representing M ∈ S⊥ 7→ My in the basis B and the canonical basis of U . It follows from our assumptions

that every N(y) splits up as

N(y) =

[
K(y) C1(y)

(0)(p−2)×2 C2(y)

]
with K(y) ∈ M2(K), C1(y) ∈ K2 and C2(y) ∈ Kp−2.

Given y ∈ V \ {0}, we know from Claim 27 that Ay 6= 0 or By 6= 0, whence K(y) 6= 0. Therefore, K(V ) is

a 3-dimensional subspace of M2(K), and C2(y) = 0 and C1(y) = 0 whenever K(y) = 0. This yields linear

maps

ϕ : K(V )→ K2 and ψ : K(V )→ Kp−2

such that

for all y ∈ V, ϕ(K(y)) = C1(y) and ψ(K(y)) = C2(y).

Moreover, ψ is non-zero because otherwise we would have dimS⊥y0 ≤ 2.

As K(V ) is a linear hyperplane of M2(K), either it is equivalent to the space of all upper-triangular

2 × 2 matrices over K, or it is equivalent to S2(K). The first case is ruled out because it would yield some

vector x ∈ K2 such that dimK(V )x = 1, contradicting the fact that S⊥ contains no rank 1 matrix. Thus,

no generality is lost in assuming that K(V ) = S2(K).

For all y ∈ V \ {0, y0}, the matrix N(y) has rank 2, whence C2(y) = 0 if K(y) is invertible. As S2(K)

contains exactly 4 invertible matrices, it follows that Kerψ contains at least three non-zero vectors, whence

rk ψ = 1 and Kerψ is a hyperplane of S2(K). Denote by H the linear hyperplane of V consisting of the

vectors y for which ψ(K(y)) = 0. Then, for all y ∈ H \ {0}, we see that S⊥y ⊂ K2 × {0}, whence S⊥y = Q

and y 6= y0. By Claim 26, we deduce that there is a non-zero vector x ∈ Kp which belongs to the range of

N(y) for all y ∈ V \(H∪{y0}). If x ∈ Q, then x ∈ S⊥y for all y ∈ H \{0}, as well as for all y ∈ V \(H∪{y0}),
contradicting Claim 25. Therefore, x 6∈ Q, whence no generality is lost in assuming that x is the third vector

of the standard basis of Kp. In particular, it follows that the range of ψ must contain
[

1 0 · · · 0
]T

,

whence Im ψ = K× {0}.

We have seen that all the non-zero matrices of Kerψ are invertible, whence ψ(M) =
[

1 0 · · · 0
]T

for every rank 1 matrix M ∈ S2(K). As the rank 1 matrices

[
1 0

0 0

]
,

[
0 0

0 1

]
and

[
1 1

1 1

]
span S2(K),

we deduce that

ψ :

[
a b

b c

]
7→
[

a+ b+ c

(0)(p−3)×1

]
.
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Next, we analyze ϕ. Let y ∈ V be with rk K(y) = 1. Then, ψ(K(y)) =
[

1 0 · · · 0
]T

and y 6= y0 since

N(y0) has rank 3. Thus, y ∈ V \ (H ∪ {y0}), to the effect that x ∈ Im N(y). As x is the third vector of the

standard basis and N(y) has rank 2, it follows that

rk
[
K(y) C1(y)

]
≤ 1,

and hence, C1(y) ∈ Im K(y). On the other hand, if rk K(y) = 2, then it is obvious that C1(y) ∈ Im K(y).

Thus, ϕ is range-compatible! Note that we alter none of our assumptions by choosing some (λ, µ) ∈ K2

and by performing the column operation C3 ← C3 + λC1 + µC2 on the matrix space
{
N(y) | y ∈ V

}
(this

simply means that we change our choice of last basis vector of S⊥ without modifying the first two). Thus,

by Proposition 1.6, we see that no generality is lost in assuming that either ϕ = 0 or ϕ :

[
a b

b c

]
7→
[
a

c

]
.

However, the first case cannot hold since S⊥ contains no rank 1 matrix. Therefore, Ŝ⊥ is represented by the

space of all matrices 
a b a

b c c

0 0 a+ b+ c

(0)(p−3)×1 (0)(p−3)×1 (0)(p−3)×1

 with (a, b, c) ∈ K3.

From there, we compute that S⊥ is equivalent to the space of all matrices
x+ z y 0

0 x y + z

z z z

(0)(p−3)×1 (0)(p−3)×1 (0)(p−3)×1

 with (x, y, z) ∈ K3.

