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CHARACTERIZING GRAPHS OF MAXIMUM PRINCIPAL RATIO∗

MICHAEL TAIT† AND JOSH TOBIN‡

Abstract. The principal ratio of a connected graph, denoted γ(G), is the ratio of the maximum and minimum entries of

its Perron eigenvector. Cioabă and Gregory (2007) conjectured that the graph on n vertices maximizing γ(G) is a kite graph,

that is, a complete graph with a pendant path. In this paper, their conjecture is proved.
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1. Introduction. Several measures of graph irregularity have been proposed to evaluate how far a

graph is from being regular. In this paper, we determine the extremal graphs with respect to one such

irregularity measure, answering a conjecture of Cioabă and Gregory [5].

All graphs in this paper will be simple and undirected, and all eigenvalues are of the adjacency matrix

of the graph. For a connected graph G, the eigenvector corresponding to its largest eigenvalue, the principal

eigenvector, can be taken to have all positive entries. If x is this eigenvector, let xmin and xmax be the

smallest and largest eigenvector entries, respectively. Then define the principal ratio, γ(G) to be

γ(G) =
xmax

xmin
.

Note that γ(G) ≥ 1 with equality exactly when G is regular, and it therefore can be considered as a measure

of graph irregularity.

Let Pr ·Ks be the graph attained by identifying an end vertex of a path on r vertices to any vertex of a

complete graph on s vertices. This has been called a kite graph or a lollipop graph. Cioabă and Gregory [5]

conjectured that the connected graph on n vertices maximizing γ is a kite graph. Our main theorem proves

this conjecture for n large enough.

Theorem 1.1. For sufficiently large n, the connected graph G on n vertices with largest principal ratio

is a kite graph.

We note that Brightwell and Winkler [4] showed that a kite graph maximizes the expected hitting time

of a random walk. Other irregularity measures for graphs have been well–studied. Bell [3] studied the

irregularity measure ε(G) := λ1(G)− d̄(G), the difference between the spectral radius and the average degree

of G. He determined the extremal graph over all (not necessarily connected) graphs on n vertices and e

edges. It is not known what the extremal connected graph is, and Aouchiche et al [2] conjectured that this
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extremal graph is a “pineapple”, that is, a complete graph with pendant vertices added to a single vertex.

Bell also studied the variance of a graph,

var(G) =
1

n

∑
v∈V (G)

∣∣dv − d̄∣∣2 .
Albertson [1] defined a measure of irregularity by∑

uv∈E(G)

|d(u)− d(v)|,

and the extremal graphs were characterized by Hansen and Mélot [6].

Nikiforov [9] proved several inequalities comparing var(G), ε(G) and s(G) :=
∑

v |d(u) − d̄|. Bell

showed that ε(G) and var(G) are incomparable in general [3]. Finally, bounds on γ(G) have been given in

[5, 7, 8, 10, 11].

2. Preliminaries. Throughout this paper G will be a connected simple graph on n vertices. The

eigenvectors and eigenvalues of G are those of the adjacency matrix A of G. The vector v will be the

eigenvector corresponding to the largest eigenvalue λ1, and we take v to be scaled so that its largest entry

is 1. Let x1 and xk be the vertices with smallest and largest eigenvector entries, respectively, and if several

such vertices exist then we pick any of them arbitrarily. Let x1, x2, . . . , xk be a shortest path between x1 and

xk. Let γ(G) be the principal ratio of G. We will abuse notation so that for any vertex x, the symbol x will

refer also to v(x), the value of the eigenvector entry of x. For example, with this notation the eigenvector

equation becomes

λv =
∑
w∼v

w.

We will make use of the Rayleigh quotient characterization of the largest eigenvalue of a graph,

(2.1) λ1(G) = max
06=v

vTA(G)v

vT v
.

Recall that the vertices v1, v2, . . . , vm are a pendant path if the induced graph on these vertices is a

path and furthermore if, in G, v1 has degree 1 and the vertices v2, . . . , vm−1 have degree 2 (note there is no

requirement on the degree of vm).

