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CONDITIONING PROPERTIES OF THE STATIONARY
DISTRIBUTION FOR A MARKOV CHAIN∗

STEVE KIRKLAND†

Abstract. Let T be an irreducible stochastic matrix with stationary vector πT . The condi-
tioning of πT under perturbation of T is discussed by providing an attainable upper bound on the
absolute value of the derivative of each entry in πT with respect to a given perturbation matrix.
Connections are made with an existing condition number for πT , and the results are applied to the
class of Markov chains arising from a random walk on a tree.
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1. Introduction. Suppose that T is an n × n irreducible stochastic matrix;
evidently we can think of such a T as the transition matrix for a Markov chain. One
of the central quantities of interest arising from T is its stationary distribution, i.e.
the positive vector πT satisfying πTT = πT , and normalized so that πT1 = 1, where
1 denotes the all ones vector.

A number of authors have considered the stability of πT under perturbation, and
have addressed problems of the following type: if T is perturbed to yield another
irreducible stochastic matrix T̃ ≡ T +E with stationary vector π̃T , can the quantity
||π̃T − πT || be bounded by f(T )||E|| (for some suitable pair of vector and matrix
norms) where f is some function of the matrix T . Such an f(T ) is known as a
condition number for the Markov chain, and the survey of Cho and Meyer [3] collects
and compares several condition numbers.

One condition number of interest discussed in that paper is defined as follows.
Let Q = I − T, and form its group generalized inverse Q# (see [2] for background on
generalized inverses); now define κ(T ) by

κ(T ) ≡ 1
2
max1≤j≤n{Q#

j,j −min1≤i≤nQ
#
i,j}.

Denote the maximum absolute value norm of π̃T − πT by ||π̃T − πT ||∞, and the
maximum absolute row sum of E by ||E||∞; it is shown in [4] and [10] that

||π̃T − πT ||∞ ≤ κ(T )||E||∞.

Further, results in [3] and in [8] show that the condition number κ(T ) is the smallest
among the eight condition numbers considered in [3]. In particular, if κ(T ) is small,
then we can conclude that the stationary vector is stable under perturbation of T .
(However, it turns out that κ(T ) cannot be too small; a result in [8] shows that for
any irreducible transition matrix T of order n, κ(T ) ≥ n−1

2n .)
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On the other hand, if κ(T ) is large, then on the face of it, ||π̃T − πT ||∞ may
still be small relative to ||E||∞, so how accurate a measure of conditioning does κ(T )
provide? In this paper, we address that question by considering the derivative of πT

with respect to a perturbation matrix E, and finding an attainable upper bound on
the absolute value of that derivative. Among other consequences, we deduce that for
each irreducible stochastic matrix T , there is a family of perturbation matrices with
arbitrarily small norms, such that for each such matrix E, we have ||π̃T − πT ||∞ >
κ(T )||E||∞

2 . By way of illustrating our results, we close the paper by considering the
transition matrices corresponding to random walks on trees. We characterize those
trees so that the corresponding transition matrix T has the property that for each
perturbation matrix E of sufficiently small norm, ||π̃T − πT ||∞ < ||E||∞.

Throughout T will be our notation for an irreducible stochastic matrix of order
n, and πT will denote its stationary vector. We define Q by Q ≡ I − T, while Q#

will denote the group inverse of Q. We use E to denote a perturbation matrix such
that T̃ = T + E is also irreducible and stochastic, while π̃T will be our notation for
the stationary vector for T̃ . The class of admissible perturbation matrices will be
denoted by ET , so that ET = {E|T +E is irreducible and stochastic}. Observe that if
E ∈ ET , then there are certain combinatorial constraints on the negative entries of E;
for example, Ei,j < 0 only if Ti,j > 0. In particular, note that −E may not be in ET .
We will assume basic knowledge of graph theory, the theory of nonnegative matrices
and the study of Markov chains; the reader is referred to [1] for background on the
first topic, to [11] for background on the second, and to [6] for background on the last
topic.

2. Perturbation Results. We begin by defining some useful quantities. Con-
sider an irreducible stochastic n×n matrix T , and for each pair of indices 1 ≤ i, j ≤ n,
define α(i, j) = min{Q#

l,j|Ti,l > 0} and β(i, j) = max{Q#
l,j|Ti,l > 0}.

Our first lemma will be helpful in establishing our results.
LEMMA 2.1. Let T be an n× n irreducible stochastic matrix, and suppose that

E ∈ ET . Then for each positive vector pT such that pT1 = 1, we have

|pTEQ#ej | ≤
||E||∞

2
max

{
Q#

j,j −
n∑

i=1

piα(i, j),
n∑

i=1

piβ(i, j)−min1≤l≤nQ
#
l,j

}
.