Permuting the last two columns and using the results from Section 3.6, we deduce that S⊥ is equivalent to

the space of all matrices [
A

(0)(p−3)×3

]
with A ∈ I⊥3 ,

and hence, S is equivalent to I3
∐

M3,p−3(K), i.e. it has Type 6.

From now on and until the end of the section, we assume that condition (B2) holds. Our goal is to show

that S has Type 7.

We start by sharpening our knowledge of the situation considered in Claim 26: remember that, given

y ∈ V , we set

ŷ : N ∈ S⊥ 7→ Ny.

Claim 29. Let P be a non-linear hyperplane of V which contains y0. Denote by x the (sole) non-zero

vector which belongs to S⊥y for all y ∈ P \ {y0}, and by π the canonical projection of U onto U/Kx. Then:

(a) The three operators π◦ ŷ, for y ∈ P \{y0} have rank 1, pairwise distinct images and independent kernels.

(b) If π ◦ ŷ0 is non-injective, then none of the kernels of the operators π ◦ ŷ, for y ∈ P \ {y0}, contains the

one of π ◦ ŷ0.

(c) If no 3-dimensional space contains the range of every matrix of S⊥, then S has Type 7.
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Proof. First of all, we note that P \ {y0} spans V .

Let us write P \ {y0} = {y1, y2, y3}, and note that y0 = y1 + y2 + y3. Let i ∈ {1, 2, 3}. We know that ŷi
has rank 2 and image S⊥yi, which contains x. Therefore, the range of π ◦ ŷi is S⊥y/Kx, whence π ◦ ŷi has

rank 1.

By assumption (B2), the ranges of the π◦ ŷk operators are pairwise distinct, and we have just shown that

their kernels are 2-dimensional subspaces of S⊥. If the intersection of those kernels contained a non-zero

matrix M , then we would have Myi ∈ Kx for all i ∈ {1, 2, 3}, whence Im M ⊂ Kx as y1, y2, y3 span V . As

S⊥ contains no rank 1 matrix, this is impossible, whence the kernels of the π ◦ ŷi operators form a system

of independent hyperplanes of S⊥, and in particular statement (a) is established.

Now, we may find a basis (A1, A2, A3) of S⊥ such that Ker(π ◦ ŷi) = span(Aj , Ak) for all distinct i, j, k

in {1, 2, 3}. Set z1, z2, z3 such that Im (π ◦ ŷi) = Kzi for all i ∈ {1, 2, 3}. We know that z1, z2, z3 are pairwise

distinct. Now, set

G :=
∑
N∈S⊥

Im N.

We know that Kx ⊂ G, whence G/Kx is the sum of all ranges of the operators π◦ŷ with y ∈ V . As (y1, y2, y3)

is a basis of V , it follows that G/Kx is the sum of all ranges of the operators π ◦ ŷi for i ∈ {1, 2, 3}, that is

G/Kx = span(z1, z2, z3).

Now, note that y0 = y1 + y2 + y3, whence (π ◦ ŷ0)Ai = zi for all i ∈ {1, 2, 3}. Therefore, π ◦ ŷ0 has rank

rk(z1, z2, z3). If rk(z1, z2, z3) = 3, then statement (b) is obvious. Assume now that rk(z1, z2, z3) = 2. Then,

z1, z2, z3 are pairwise distinct non-zero vectors of this space, whence z1 + z2 + z3 = 0. It follows that the

rank 2 operator π ◦ ŷ0 vanishes at the non-zero vector A1 + A2 + A3, which belongs to none of the kernels

of the operators π ◦ ŷi for i ∈ {1, 2, 3}. This proves statement (b).

Finally, let us assume that dimG = 4, that is rk(z1, z2, z3) = 3. Then, we see that (x,A1y1, A2y2, A3y3)

is a linearly independent 4-tuple, which we extend into a basis of U . Without loss of generality, we may

assume that this basis is the standard one of U = Kp and that (y1, y2, y3) is the standard basis of V = K3.

Note that Aiyj ∈ Kx for all distinct i and j in {1, 2, 3}. Hence, for some (α, β, γ, δ, λ, µ) ∈ K6,

A1 =


0 α β

1 0 0

0 0 0

0 0 0

(0)(p−4)×1 (0)(p−4)×1 (0)(p−4)×1

 , A2 =


γ 0 δ

0 0 0

0 1 0

0 0 0

(0)(p−4)×1 (0)(p−4)×1 (0)(p−4)×1


and

A3 =


λ µ 0

0 0 0

0 0 0

0 0 1

(0)(p−4)×1 (0)(p−4)×1 (0)(p−4)×1

 .
Noting that A1 +A2 +A3 has rank 3, we deduce from Claim 24 that A1 +A2 has rank 2, whence β+ δ = 0.