Lemma 2.1. If λ1 ≥ 2 and σ = (λ1 +
√
λ21 − 4)/2, then for 1 ≤ j ≤ k,

γ(G) ≤ σj − σ−j

σ − σ−1
x−1j .

Moreover we have equality if the vertices x1, x2, . . . , xj are a pendant path.

Proof. We have the following system of inequalities:

λ1x1 ≥ x2
λ1x2 ≥ x1 + x3

λ1x3 ≥ x2 + x4
...

...

λ1xj−1 ≥ xj + xj−2.
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The first inequality implies that

x1 ≥
1

λ1
x2.

Plugging this into the second equation and rearranging gives

x2 ≥
λ1

λ21 − 1
x3.

Now assume that

xi ≥
ui−1
ui

xi+1,

with uj positive for all j < i. Then

λ1xi+1 ≥ xi + xi+2,

implies that

xi+1 ≥
ui

λ1ui − ui−1
xi+2.

Note that λ1ui − ui−1 must be positive since λ1xi+1 ≥ xi + xi+1 ≥ ui−1

ui
xi+1 + xi+2 >

ui−1

ui
xi+1 as xj is

positive for all j. Therefore, we may choose the coefficients ui to satisfy the recurrence

ui+1 = λ1ui − ui−1.

Solving this and using the initial conditions u0 = 1, u1 = λ, we get

ui =
σi+1 − σ−i−1

σ − σ−1
.

In particular, ui is always positive, a fact implicitly used above. Finally this gives,

x1 ≥
u0
u1
x2 ≥

u0
u1
· u1
u2
x3 ≥ · · · ≥

xj
uj−1

.

Hence,

γ(G) =
xk
x1

=
1

x1
≤ σj − σ−j

σ − σ−1
x−1j .

If these vertices are a pendant path, then we have equality throughout.

We will also use the following lemma which comes from the paper of Cioabă and Gregory [5].

Lemma 2.2. For r ≥ 2 and s ≥ 3,

s− 1 +
1

s(s− 1)
< λ1(Pr ·Ks) < s− 1 +

1

(s− 1)2
.

In the remainder of the paper, we prove Theorem 1.1. We now give a sketch of the proof that is contained

in Section 3.

1. We show that the vertices x1, x2, . . . , xk−2 are a pendant path and that xk is connected to all of the

vertices in G that are not on this path (Lemma 3.2).

2. Next we prove that the length of the path is approximately n− n/ log(n) (Lemma 3.3).

3. We show that xk−2 has degree exactly 2 (Lemma 3.6), which extends our pendant path to x1, x2,

. . . , xk−1. To do this, we find conditions under which adding or deleting edges increases the principal

ratio (Lemma 3.4).
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4. Next we show that xk−1 also has degree exactly 2 (Lemma 3.8). At this point, we can deduce that

our extremal graph is either a kite graph or a graph obtained from a kite graph by removing some

edges from the clique. We show that adding in any missing edges will increase the principal ratio,

and hence, the extremal graph is exactly a kite graph.

3. Proof of Theorem 1.1. Let G be the graph with maximal principal ratio among all connected

graphs on n vertices, and let k be the number of vertices in a shortest path between the vertices with

smallest and largest eigenvalue entries. As above, let x1, . . . , xk be the vertices of the shortest path, where

γ(G) = xk/x1. Let C be the set of vertices not on this shortest path, so |C| = n− k. Note that there is no

graph with n− k = 1, as the endpoints of a path have the same principal eigenvector entry. Also λ1(G) ≥ 2,

otherwise Pn−2 ·K3 would have larger principal ratio. Finally note that k is strictly larger than 1, otherwise

xk = x1 and G would be regular.

Lemma 3.1. λ1(G) > n− k.

Proof. Let H be the graph Pk ·Kn−k+1. It is straightforward to see that in H, the smallest entry of the

principal eigenvector is the vertex of degree 1 and the largest is the vertex of degree n − k + 1. Also note

that in H, the vertices on the path Pk form a pendant path. By maximality we know that γ(G) ≥ γ(H).