Proof. Without loss of generality, we take j = n. We begin by observing that
since T + E is stochastic, El,m < 0 only if Tl,m > 0. Fix an index i with 1 ≤ i ≤ n,
and note that eT

i E can be written as xT − yT where each of x and y is nonnegative,
where xT1 = yT1 ≤ ||E||∞/2, and where yl > 0 only if Ti,l > 0. Thus we have
eT

i EQ#en = xTQ#en − yTQ#en =
∑n

l=1 xlQ
#
l,n −

∑n
l=1 ylQ

#
l,n. It turns out that

Q#
l,n is uniquely maximized when l = n (see Theorem 8.5.2 of [2], for example), so it

follows that eT
i EQ#en ≤

∑n
l=1 xlQ

#
n,n −

∑n
l=1 ylα(i, n) ≤ (Q#

n,n − α(i, n))||E||∞/2.
We also have eT

i EQ#en =
∑n

l=1 xlQ
#
l,n −

∑n
l=1 ylQ

#
l,n ≥

∑n
l=1 xlmin1≤l≤nQ

#
l,n −∑n

l=1 ylβ(i, n) ≥ (min1≤l≤nQ
#
l,n − β(i, n))||E||∞/2.
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It now follows that pTEQ#en ≤ ||E||∞
2 (Q#

n,n −
∑n

i=1 piα(i, n)) and that

pTEQ#en ≥ −||E||∞
2

(β(i, n)−min1≤l≤nQ
#
l,n).

The result now follows readily.
As mentioned in the introduction, the following inequality appears in [4] and

(more explicitly) in [10]. However, neither of those papers characterizes the equality
case, as we do below.

THEOREM 2.2. Let T be an n × n irreducible stochastic matrix, and suppose
that E ∈ ET . Let T̃ = T +E, and denote the stationary distributions for T and T̃ by
πT and π̃T , respectively. Then

||π̃T − πT ||∞ ≤ ||E||∞
2

max1≤j≤n{Q#
j,j −min1≤i≤nQ

#
i,j} = κ(T )||E||∞.(2.1)

Equality holds if and only if there are indices j0 and a1, . . . , am such that :
i) for l = 1, . . . ,m, Q#

j0,j0
−Q#

al,j0
= max1≤j≤n{Q#

j,j −min1≤i≤nQ
#
i,j};

ii) either Tej0 > 0, or T (ea1 + . . .+ eam) > 0;
iii) E can be written as E = ε(1eT

j0
−A), where A is stochastic and has positive entries

only in columns a1, . . . , am, and where ε is chosen so that T + E is nonnegative.
Proof. Since π̃TQ = π̃TE, we find upon post-multiplying both sides by Q# and

using the fact that QQ# = I − 1πT , that π̃T − πT = π̃TEQ#. Applying Lemma 2.1
we find that for each j = 1, . . . , n,

|π̃j − πj | ≤
||E||∞

2
max

{
Q#

j,j −
n∑

i=1

π̃iα(i, j),
n∑

i=1

π̃iβ(i, j)−min1≤l≤nQ
#
l,j

}
.

For each i, min1≤l≤nQ
#
l,j ≤ α(i, j) and β(i, j) ≤ Q#

j,j ; it now follows that ||π̃T −
πT ||∞ ≤ ||E||∞

2 max1≤j≤n{Q#
j,j −min1≤i≤nQ

#
i,j} = ||E||∞κ(T ).

Suppose now that equality holds, say with |π̃j0 − πj0 | = ||π̃T − πT ||∞. Then in
particular we have either π̃j0−πj0 = Q#

j0,j0
−

∑n
i=1 π̃iα(i, j0) = Q#

j0,j0
−min1≤i≤nQ

#
i,j0

or π̃j0 − πj0 = −
∑n

i=1 π̃iβ(i, j0) + min1≤l≤nQ
#
l,j0

= −(Q#
j0,j0

− min1≤i≤nQ
#
i,j0

).
In the former case, referring to the proof of Lemma 2.1, we find that for each i,
we have Ei,j0 = ||E||∞/2, and further that if Ei,a < 0, then necessarily Q#

a,j0
=

min1≤l≤nQ
#
l,j0

. In the latter case, again referring to the proof of Lemma 2.1, we see
that for each i, Ei,j0 = −||E||∞/2, and further that if Ei,a > 0, then necessarily
Q#

a,j0
= min1≤l≤nQ

#
l,j0

. Properties i)-iii) are now readily deduced.
Finally we note that the sufficiency of conditions i)-iii) is straightforward to es-

tablish.
The following is immediate.
COROLLARY 2.3. T admits a perturbation E ∈ ET such that ||π̃T − πT ||∞ =