On the other hand, as S⊥y3 must have dimension 2, we have (β, δ) 6= (0, 0), whence β = δ = 1. With the

same line of reasoning, we find γ = λ = 1 and α = µ = 1. As span(A1, A2, A3) = S⊥, we deduce from the

results of Section 3.6 that S⊥ is the space of all matrices of the form
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[
A

(0)(p−4)×3

]
with A ∈ H⊥4 .

Therefore, S = H4

∐
M3,p−4(K), whence S has Type 7.

To conclude the proof, we establish the following result.

Claim 30. No 3-dimensional space contains S⊥y for all y ∈ V .

Proof. We use a reductio ad absurdum and assume that such a 3-dimensional space exists. Then, we

lose no generality in assuming that this space is K3×{0}, in which case S splits as T
∐

M3,p−3(K) for some

6-dimensional subspace T of M3(K), and F splits as G
∐
H, where G and H are range-compatible linear

maps on T and M3,p−3(K), respectively. Then H is local, whence G is non-local. From there, we see that

the space T satisfies conditions (A4) and (B2). Thus, we can simply assume that p = 3 in order to find a

contradiction.

In this reduced situation we have S ⊂ M3(K).

Now, as ŷ0 has rank 3, we can choose respective bases of S⊥ and U in which ŷ0 is represented by I3.

Denote by M the 3-dimensional subspace of M3(K) representing all the operators ŷ in those bases. Then:

(a) I3 is the sole non-singular matrix of M and all the other non-zero matrices of M have rank 2.

(b) There is a (unique) non-zero vector x0 of K3 such that dimMx0 = 3, while dimMx = 2 for all

x ∈ K3 \ {0, x0}.
(c) No 2-dimensional subspace P of K3 is stabilized by all the matrices ofM: this follows from assumption

(B2).

(d) There is a (unique) vector z0 of K3 \ {0} which belongs to the image of all the trace 1 matrices of M.

Indeed, the set of all trace 1 matrices inM is a non-linear affine hyperplane that contains I3, and hence,

the result is a consequence of Claim 26 (noting that Im (I3) = K3). Moreover, z0 is an eigenvector of

no trace 1 matrix of M except I3: this is a reformulation of point (b) of Claim 29.

As every trace zero matrix of M is the sum of I3 and of a trace 1 matrix of M, point (d) actually shows

that z0 is an eigenvector of no matrix of M\ {0, I3}.

Let x ∈ K3 \ {0, x0}. As dimMx = 2, we find a non-zero matrix A of M such that Ax = 0. Then, one

of the matrices A or A+ I3 belongs toM\{I3}, has trace 1 and x is an eigenvector for it. Thus, each vector

of K3 \ {0, x0} is an eigenvector for some trace 1 matrix of M\ {I3}. It follows in particular that x0 = z0.

Choose A ∈M\ {I3} with trace 1. As A and A− I3 are singular, we see that A is triangularizable and

its spectrum is {0, 1}; as trA = 1, we see that 1 is a single eigenvalue of A and 0 is a double eigenvalue.

Moreover, as rk A = 2, the matrix A is not diagonalisable, whence it is similar to

 0 1 0

0 0 0

0 0 1

. Thus,

KerA2 has dimension 2, the space Im A is the sum of the eigenspaces of A, and Im A ∩KerA2 = KerA. As

z0 is not an eigenvector of A and as it belongs to Im A, we deduce that z0 6∈ KerA2.

Let z ∈ KerA2 \KerA. Then, z 6∈ {0, z0}, and hence, z is an eigenvector of some matrix B of M\ {I3}
with trace 1; then I3, A and B are distinct vectors in the affine hyperplane of trace 1 matrices of M, and

hence, (I3, A,B) is a basis of M. As all those matrices map z into KerA2, we conclude that Mz ⊂ KerA2.
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Finally, we can find two distinct vectors z1 and z2 in KerA2 \KerA, so that (z1, z2) is a basis of KerA2.

We deduce that the 2-dimensional space KerA2 is stable under all the elements of M, contradicting point

(c) above. This contradiction concludes the proof.

Combining Claim 30 with point (c) of Claim 29, we conclude that S has Type 7. This completes the

proof of Theorem 1.7.