Combining this with Lemma 2.1, we get

σk − σ−k

σ − σ−1
≥ γ(G) ≥ γ(H) =

σk
H − σ

−k
H

σH − σ−1H

,

where σH =
(
λ1(H) +

√
λ1(H)2 − 4

)
/2. Now the function

f(x) =
xk − x−k

x− x−1

is increasing when x ≥ 1. Hence, we have σ ≥ σH , and so λ1(G) ≥ λ1(H) > n− k.

Lemma 3.2. x1, x2, . . . , xk−2 are a pendant path in G, and xk is connected to every vertex in G that is

not on this path.

Proof. By our choice of scaling, xk = 1. From Lemma 3.1

n− k < λ1(G) =
∑
y∼xk

y ≤ |N(xk)|.

Now |N(xk)| is an integer, so we have |N(xk)| ≥ n − k + 1. Moreover because x1, x2, . . . , xk is an induced

path, we must have that |N(xk)| = n − k + 1 exactly, and hence, the N(xk) = C ∪ {xk−1}. It follows that

x1, x2, . . . , xk−3 have no neighbors off the path, as otherwise there would be a shorter path between x1 and

xk.

Lemma 3.3. For the extremal graph G, we have n− k = (1 + o(1)) n
logn .

Proof. Let H be the graph Pj ·Kn−j+1 where j =
⌊
n− n

logn

⌋
, and let G be the connected graph on n

vertices with maximum principal ratio. Let x1, . . . , xk be a shortest path from x1 to xk where γ(G) = xk

x1
.

By Lemma 3.2, we have

λ1(G) ≤ ∆(G) ≤ n− k + 1.

By the eigenvector equation, this gives that

(3.2) γ(G) ≤ (n− k + 1)k.
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Now, Lemma 2.1 gives that

γ(H) =
σj
H − σ

−j
H

σH − σ−1H

,

where

σ(H) =
λ1(H) +

√
λ1(H)2 − 4

2
.

Now by Lemma 2.2, s− 1 + 1
s(s−1) < λ1(Pr ·Ks) < s− 1 + 1

(s−1)2 , and so we have λ1(H) = n
logn + o(1),

so we may choose n large enough that n
logn + 1 > σH − σ−1H > n−1

logn . By maximality of γ(G), we have

(n− k + 1)k ≥ γ(G) ≥ γ(H) ≥
(

n

log n

)n− n−1
log n−2

.

Thus, n− k = (1 + o(1)) n
logn .

For the remainder of this paper we will explore the structure of G by showing that if certain edges are

missing, adding them would increase the principal ratio, and so by maximality these edges must already be

present in G. We have established that the vertices x1, x2, . . . , xk−2 are a pendant path, and so we have

(3.3) γ(G) =
σk−2 − σ−k+2

σ − σ−1
1

xk−2
.

We will not add any edges that affect this path, and so the above equality will remain true. The change in γ

is then completely determined by the change in λ1 and the change in xk−2. The next lemma gives conditions

on these two parameters under which γ will increase or decrease.

Lemma 3.4. Let x1, x2, . . . , xm−1 form a pendant path in G, where n−m = (1 +o(1))n/ log(n). Let G+

be a graph obtained from G by adding some edges from xm−1 to V (G) \ {x1, . . . , xm−1}, where the addition

of these edges does not affect which vertex has largest principal eigenvector entry. Let λ+1 be the largest

eigenvalue of G+ with leading eigenvector entry for vertex x denoted x+, also normalized to have maximum

entry one. Define δ1 and δ2 such that λ+1 = (1 + δ1)λ1 and x+m−1 = (1 + δ2)xm−1. Then,

• γ(G+) > γ(G) whenever δ1 > 4δ2/n;

• γ(G+) < γ(G) whenever δ1 exp(2δ1λ1 log n) < δ2/3n.