κ(T )||E||∞ if and only if there are indices j0 and a1, . . . , am such that:
i) for each l = 1, . . . ,m,Q#

j0,j0
−Q#

al,j0
= 2κ(T ); and

ii) either Tej0 > 0 or T (ea1 + . . .+ eam) > 0.
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COROLLARY 2.4. If T has at most one column containing zero entries, then
T admits a perturbation E ∈ ET so that ||π̃T − πT ||∞ = κ(T )||E||∞.

Proof. Let j0 denote a column index for which |π̃j0 − πj0 | = ||π̃T − πT ||∞. The
conclusion certainly holds if Tej0 is positive, so suppose that column has a zero entry.
Then all remaining columns of T are positive, and so for each al such that Q#

al,j0
is

minimal, Teal
> 0. In either case, Corollary 2.3 applies, yielding the result.

EXAMPLE 2.5. Let T be the n×n transition matrix given by T = 1
n−1 (J − I).

It follows that Q# = n−1
n I − n−1

n2 J so that in particular, κ(T ) = n−1
2n . Further, for

each index j, and for any i �= j,Q#
i,j is minimal. As a result, even though T has a 0

in each column, there is still a perturbation matrix E ∈ ET so that equality holds in
(2.1).

Next, we develop the notion of the derivative of the stationary vector with respect
to a perturbation matrix. Suppose that T is an irreducible stochastic matrix, and
fix a perturbation matrix E ∈ ET . Observe that for all sufficiently small ε > 0, the
matrix Tε = T + εE is also irreducible and stochastic. Let πT (ε) be the stationary
distribution vector for Tε, and note that πT (ε) is continuous at ε = 0. We define dπT

dE
by the following:

dπT

dE
= limε→0+

πT (ε)− πT

ε
.

(Of necessity, our limit is one-sided with respect to ε, since if E ∈ ET then T − εE
may have negative entries for any positive ε.) Since επT (ε)EQ# = πT (ε) − πT , it
follows that

dπT

dE
= πTEQ#.

Lemma 2.1 is key to the proof of the following result.
THEOREM 2.6. Let T be an n × n irreducible stochastic matrix. For each

E ∈ ET , we have

∣∣∣∣dπj

dE

∣∣∣∣ ≤ ||E||∞
2

max

{
Q#

j,j −
n∑

i=1

πiα(i, j),
n∑

i=1

πiβ(i, j)−min1≤l≤nQ
#
l,j

}
.(2.2)

Further, there is an E0 ∈ ET such that equality holds in (2.2). In particular, for all
sufficiently small positive ε, we have
i) εE0 ∈ ET , and
ii) letting πT (ε) denote the stationary distribution for T + εE0, we have |πj(ε)−πj | =
||εE0||∞

2 max{Q#
j,j −

∑n
i=1 πiα(i, j),

∑n
i=1 πiβ(i, j)−min1≤l≤nQ

#
l,j}+ o(ε).

Proof. Fix E ∈ ET ; we see that for all sufficiently small ε > 0, πT (ε) − πT =
επT (ε)EQ#. Applying Lemma 2.1, we thus find that

|πj(ε)−πj | ≤ ε
||E||∞

2
max

{
Q#

j,j −
n∑

i=1

π(ε)iα(i, j),
n∑

i=1

π(ε)iβ(i, j)−min1≤l≤nQ
#
l,j

}
.
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Dividing both sides by ε and letting ε → 0+ yields (2.2).
Let τ be the smallest positive entry in T , and fix an index j = 1, . . . , n. Suppose

first that Q#
j,j −

∑n
i=1 πiα(i, j) >

∑n
i=1 πiβ(i, j) − min1≤l≤nQ

#
l,j . For each index i,

select an index l(i) so that Ti,l(i) > 0 and Q#
l(i),j = α(i, j) Let E1 =

∑n
i=1 ei(eT

j −eT
l(i)),

and observe that if we set E0 = τ
2E1, then E0 ∈ ET . It is straightforward to determine

that

dπj

dE0
=

||E0||∞
2

(
Q#

j,j −
n∑

i=1

πiα(i, j)

)
.