6. Application to the algebraic reflexivity of 2-dimensional operator spaces. In [2], Bračič and

Kuzma studied algebraic reflexivity for 2-dimensional spaces of linear operators between finite-dimensional

spaces. They showed that, if the underlying field has at least 5 elements, such an operator space is alge-

braically reflexive except in a few very special cases. Here, we shall combine Theorem 1.7 with Theorem 1.2

of [13] to extend their result to all fields. Recall that an operator space T ⊂ L(U, V ) is reduced when the

intersection of the kernels of the operators in T is {0} and the sum of the ranges of the operators in T is V .

Theorem 6.1 (Classification of non-reflexive 2-dimensional operator spaces). Let U and V be finite-

dimensional vector spaces, and S be a 2-dimensional reduced subspace of L(U, V ). Set

E2 :=

{[
a b 0

0 a b

]
| (a, b) ∈ K2

}

and

E3 :=

{ a b 0

0 a b

0 0 a

 | (a, b) ∈ K2

}
.

Then, S is algebraically reflexive unless one of the following conditions holds:

(i) dimU = dimV = 2 and the set of rank 1 operators of S is included in a 1-dimensional linear

subspace of S.

(ii) S is represented by E2 in some bases of U and V , and |K| = 2.

(iii) S is represented by E3 in some bases of U and V , and |K| = 2.

(iv) S is represented by ET2 in some bases of U and V , and |K| = 2.

Moreover, in cases (ii), (iii) and (iv), the reflexivity defect of S equals 1.

The proof will make use of the following lemma, which follows directly from Proposition 7.4 of the next

section.

Lemma 6.2. Let S be a linear subspace of Mn,p(K). Then, the reflexivity defect of S equals that of ST .

Proof of Theorem 6.1. Assume first that case (i) holds. Then, S contains an isomorphism f . Without

loss of generality, we may assume that U = V and f = idU . Choose g ∈ S \ KidU . Then our assumptions

show that g has at most one eigenvalue. If g has no eigenvalue, then span(f(x), g(x)) = U for all non-zero

vectors x ∈ U , whence R(S) = L(U) has dimension 4 and S is non-reflexive. If g has exactly one eigenvalue,

then no generality is lost in assuming that g is nilpotent (and non-zero). Then, in a well-chosen basis B of U ,

the endomorphism g is represented by

[
0 1

0 0

]
. In the basis (g, f) and in B, the dual operator space Ŝ is

represented by the space T of all matrices of the form

[
y x

0 y

]
. It is easily checked that

[
x y

0 x

]
7→
[
y

0

]
is a non-local range-compatible homomorphism on T , whence S is non-reflexive.
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If case (ii) holds, then, in well-chosen bases of S and V , the space Ŝ is represented by S2(K), on which

we know that there is, up to addition of a local map, a unique non-local range-compatible linear map.

Ditto for case (iii), where Ŝ is represented by V2 (as we lose no generality in assuming that K = F2).

If case (iv) holds, then we note that case (ii) holds for ST , and hence, Lemma 6.2 shows that the

reflexivity defect of S equals 1.

Next, we prove that in any other case the space S is reflexive. To this effect, we assume that none of

cases (i) to (iv) holds, we consider the space Ŝ and we show that every range-compatible linear map on it is

local.

Assume first that |K| > 2. As S is reduced, we have dim Ŝ = dimU , whence Theorem 1.4 yields that

every range-compatible linear map on S is local whenever dimU ≥ 3 (as here dimL(S, V ) = 2 dimV ). If

now |K| = 2, as dimS = 2 we see that Ŝ is not of Type 2 nor of any of Types 4 to 7. As cases (ii) and

(iii) have been dismissed, Theorem 1.7 yields that every range-compatible linear map on Ŝ is local whenever

dimU ≥ 3 and |K| = 2.

Thus, it remains to consider the case when dimU ≤ 2, with an arbitrary field.

Assume first that dimU = 1, and let h ∈ R(S). Choosing a non-zero vector x0 ∈ U , we find (λ, µ) ∈ K2

such that h(x0) = λ f(x0) + µ g(x0), whence h = λf + µg ∈ S as h and λf + µg are linear and x0 spans U .

To complete the proof, we consider the case when dimU = 2. If dimV = 1, then it is a classical result

from duality theory that every linear subspace of L(U, V ) is reflexive. Assume that dimV = 2. As case (i)

has been dismissed, we can find two linearly independent rank 1 operators f and g in S. As dimV = 2,

dimU = 2 and S is reduced, f and g must have distinct images and distinct kernels; therefore, in (f, g) and

a basis of V adapted to the decomposition V = Im f ⊕ Im g, the space Ŝ is represented by the space T of all

matrices of the form

[
a 0

0 b

]
with (a, b) ∈ K2. Noting that T splits as T = T1

∐
T2 where T1 and T2 are

linear subspaces of K2, we deduce from Lemma 2.1 and the Splitting Lemma that every range-compatible

linear map on T is local.