Proof. We have

σ = λ1 − λ−11 − λ
−3
1 − 2λ−51 − · · · −

2

2n− 3

(
2n− 2

n

)
λ
−(2n−1)
1 − · · ·

So,

λ+1 − λ1 < σ+ − σ < λ+1 − λ1 − 2((λ+1 )−1 − λ−11 )

when λ1 is sufficiently large, which is guaranteed by Lemma 3.3. Plugging in λ+1 = (1 + δ1)λ1, we get

δ1λ1 < σ+ − σ < δ1λ1 + 2λ−11 (1− (1 + δ1)−1) < δ1λ1 + δ1.

In particular,

(1 + δ1/2)σ < σ+ < (1 + 2δ1)σ.
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To prove part (i), we wish to find a lower bound in the change in the first factor of (3.3). Let

f(x) =
xm−1 − x−m+1

x− x−1
.

Then 2mxm−3 > f ′(x) > (m− 2)xm−3 −mxm−5, and using that n−m ∼ n/ log(n) and σ ∼ λ1 which goes

to infinity with n, we get f ′(x) & (m− 2)xm−3. By linearization and because f(σ) ∼ σm−2, it follows that

σm−1
+ − σ−m+1

+

σ+ − σ−1+

≥
(

1 +
δ1(m− 3)

2

)
σm−1 − σ−m+1

σ − σ−1
.

Hence, if
δ1(m− 3)

2
> δ2,

then γ(G+) > γ(G). In particular it is sufficient that δ1 > 4δ2/n.

To prove part (ii), recall from above that f ′(x) < 2mxm−3. Then, when x = (1 + o(1))(n/ log(n))

f ′(x+ ε) < 2m(x+ ε)m−3

= 2mxm−3
(

1 +
ε

x

)m−3
≤ 2mxm−3 exp

(mε
x

)
≤ 2nxm−3 exp(2 log(n)ε).

So, for 0 < ε < δ1λ1, we have

f ′(x+ ε) < 2nxm−3 exp(2 log(n)δ1λ1).

Hence, (
1 + 3n exp(2δ1λ1 log n)δ1

)σm−1 − σ−m+1

σ − σ−1
>
σm−1
+ − σ−m+1

+

σ+ − σ−1+

.

Lemma 3.5. For every subset of U of N(xk), we have

|U | − 1 <
∑
y∈U

y ≤ |U |.

Consequently, there is at most one vertex in the neighborhood of xk with eigenvector entry smaller than 1/2.

Proof. The upper bound follows from y ≤ 1, and the lower bound from the inequalities∑
y∈N(xk)\U

y ≤ |N(xk)| − |U |,

and ∑
y∈N(xk)

y = λ1(G) > |N(xk)| − 1.

Lemma 3.6. The vertex xk−2 has degree exactly 2 in G.

Proof. Assume to the contrary. Let U = N(xk−2) ∩N(xk). Then |U | ≥ 2, so by Lemma 3.5 we have∑
y∈U

y > |U | − 1 ≥ 1.
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Now, by the same argument as the in the proof of Lemma 2.1, we have that

γ(G) =
σk−1 − σ−k+1

σ − σ−1

∑
y∈U

y

−1 .
Let H = Pk−1 ·Kn−k+2. Then by maximality of γ(G) we have

σk−1 − σ−k+1

σ − σ−1
> γ(G) ≥ γ(H) =

σk−1
H − σ−k+1

H

σH − σ−1H

.

So σ > σH , which means λ1(G) > λ1(H) > n − k + 1. This means that ∆(G) > n − k + 1, but we have

established that ∆(G) = n− k + 1.

We now know that x1, x2, . . . , xk−1 is a pendant path in G, and so (3.3) becomes

(3.4) γ(G) =
σk−1 − σ−k+1

σ − σ−1
1

xk−1
.

Lemma 3.7. The vertex xk−1 has degree less than 11|C|/
√

log n.