Now suppose that Q#
j,j−

∑n
i=1 πiα(i, j) ≤

∑n
i=1 πiβ(i, j)−min1≤l≤nQ

#
l,j . For each

i, find an index p(i) such that Ti,p(i) > 0 and Q#
p(i),j = β(i, j). Let m be an index

such that Q#
m,j = min1≤l≤nQ

#
l,j . Now let E2 =

∑n
i=1 ei(eT

m − eT
l(i)). Set E0 = τ

2E2;
as above, E0 ∈ ET , and

dπj

dE0
= −||E0||∞

2

(
n∑

i=1

πiβ(i, j)−min1≤l≤nQ
#
l,j

)
.

We conclude that in either case, E0 yields equality in (2.2).
Finally note that for all sufficiently small positive ε, the matrix εE0 satisfies

properties i) and ii).
EXAMPLE 2.7. Consider the n× n transition matrix T given by

T =
[

0 1
1

n−11
T 0

]
,

and note that T is the transition matrix for a random walk on the star on n vertices.
We find that πT = [ 1

2n−21
T |12 ], and it is straightforward to verify that

Q# =
[

I − 3
4n−4J − 1

41
− 1

4n−41
T 1

4

]
.

A direct computation now shows that max{Q#
j,j −

∑n
i=1 πiα(i, j),

∑n
i=1 πiβ(i, j) −

min1≤l≤nQ
#
l,j} = 1− 1

4(n−1)2 . Thus we see that there are perturbation matrices E of
arbitrary small norm such that (letting π̃T be the stationary distribution of T + E)

||π̃T − πT ||∞ ≥ 1
2

(
1− 1

4(n− 1)2

)
||E||∞ + o(||E||∞).

Theorem 2.2 shows that for any perturbation matrix E, ||π̃T −πT ||∞ ≤ 1
2 ||E||∞ since

κ(T ) = 1
2 ; from Corollary 2.3, that inequality is strict. So while equality cannot

hold in (2.1) for the matrix T , we find that if n is large, then there is a family of
perturbation matrices E so that ||π̃T − πT ||∞ is close to the upper bound in (2.1).

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 10, pp. 1-15, January 2003



ELA

6 S. Kirkland

Motivated by (2.2), we make the following definitions: for each j = 1, . . . , n set

µj ≡ Q#
j,j −

n∑
i=1

πiα(i, j)

and

νj ≡
n∑

i=1

πiβ(i, j)−min1≤l≤nQ
#
l,j .

REMARK 2.8. As is noted by Cho and Meyer [3], if i �= j, then Q#
j,j −Q#

i,j =
πjmi,j , where mi,j is the mean first passage time from state i to state j. Defining
mj,j to be 0, (this is somewhat unconventional, but useful notation in our context)
we thus arrive at another interpretation of the relevant quantities in (2.2): for each
j = 1, . . . , n, µj = πj(

∑n
i=1 πimax{ml,j|Ti,l > 0}) and νj = πj(max1≤p≤nmp,j −∑n

i=1 πimin{ml,j|Ti,l > 0}). Consequently, we see that µj and νj depend explicitly
on both the mean first passage times for the chain and on the combinatorial properties
of the transition matrix.

COROLLARY 2.9. Suppose that T is n× n, irreducible and stochastic. Fix an
index j. We have

maxE∈ET

{
1

||E||∞

∣∣∣∣dπj

dE

∣∣∣∣
}

≥ 1
4
(Q#

j,j −min1≤l≤nQ
#
l,j).(2.3)

Equality holds in (2.3) if and only if T is a periodic matrix, and one of the equivalence
classes of indices in the periodic normal form for T is comprised of the single index j.

Proof. From Theorem 2.6 we see that maxE∈ET

1
||E||∞

∣∣∣dπj

dE

∣∣∣ = 1
2max{µj, νj}.

The inequality (2.3) now follows upon observing that max{µj , νj} ≥ 1
2 (µj + νj) =

1
2 (Q

#
j,j −

∑n
i=1 πiα(i, j)+

∑n
i=1 πiβ(i, j)−min1≤l≤nQ

#
l,j) =

1
2 (Q

#
j,j −min1≤l≤nQ

#
l,j +∑n

i=1 πi(β(i, j)−α(i, j))) ≥ 1
2 (Q

#
j,j−min1≤l≤nQ

#
l,j). Next suppose that equality holds

in (2.3) and without loss of generality we take the index j to be n. Fix an index i
between 1 and n. Necessarily we have α(i, n) = β(i, n), so that either there is a single
index l such that Ti,l > 0 (in which case Ti,l = 1) or for any pair of indices l1, l2 such
that Ti,l1 , Ti,l2 > 0, we have Q#

l1,n = Q#
l2,n. From this observation it follows that if

Ti,l > 0, then eT
i (I−1πT )en = eT

i (I−T )Q#en = eT
i Q

#en −eT
i TQ

#en = Q#
i,n −Q#

l,n.