It remains to consider the case when dimU = 2 and dimV > 2. We choose a basis (f, g) of S and we

consider the Kronecker-Weierstrass canonical form for the matrix pencil f + tg (see Chapter XII of [6]; for

a proof that the results hold for arbitrary fields, see also [4]). Remember that the Kronecker theorem for

matrix pencils states that, given finite-dimensional vector spaces E and F and linear maps u : E → F and

v : E → F , there are bases B and C, respectively, of E and F such that MB,C(u) = A1 ⊕ · · · ⊕ AN and

MB,C(v) = B1 ⊕ · · · ⊕BN , where each pair of matrices (Ai, Bi) is of one of the following types:

(i) (P, In) for some positive integer n and some P ∈ GLn(K);

(ii) (In, Jn) for some positive integer n, where Jn := (δi+1,j) ∈ Mn(K);

(iii) (Jn, In) for some positive integer n;

(iv) (Ln, L
′
n) for some positive integer n, where Ln := (δi,j) ∈ Mn,n+1(K) and L′n := (δi+1,j) ∈ Mn,n+1(K);

(v) (LTn , (L
′
n)T ) for some positive integer n.

As S is reduced, the canonical form of the pair (f, g) contains no pair of zero blocks. As dimU = 2 and

dimV > 2, there cannot be any pair of blocks of 2× 2 matrices, nor any pair of blocks of 1× 2 matrices, nor

two pairs of blocks of 1× 1 matrices. Therefore, only three cases are possible:
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• Case I. In well-chosen bases of U and V and for some α ∈ K, the operators f and g are represented,

respectively, by the matrices

 1 0

0 1

0 0

 and

 α 0

0 0

0 1

. Replacing g with g − αf and changing the

basis of V , we reduce the situation to the one where α = 0. Then, Ŝ is represented by the space T1
of all matrices of the form  a 0

b 0

0 b

 with (a, b) ∈ K2.

Let F : T1 → K3 be a range-compatible linear map. Working row by row, we find scalars λ, µ, ν

such that

F :

 a 0

b 0

0 b

 7→
 λa

µb

νb

 .
Subtracting the local map M 7→ M ×

[
µ

ν

]
, we may assume that µ = ν = 0. Then, for b = 1 and

a = 1, we deduce that

0 = det

 1 0 λ

1 0 0

0 1 0

 = λ,

whence F is local.

• Case II. In well-chosen bases of U and V , the operators f and g are represented, respectively, by the

matrices


1 0

0 0

0 1

0 0

 and


0 0

1 0

0 0

0 1

. Then, the space Ŝ is represented by the space T2 of all matrices

of the form 
a 0

0 a

b 0

0 b

 with (a, b) ∈ K2.

Let F : T2 → K4 be a range-compatible linear map. Like in Case I, we see that no generality is lost

in assuming that, for some (λ, µ) ∈ K2,

F :


a 0

0 a

b 0

0 b

 7−→

λa

µa

0

0

 .
Taking a = b = 1, we find scalars α and β such that

λ

µ

0

0

 = α


1

0

1

0

+ β


0

1

0

1

 =


α

β

α

β

 ,
whence α = β = 0, and finally λ = µ = 0. Thus, F is local.
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• Case III. In well-chosen bases of U and V , the operators f and g are represented, respectively, by the

matrices

 1 0

0 1

0 0

 and

 0 0

1 0

0 1

. In other words, S is represented by ET2 . As case (iv) has been

dismissed, we deduce that |K| > 2. Then, one checks that Ŝ is also represented by ET2 in well-chosen

bases of S and V . Let F be a range-compatible linear map on ET2 . Then, there are scalars λ, µ, ν, γ

such that

F :

 a 0

b a

0 b

 7−→
 λa

µa+ νb

γb

 .
By subtracting the local map M 7→M ×

[
λ

γ

]
from F , we see that no generality is lost in assuming

that λ = γ = 0. Then,

for all (a, b) ∈ K2, 0 = det

 a 0 0

b a µa+ νb

0 b 0

 = −µa2b− νab2.

As |K| > 2, we deduce that µ = ν = 0, and hence, F = 0.

In any case, we have shown that every range-compatible linear map on Ŝ is local, and hence, S is

reflexive. This completes the proof of Theorem 6.1.