Proof. Assume to the contrary that the degree of xk−1 is at least 11|C|/
√

log n. Let G+ the graph

obtained form G with an additional edge from xk−1 to a vertex z ∈ C with z ≥ 1/2. Let λ+1 = λ1(G+) and

let x+ be the principal eigenvector entry of vertex x in G+, where this eigenvector is normalized to have

x+k = 1.

Change in λ1: By (2.1), we have λ+1 − λ1 ≥ 2xk−1z
||v||22

. A crude upper bound on ||v||22 is

||v||22 ≤ 1 +
∑
y∼xk

y +
2

λ1
+

4

λ21
+ · · · < 2λ1.

We also have that z ≥ 1/2 so

λ+1 ≥
(

1 +
xk−1
2λ21

)
λ1.

Change in xk−1: Let U = N(xk−1 ∩ C). By the eigenvector equation, we have

xk−1 =
1

λ1

xk−2 + xk +
∑
y∈U

y

 and x+k−1 =
1

λ+1

x+k−2 + x+k + z+ +
∑
y∈U

y+

 .

Subtracting these, and using that λ1 < λ+1 and xk = x+k = 1, we get

x+k−1 − xk−1 ≤
1

λ1

x+k−2 − xk−2 + z+ +
∑
y∈U

y+ − y

 .

By Lemma 3.5, we have
∑

y∈U y
+−y ≤ 1. We also have x+k−2−xk−2 < 1 and z+ ≤ 1. Hence, x+k−1−xk−1 ≤

3/λ1, or

x+k−1 ≥
(

1 +
3

λ1xk−1

)
xk−1.
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We can only apply Lemma 3.4 if x+k is the largest eigenvector entry in G+. So we must consider two

cases.

Case 1: If in G+ the largest eigenvector entry is still attained by vertex xk, then we can apply Lemma 3.4,

and see that γ(G+) > γ(G) if
xk−1
2λ21

≥ 12

λ1xk−1n
,

or equivalently,

x2k−1 ≥
24λ1
n

.

We have that λ1 = (1 + o(1))(n− n/ log(n)), so it suffices for

(3.5) xk−1 ≥
5√

log n
.

We know that

xk−1 >
|U | − 1

2λ1
.

By assumption,

|U |+ 2 = N(xk−1) ≥ 11|C|/
√

log n.

Equation (3.5) follows from this, so γ(G+) > γ(G).

Case 2: Say the largest eigenvector entry of G+ is no longer attained by vertex xk. It is easy to see that the

largest eigenvector entry is not attained by a vertex with degree less than or equal to 2, and comparing the

neighborhood of any vertex in C with the neighborhood of xk we can see that xk ≥ y for all y ∈ C. So the

largest eigenvector entry must be attained by xk−1. Then (3.4) no longer holds, instead we have

(3.6) γ(G+) =
σk−1
+ − σ−k+1

+

σ+ − σ−1+

.

Recall that in Lemma 3.4 we determined the change from γ(G+) to γ(G) by considering λ+1 − λ1 and

x+k−1−xk−1. In this case, by (3.6), we must consider λ+1 −λ1 and 1−xk−1. Now if x+k−1 > x+k , then vertex

xk−1 in G is connected to all of C except perhaps a single vertex. Hence, in G, the vertex xk−1 is connected

to all of C except at most two vertices. This gives the bound

1− xk−1 ≤ 3/λ1,

and so as in the previous case, γ(G+) > γ(G).

So in all cases, xk−1 is connected to all vertices in C that have eigenvector entry larger than 1/2. If all

vertices in C have eigenvector entry larger than 1/2, then xk−1 is connected to all of C, and this implies that

xk−1 > xk, which is a contradiction. At most one vertex in C is smaller than 1/2, and so there is a single

vertex z ∈ C with z < 1/2. We will quickly check that adding the edge {xk−1, z} increases the principal

ratio. As before let G+ be the graph obtained by adding this edge. The largest eigenvector entry in G+ is

attained by xk−1, as its neighborhood strictly contains the neighborhood of xk. As above, adding the edge

{z, xk} increases the spectral radius at least

λ+1 >

(
1 +

z

2λ21

)
λ1,

and we have 1−xk−1 < 1− z/λ1. Applying Lemma 3.4 we see that γ(G+) > γ(G), which is a contradiction.