In particular, if i �= n, we deduce that Q#
i,n = Q#

l,n − πn.
Consider the directed graph on vertices 1, . . . , n, corresponding to T . We claim

that if i is a vertex at distance d ≥ 1 from n, then Q#
i,n = Q#

n,n − dπn. In order
to establish the claim, we use induction on d. If d = 1, then Ti,n > 0 and hence
Q#

i,n = Q#
n,n − πn, as desired. Suppose now that the claim holds for vertices at

distance d from n, and that the distance from i to n is d + 1. Then in particular,
there is a vertex l at distance d from n such that Ti,l > 0. Hence we have Q#

i,n =
Q#

l,n − πn = Q#
n,n − dπn − πn = Q#

n,n − (d + 1)πn, completing the induction step.
From the claim we now deduce that if i is at distance d from n, then Ti,l > 0 only

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 10, pp. 1-15, January 2003



ELA

Conditioning of the Stationary Distribution 7

if l is at distance d − 1 from n. It now follows that we can partition the vertices in
{1, . . . , n− 1} into subsets S1, . . . , Sk such that i ∈ Sl if and only if the distance from
i to n is l, and such that if a �= n, Ta,b > 0 only if for some l between 2 and k, a ∈ Sl

and b ∈ Sl−1. Evidently a ∈ Sl if and only if Q#
a,n = Q#

n,n − lπn; from this last we see
that there is an index l such that Tn,a > 0 only if a ∈ Sl, and since T is irreducible,
necessarily l = k. Consequently, T is a periodic matrix, and one of the equivalence
classes of indices in the periodic normal form for T is comprised of the single index n.

Finally, if T is periodic, with period p say and has {n} as a single equivalence
class, then a result of Kirkland [7] shows that Q#

n,n = p−1
2p while if i is at distance d

from n, then Q#
i,n = p−1

2p − d
p . It now follows that equality holds in (2.3).

Next, we make another connection between ||π̃T − πT ||∞ and κ(T ).
THEOREM 2.10. Let T be an n×n irreducible stochastic matrix with stationary

vector πT . Fix an index j = 1, . . . , n. There is a matrix E such that for all sufficiently
small positive ε, we have εE ∈ ET , and further, the stationary vector, πT (ε), of T +εE

satisfies |πj(ε)− πj | > 1
4 ||εE||∞(Q#

j,j −min1≤l≤nQ
#
l,j).

Proof. Applying Corollary 2.9, we see that the result follows immediately if (2.3)
is strict. If equality holds in (2.3) then, taking j = n, we find that T can be written
as

T =




0 T1 0 0 . . . 0
0 0 T2 0 . . . 0
...

. . .
...

0 0 . . . 0 1
tTp 0 0 . . . 0 0


 .(2.4)

It is straightforward to check that

πT =
1
p

[
tTp | tTp T1 | tTp T1T2 | . . . | tTp T1 · · ·Tp−2 | 1

]
.

In particular, we have πn = 1
p and that Q#

n,n −min1≤l≤nQ
#
l,n = p−1

2p . Next consider
the following perturbation matrix:

E =




0 −A1 0 0 . . . 1
0 0 −A2 0 . . . 1
...

. . .
...

0 0 . . . 0 0
−aT

p 0 0 . . . 0 1


 ,(2.5)

where each Ai satisfies Ai1 = 1 and has positive entries only in positions for which
Ti is positive, and where aT

p 1 = 1 with aT
p positive only where tTp is positive. We see

that for all sufficiently small positive ε, T + εE is irreducible and stochastic, and it
can be shown that

πT (ε) =
ε

1− (1 − ε)p
[uT | uTS1 | uTS1S2 | . . . | uTS1 · · ·Sp−2 | 1] ,
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where uT = tTp + εaT
p and Si = Ti + εAi for each i = 1, . . . , p− 2.

Hence

πn(ε)− πn =
pε+ (1− ε)p − 1
p(1− (1− ε)p)

.

From the fact that

(1− ε)p = 1− pε+
p(p− 1)

2
ε2 − p(p− 1)(p− 2)

6
ε3 + o(ε3),

we find that for all sufficiently small ε > 0,

pε+ (1− ε)p − 1
p(1− (1− ε)p)

>
p− 1
2p

ε =
1
4
||εE||∞(Q#

n,n −min1≤l≤nQ
#
l,n).