7. Application to the classification of large affine spaces of matrices with rank greater than

1.

7.1. The problem. The lower-rank of a non-empty subset V of Mn,p(K) is defined as min{rk M |M ∈
V} and denoted by lrkV.

Let n′, p′, n, p be positive integers with n′ ≤ n and p′ ≤ p. Given a subset X of Mn′,p′(K), we denote by

in,p(X ) the set of all matrices of Mn,p(K) of the form[
A (?)n′×(p−p′)

(?)(n−n′)×p′ (?)(n−n′)×(p−p′)

]
with A ∈ X .

We also denote by X̃ (n,p) the set of all matrices of Mn,p(K) of the form[
A (0)n′×(p−p′)

(0)(n−n′)×p′ [0](n−n′)×(p−p′)

]
with A ∈ X .

Let r ∈ [[1,min(n, p)]]. In [7], we have proven that the codimension of an affine subspace V of Mn,p(K)

with lower-rank at least r is always greater than or equal to

(
r + 1

2

)
. A basic way to construct a large

affine subspace of Mn,p(K) with lower-rank r is to start from an affine subspaceW of Mr(K) which is included

in GLr(K) and to build the space in,p(W): it is an easy observation that in,p(W) has lower-rank r and that

its codimension in Mn,p(K) equals the codimension of W in Mr(K). In particular, if we start from an affine

subspaceW that is included in GLr(K) and has codimension

(
r + 1

2

)
- which we call a dimension-maximal
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affine subspace of non-singular matrices of Mr(K) - then we obtain a subspace with codimension

(
r + 1

2

)
in Mn,p(K). In [8], it was established that this construction yields, up to equivalence, all the affine subspaces

of Mn,p(K) with lower-rank at least r and with the minimal codimension

(
r + 1

2

)
provided that r > 1.

We restate these results here for the sake of clarity:

Theorem 7.1 (See [8]). Let n and p be positive integers, and r ∈ [[2,min(n, p)]]. Assume that |K| > 2.

Let V be an affine subspace of Mn,p(K) with lower-rank at least r and with codimension

(
r + 1

2

)
. Then, V

is equivalent to in,p(W) for some dimension-maximal affine subspace W of non-singular matrices of Mr(K).

Moreover, we have proved the following (much easier) result, which examines to what extent the equiv-

alence class of W is determined by that of V:

Proposition 7.2. Let n and p be positive integers. Let W and W ′ be dimension-maximal affine sub-

spaces of non-singular matrices of Mr(K), where r ∈ [[1,min(n, p)]]. Then, in,p(W) and in,p(W ′) are equiva-

lent if and only if W and W ′ are equivalent.

In this statement, note that we make no specific assumption on the field K: one easily checks that the

proof, given in Section 2 of [8], does not require that |K| > 2.

Dimension-maximal affine subspaces of non-singular matrices of Mr(K) were entirely classified in [10] for

fields with more than 2 elements. For fields with 2 elements, no classification is known yet for general values

of r: for r = 2, it is known that, up to equivalence, there are exactly two such spaces, namely I2+K
[

0 1

0 0

]
and I2 + K

[
0 1

1 1

]
; for r = 3, the classification was achieved in [15] (see Theorem 5.7) but we suspect

that a generalization to greater values of r might be hopeless. Over F2, there is an additional difficulty in

classifying affine spaces with lower-rank at least r and codimension

(
r + 1

2

)
, and that is the failure of

Theorem 7.1 in that situation (see the examples below)!

Our aim is to solve the case r = 2 for fields with 2 elements by using a connection with the theory of

non-reflexive operator spaces.

7.2. The classification.

Theorem 7.3. Assume that n ≥ 2 and p ≥ 2. Set C :=

[
0 1

1 1

]
and J :=

[
0 1

0 0

]
. We define two

affine spaces as follows:

F2 :=

{[
a+ 1 a c

d a+ 1 a

]
| (a, c, d) ∈ F3

2

}
and

F3 :=

{ a d e

a+ b+ 1 a+ b f

c a+ b+ 1 b

 | (a, b, c, d, e, f) ∈ F6
2

}
.
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Then, the following hold:

(i) If n ≥ 3 and p ≥ 3, then up to equivalence there are exactly five affine subspaces of Mn,p(F2) with

codimension 3 and lower-rank at least 2: in,p
(
I2+F2C

)
, in,p

(
I2+F2J

)
, in,p

(
F2), in,p(FT2 ) and in,p(F3).