Finally we conclude that the degree of xk−1 must be smaller than 11|C|/
√

log n.
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We note that this lemma gives that xk−1 < 1/2 which implies that any vertex in C has eigenvector entry

larger than 1/2.

Lemma 3.8. The vertex xk−1 has degree exactly 2 in G. Moreover, xk−1 < 2/λ1.

Proof. Let U = N(xk−1) ∩ C, c = |U |. If c = 0 then we are done. Otherwise let G− be the graph

obtained from G by deleting these C edges. We will show that γ(G−) > γ(G).

(1) Change in λ1: We have by (2.1),

λ1 − λ−1 ≤ 2c
xk−1
||v||22

.

By Cauchy–Schwarz,

||v||22 >
∑

x∈N(xk)

x2 ≥

(∑
x∈N(xk)

x
)2

|C|+ 1
≥ (n− k)2

n− k + 1
.

We also have

xk−1 ≤
c+ 2

λ1
.

Combining these we get

λ1 − λ−1 <
9c2

λ1(n− k + 1)
⇒ λ1 <

(
1 +

9c2

λ1λ
−
1 (n− k + 1)

)
λ−1 .

We have λ1λ
−
1 > (n− k)2, so

λ1 <

(
1 +

10c2

(n− k)3

)
λ−1 .

(2) Change in xk−1: At this point, we know that in G− the vertices x1, . . . , xk form a pendant path, and so

by the proof of Lemma 2.1, we have x−k−1 = (1 + o(1))/λ1. By the eigenvector equation and using that the

vertices in C have eigenvector entry at least 1/2, we have xk−1 > (1 + c/2)/λ1. So

xk−1 − x−k−1 >
1

λ1

( c
2

+ o(1)
)
.

In particular,

xk−1 >

(
1 +

c

3x−k−1λ1

)
x−k−1.

Applying Lemma 3.4, it suffices now to show that

(3.7)
10c2

(n− k)3
exp

(
2

10c2

(n− k)3
λ−1 log n

)
<

c

9x−k−1λ1n
.

Now
10c2

(n− k)3
< 10

112

log(n)

|C|2

(n− k)3
<

113

log n

log n

n
=

113

n
.

Similarly 2 10c2

(n−k)3λ
−
1 log n < 2 ·113, so the lefthand side of (3.7) is smaller than C0/n, where C0 is an absolute

constant. For the righthand side, recall that x−k−1λ1 = 1 + o(1), and also that

c >
11√
log n

(
n

log n
+ o(1)

)
>

10n

log3/2 n
.
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So the righthand side is larger than 1/ log3/2 n. Hence, for large enough n, the righthand side is larger than

the lefthand side.

We are now ready to prove the main theorem.

Theorem 1. For sufficiently large n, the connected graph G on n vertices with largest principal ratio is

a kite graph.

Proof. It remains to show that C induces a clique. Assume it does not, and let H be the graph

Pk ·Kn−k+1. We will show that γ(H) > γ(G), and this contradiction tells us that C is a clique. As before,

Lemma 2.1 gives that

γ(H) =
σk
H − σ

−k
H

σH − σ−1H

,

where

σ(H) =
λ1(H)−

√
λ1(H)2 − 4

2
.

Since x1, . . . , xk form a pendant path we also know that

γ(G) =
σk − σ−k

σ − σ−1
.

Now, λ1(H) > λ1(G) because E(G) ( E(H). Since the functions g(x) = x +
√
x2 − 4 and f(x) =

(xk − x−k)/(x− x−1) are increasing when x ≥ 1, we have γ(H) > γ(G).

Acknowledgment. We would like to thank greatly Xing Peng for helpful discussions and comments on

an earlier draft of this paper.

REFERENCES

[1] M.O. Albertson. The irregularity of a graph. Ars Combinatoria, 46:219–225, 1997.
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