The following is a direct consequence of Theorem 2.10.
COROLLARY 2.11. Let T be an irreducible stochastic matrix with stationary

vector πT . There is a matrix E ∈ ET such that for all sufficiently small positive ε, the
stationary vector, πT (ε), of T + εE satisfies ||πT (ε)− πT ||∞ > ||εE||∞ κ(T )

2 .
REMARK 2.12. Taken together, Theorem 2.2 and Corollary 2.11 show that the

quantity κ(T ) is of the right order of magnitude in terms of measuring the sensitivity
of the stationary vector. The former shows ||π̃T −πT ||∞ ≤ κ(T )||E||∞ for any E ∈ ET ,
while the latter shows that there is a family of perturbation matrices E ∈ ET such
that for each member of that family, ||π̃T − πT ||∞ > κ(T )||E||∞/2.

COROLLARY 2.13. Let T be an n × n irreducible stochastic matrix. Fix an
index j; for each ε > 0, there is a perturbation matrix E ∈ ET with ||E||∞ < ε
such that the stationary vector π̃T for the irreducible stochastic matrix T +E satisfies
|π̃j − πj | > ||E||∞/8.

Proof. In [8] it is shown that for each j,Q#
j,j −min1≤l≤nQ

#
l,j ≥ 1

2 . The conclusion
now follows from Theorem 2.10.

Corollary 2.13 yields the following.
COROLLARY 2.14. Let T be an n× n irreducible stochastic matrix. For each

ε > 0, there is a perturbation matrix E ∈ ET with ||E||∞ < ε such that the stationary
vector π̃T for the irreducible stochastic matrix T + E satisfies max1≤j≤n

|π̃j−πj |
πj

>

||E||∞ n
8 .

Proof. Since the entries of πT sum to 1, we see that there is at least one index j
such that πj ≤ 1

n . For that index j, there is an E ∈ ET such that |π̃j −πj| > ||E||∞/8,
by Corollary 2.13. Consequently, |π̃j−πj |

πj
> ||E||∞ n

8 , yielding the result.
REMARK 2.15. In [5], Ipsen and Meyer investigate the notion of relative sta-

bility for the stationary vector. Corollary 2.14 shows that for large values of n, there
is always at least one index j and a family of admissible perturbation matrices such
that for each member E of that family, the relative error |π̃j−πj |

πj
is large compared to

||E||∞
Our final result of this section provides, for certain perturbation matrices E, a

lower bound on ||π̃T − πT ||∞ in terms of the minimum diagonal entry of T .
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COROLLARY 2.16. Let T be an n× n irreducible stochastic matrix with min-
imum diagonal entry a. There is a perturbation matrix E ∈ ET such that for each
0 < ε ≤ 1, the stationary vector π̃T for the irreducible stochastic matrix T + εE
satisfies ||π̃T − πT ||∞ > ||εE||∞ n−1

4n(1−a) .

Proof. Since the minimum diagonal entry of T is a, we can write T as T =
aI + (1− a)S, where S is irreducible and stochastic. Then Q = I − T = (1 − a)(I −
S), and it follows that Q# = 1

1−aA
#, where A = I − S. In [8] it is shown that

κ(S) ≥ n−1
2n and hence we find that κ(T ) ≥ n−1

2n(1−a) . Select an index j for which
1
2 (Q

#
j,j −min1≤i≤nQ

#
i,j) = κ(T ), and then select an E ∈ ET so that for the family of

matrices T + εE, |πj(ε)− πj | > κ(T )||εE||∞
2 . The result now follows.

3. Conditioning for a Random Walk on a Tree. It is natural wonder
whether a transition matrix with stationary vector πT has the property that for each
perturbation matrix E, ||π̃T − πT ||∞ ≤ ||E||∞, or whether T admits a perturbation
E ∈ ET so that ||π̃T − πT ||∞ > ||E||∞. In the former case we can consider πT to
be stable under perturbation, while in the latter case we may think of πT as being
unstable, in the sense that it is possible for the norm of π̃T −πT to magnify the norm
of the perturbing matrix.

To be more precise, we say that the stationary vector πT for an irreducible
transition matrix T is globally well-conditioned if, for any perturbation matrix E ∈
ET , ||π̃T − πT ||∞ ≤ ||E||∞, and we say that πT is locally well-conditioned if there
is an ε > 0 such that for each perturbation matrix E ∈ ET such that ||E||∞ <
ε, ||π̃T −πT ||∞ ≤ ||E||∞. Finally, we say that πT is poorly conditioned if for each ε > 0,
there is a perturbation matrixE ∈ ET such that ||E||∞ < ε, and ||π̃T−πT ||∞ > ||E||∞.
Note that by Theorem 2.2, πT is globally well-conditioned if κ(T ) ≤ 1, while by Corol-
lary 2.11, if κ(T ) ≥ 2, then πT is poorly conditioned. Also, by Theorem 2.6, we find
that πT is locally well-conditioned provided that µj , νj < 2 for each j = 1, . . . , n,
while πT is poorly conditioned if for some j, either µj > 2 or νj > 2.