(ii) If n ≥ 3 and p = 2, then up to equivalence there are exactly three affine subspaces of Mn,p(F2) with

codimension 3 and lower-rank at least 2: in,p
(
I2 + F2C

)
, in,p

(
I2 + F2J

)
and in,p

(
FT2 ).

(iii) If n = 2 and p ≥ 3, then up to equivalence there are exactly three affine subspaces of Mn,p(F2) with

codimension 3 and lower-rank at least 2: in,p
(
I2 + F2C

)
, in,p

(
I2 + F2J

)
and in,p

(
F2).

(iv) Up to equivalence, I2 + F2C and I2 + F2J are the sole affine subspaces of M2(F2) with codimension 3

and lower-rank 2.

Note that statement (iv) is already known since affine subspaces of M2(F2) with codimension 3 and

lower-rank at least 2 are simply dimension-maximal affine subspaces of non-singular matrices of M2(F2). It

is an easy exercise to show that the spaces in,p
(
F2), in,p(FT2 ) and in,p(F3) are counter-examples to Theorem

7.1.

7.3. Proof of the classification theorem. It is time to explain the connection between affine spaces

of matrices with lower-rank greater than 1 and non-reflexive operator spaces. Let us first recall the following

result of Azoff [1]:

Proposition 7.4. Let V be a linear subspace of Mn,p(K). Then, V is spanned by its rank 1 matrices if

and only if V ⊥ is reflexive. Moreover, if we denote by V (1) the linear subspace of V spanned by its rank 1

matrices, then dimV − dimV (1) equals the reflexivity defect of V ⊥.

Now, let V be an affine subspace of Mn,p(K) that does not contain 0.

We can see V as an affine hyperplane of the vector space span(V), and denote by V its translation vector

space, which is a linear hyperplane of span(V). Then, V has lower-rank at least r if and only if the span of

the matrices of span(V) with rank less than r is included in V . Conversely, if we start from a linear subspace

W of Mn,p(K) such that W (1) ⊂ W and W (1) 6= W , then, every affine hyperplane H of W that does not

contain 0 and whose translation vector space contains W (1) contains no matrix with rank 0 or 1, and hence,

lrkH ≥ 2.

Thus, with the connection outlined in Proposition 7.4, we can derive Theorem 7.3 from Theorem 6.1.

Assume from now on that K = F2. Let S be an affine subspace of Mn,p(K) with lower-rank at least 2 and

codimension 3. Then, V := span(S) has codimension 2, and hence, V ⊥ is a 2-dimensional non-reflexive

subspace of Mp,n(K). Applying Theorem 6.1 to the reduced operator space V ⊥, we deduce that one and

only one of the following situations holds:

(i) V ⊥ is equivalent to X̃ (p,n) for some linear subspace X of M2(F2).

(ii) V ⊥ is equivalent to Ẽ2
(p,n)

.

(iii) V ⊥ is equivalent to (̃ET2 )
(p,n)

.

(iv) V ⊥ is equivalent to Ẽ3
(p,n)

.

Now, we tackle each case separately.

First assume case (i) holds. Then, we see that V is equivalent to in,p(X⊥). Without loss of generality, we

may then assume that V = in,p(X⊥). Noting that the span of the rank 1 matrices of V then contains every
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matrix of in,p({0}), we deduce that S = in,p(H) for some affine subspace H of M2(F2) with codimension 3

and that contains only matrices with rank greater than 1. In other words, H is a dimension-maximal affine

subspace of non-singular matrices of M2(F2). Then, by statement (iv) of Theorem 7.3 (which we have already

proved), we deduce that S is equivalent to one and only one of the spaces in,p(I2 +F2C) and in,p(I2 +F2J).

Assume now that case (ii) holds (so that n ≥ 3). Then, V is equivalent to in,p(E⊥2 ). Without loss of

generality, we may assume that V = in,p(E⊥2 ). Note that E⊥2 =
{ a d

b a

c b

 | (a, b, c, d) ∈ F4
2

}
. Moreover,

E3,1, E1,2 and A :=

 1 1

1 1

1 1

 are linearly independent rank 1 matrices of E⊥2 . One deduces that the

translation vector space of S must contain in,p(span(E1,3, E2,1, A)), which is a hyperplane of V . Thus,

S is the affine subspace of in,p(E⊥2 ) that does not contain 0 and whose translation vector space equals

in,p(span(E1,3, E2,1, A)), that is S = in,p
(
FT2 ).

If case (iii) holds, a similar line of reasoning as in case (ii) yields that S is equivalent to in,p(F2) (and

hence, p ≥ 3).