In this section, we explore these ideas for a restricted class of Markov chains,
namely the random walks generated by trees. Specifically, we characterize the trees
for which the transition matrix of the corresponding random walk is locally well-
conditioned. As is the case for other quantities associated with a random walk on a
tree (see [9], for example) combinatorial formulae for the entries in Q# are available
for such transition matrices, thus making the problem tractable.

Suppose that T is a tree on n vertices with adjacency matrix A, and for each
i = 1, . . . , n, let di be the degree of vertex i; for distinct vertices i, j, we let δ(i, j)
denote the distance from i to j. Setting D = diag(d1, . . . , dn), the transition matrix
for the random walk on T is given by T = D−1A. By an abuse of terminology, we say
that T is globally well-conditioned, locally well-conditioned, or poorly conditioned
according as the stationary vector for T is. (Thus by referring to Example 2.7, we see
that if T is a star, then T is globally well-conditioned.) It is readily verified that the
corresponding stationary vector for T is πT = 1

2(n−1) [ d1 d2 . . . dn ]. Let mi,j be
the mean first passage time between vertices i and j; we define mi,i to be 0 for each
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i. Then for any pair of vertices i, j, we find from Remark 2.8 that

Q#
j,j −Q#

i,j =
mi,jdj

2(n− 1)
.(3.1)

Fortunately, there is a combinatorial method for computing the necessary quantities
mi,j . The following result from [9] gives that method.

PROPOSITION 3.1. Let T be a tree on n vertices. Suppose that i and j are
distinct vertices at distance δ(i, j), and denote the edges on the path between them
by f1, . . . , fδ(i,j). For each l = 1, . . . , δ(i, j), let λl be the number of vertices in the
component of T \ fl that contains i. Then mi,j =

∑δ(i,j)
l=1 (2λl − 1).

The following is a useful consequence.
COROLLARY 3.2. Let T be a tree on n vertices, and suppose that i and j are

distinct vertices. Then mi,j +mj,i = 2(n− 1)δ(i, j).
Proof. Suppose that the edges on the path from i to j are f1, . . . , fδ(i,j). For each

l = 1, . . . , δ(i, j), let λl be the number of vertices in the component of T \fl containing
i, and let λ′

l denote the number of vertices in the component of T \ fl containing j.
From Proposition 3.1, we find that mi,j +mj,i =

∑δ(i,j)
l=1 (2λl −1)+

∑δ(i,j)
l=1 (2λ′

l −1) =
2

∑δ(i,j)
l=1 (λl + λ′

l) − 2δ(i, j). The result follows upon observing that λl + λ′
l = n for

each l.
In this section we deal with several subclasses of trees, and we introduce those

now.
Suppose that k ≥ 2 and that we are given l1, . . . , lk ∈ N; let S(l1, . . . , lk) be

the tree on
∑k

i=1 li + 1 vertices formed by taking a central vertex c0 and for each
i = 1, . . . , k, attaching a path on li vertices at c0. Observe that in the case that each
li is 1, the correspondingly constructed tree is just a star.

Suppose that k, p ≥ 2, and that we are given parameters l1, . . . , lk ∈ N and
m1, . . . ,mp ∈ N. Let R(l1, . . . , lk;m1, . . . ,mp) be the tree on

∑k
i=1 li +

∑p
j=1 mj + 2

vertices formed by starting with a central edge between vertices u0 and v0; at vertex
u0, for each i = 1, . . . , k, attach a path on li vertices, and at vertex v0, for each
j = 1, . . . , p, attach a path onmj vertices. In the resulting tree, du0 = k+1, dv0 = p+1,
and in the special case that each li and mj is 1, the tree has diameter 3.

Suppose that n1, . . . , nk ≥ 2 and that we are given parameters l1,1, . . . , ln1,1,
. . . , l1,k, . . . , lnk,k ∈ N and a nonnegative integer p. Let
Tp(l1,1, . . . , ln1,1; . . . ; l1,k, . . . , lnk,k) denote the tree on (

∑k
i=1

∑ni

j=1 lj,i) + k + p + 1
vertices constructed as follows: start with a star on k + p + 1 vertices, with central
vertex c1 and pendant vertices 1, . . . , k + p. For each i = 1, . . . , k, at the pendant
vertex i, attach paths of lengths l1,i, . . . , lni,i. Observe that the resulting tree has the
property that if i and j are vertices of degree at least 3, then δ(i, j) ≤ 2.