Assume finally that case (iv) holds (so that n ≥ 3 and p ≥ 3). Then, V is equivalent to in,p(E⊥3 ), and

no generality is lost in assuming that V = in,p(E⊥3 ). Note that

E⊥3 =

{ a e f

c a+ b g

d c b

 | (a, b, c, d, e, f, g) ∈ F7
2

}
.

One checks that the rank 1 matrices E1,3, E1,2, E3,1, E2,3, B1 :=

 1 1 0

1 1 0

1 1 0

 and B2 :=

 0 0 0

1 1 1

1 1 1


are linearly independent and belong to E⊥3 . Setting H := span(E1,3, E1,2, E3,1, E2,3, B1, B2), we deduce that

the translation vector space of S contains in,p(H), and from the equality of dimensions we conclude that

in,p(H) is exactly the translation vector space of S. Thus, S is the affine hyperplane of in,p(E⊥3 ) that does

not contain 0 and with translation vector space in,p(H). Noting that

H =

{ a e f

a+ b a+ b g

d a+ b b

 | (a, b, d, e, f, g) ∈ F6
2

}
,

we deduce that S = in,p(F3).

Conversely:

• We already know that in,p(I2+F2C) and in,p(I2+F2J) are inequivalent affine subspaces of Mn,p(F2)

with codimension 3 and lower-rank 2. Obviously, they both fall into case (i) above.

• Assume that n ≥ 3 and p ≥ 3, and set S := in,p(F3), which is an affine subspace of Mn,p(F2)

that does not contain 0 and has codimension 3. Then, we see that span(S) = in,p(E⊥3 ), and hence,

span(S)⊥ = Ẽ3
(p,n)

, which is non-reflexive. Thus, the span of the rank 1 matrices of in,p(F3) is

included in a linear hyperplane of in,p(F3), and hence, it equals the space

in,p
(
span(E1,3, E1,2, E3,1, E2,3, B1, B2)

)
.
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As this space is the translation vector space of S and as S does not contain 0, we conclude that the

lower-rank of S is greater than 1. Obviously lrk(S) ≤ 2, and hence, lrk(S) = 2. Note that S falls

into case (iv) above.

• Assume that p ≥ 3. Using the same line of reasoning as in the preceding point, one shows that

in,p(F2) is an affine subspace of Mn,p(F2) with codimension 3 and lower-rank 2, and that it falls into

case (ii) above.

• By transposing, one deduces that if n ≥ 3, then in,p(FT2 ) is an affine subspace of Mn,p(F2) with

codimension 3 and lower-rank 2 and that it falls into case (iii) above.

As the equivalence class of span(S)⊥ is uniquely determined by that of S, we conclude that the various affine

spaces cited in Theorem 7.3 are pairwise inequivalent. This completes the proof of Theorem 7.3.

With the above strategy, we can give an alternative proof of Bračič and Kuzma’s Theorem 3.10 of [2].

Indeed, instead of using a classification of non-reflexive operator spaces in order to classify affine spaces of

matrices with lower-rank at least 2, we can do the opposite! Thus, let K be a field with more than 2 elements,

and S be a 2-dimensional non-reflexive subspace of Mn,p(K). Then, S⊥ contains an affine hyperplane H
such that lrkH ≥ 2. By Theorem 3 of [8], no generality is lost in assuming that H = ip,n(I2 + KM), where

M ∈ M2(K) either equals

[
0 1

0 0

]
or has no eigenvalue in K. Thus, S⊥ = ip,n(span(I2,M)), and hence,

S = Ṽ (n,p), where V = span(I2,M)⊥. If M =

[
0 1

0 0

]
, then one sees that V is equivalent to span(I2,M).

If M has no eigenvalue in K, then every non-zero matrix of span(I2,M) is non-singular, and it easily follows

that this is also the case of every matrix of V (indeed, if some matrix of V had rank 1, then we would find a

non-zero vector X ∈ K2 such that N ∈ V 7→ NX has rank at most 1, yielding a rank 1 matrix in V ⊥), and

one concludes that span(I2,M)⊥ is equivalent to span(I2,M
′) for some M ′ ∈ M2(K) with no eigenvalue in

K.

Conversely, let V be a linear subspace of M2(K) which equals span(I2,M), where M is either

[
0 1

0 0

]
or a matrix with no eigenvalue in K. In each case, one checks that ip,n(V ⊥) is not spanned by its rank

1 matrices (in the second case, V ⊥ contains no rank 1 matrix, so that the span of the rank 1 matrices of

ip,n(V ⊥) is included in ip,n({0})), and hence, Ṽ (n,p) is non-reflexive.
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