EXAMPLE 3.3. Consider the tree T = S(2, . . . , 2, 1, . . . , 1), where at the central
vertex c0, there are r ≥ 1 branches of length 2 and s branches of length 1; here we
assume that r + s ≥ 2 and we admit the possibility that s = 0. It is straightforward
to verify that if u is not a next to pendant vertex on a branch of length 2 at c0, then
for each vertex w �= u, πumw,u ≤ 2 with equality if and only if u and w are pendant
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vertices on different branches of length 2 at c0. It then follows readily that µu, νu < 2.
A similar analysis reveals that if r = 1, then T is globally well-conditioned.

Suppose now that r ≥ 2, and note that if u is a next to pendant vertex on a branch
of length 2 at c0, we have, upon denoting the number of vertices by n = 2r+s+1, that
µu = 1

2(n−1)2 (4(n− 1)2 − 2(n− r)− 3(s+ 2)) < 2, and νu = 1
8r2+8rs+2s2 (4r2 + 6rs+

2s2 + 22r + 11s− 8) < 2. Consequently, we see that T is locally well-conditioned.
The following result gives some necessary conditions for a tree to be locally well-

conditioned.
LEMMA 3.4. Let T be a locally well-conditioned tree on n vertices. For any

pair of nonpendant vertices i and j, we have δ(i, j) ≤ 3. Further, if di, dj ≥ 3, then
δ(i, j) ≤ 2.

Proof. Suppose that we have distinct vertices i and j. Since T is locally well-
conditioned, djmi,j < 8(n − 1) and dimj,i < 8(n − 1). From Corollary 3.2, we have
mi,j + mj,i = 2δ(i, j)(n − 1), so that max{mi,j ,mj,i} ≥ δ(i, j)(n − 1). Thus we
have 2δ(i, j)(n− 1) ≤ max{djmi,j , dimj,i} < 8(n− 1), from which we conclude that
δ(i, j) ≤ 3. Further, if di, dj ≥ 3, then 3δ(i, j)(n−1) ≤ max{djmi,j , dimj,i} < 8(n−1),
yielding δ(i, j) ≤ 2.

EXAMPLE 3.5. Consider the path on n vertices, Pn. From Lemma 3.4 we
see that if n ≥ 7, then Pn is poorly conditioned. We note that P6 is also poorly
conditioned, since for that graph, µu/2 = 115/100 > 1, where u is a next to pendant
vertex.

Note that by Example 2.7, P3 is globally well-conditioned, and a direct computa-
tion reveals that the same is true of P4. Finally, we note that by Example 3.3, P5 is
locally well-conditioned. Thus we see that Pn is locally well-conditioned if and only
if n ≤ 5.

From Lemma 3.4 we see that a tree T is a candidate to be locally well-conditioned,
then it falls into one of several categories:
i) T has maximum degree 2. In that case T is a path, and appealing to Example 3.5,
we find that in fact T is a path on at most 5 vertices.
ii) T has exactly one vertex of degree at least 3. In that case, T is of the form
S(l1, . . . , lk).
iii) T has more than one vertex of degree at least 3, and the distance between any
two such vertices is 1. In that case, there are just two vertices of degree at least 3,
necessarily adjacent, and so T has the form R(l1, . . . , lk;m1, . . . ,mp).
iv) T has a pair of vertices i, j such that di, dj ≥ 3 and δ(i, j) = 2. In that case, T
has the form Tp(l1,1, . . . , ln1,1; . . . ; l1,k, . . . , lnk,k).

The following sequence of lemmas deals with the trees in each of the subclasses
arising in ii) - iv). We begin with the class S(l1, . . . , lk).

LEMMA 3.6. Suppose that T is a locally well-conditioned tree of the form
S(l1, . . . , lk), where k ≥ 3 and l1 ≥ . . . ≥ lk ≥ 1. Then l1 ≤ 2.

Proof. From Lemma 3.4, we can see that for each pair of distinct indices i, j, li+
lj − 2 ≤ 3. Consequently, we find that 1 ≤ l1 ≤ 4. Let c0 denote the central vertex
(of degree k ).

If l1 = 4, then necessarily each of l2, . . . , lk must be 1, and so the number of
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vertices is k + 4. A straightforward computation shows that νc0 = 31k2+43k
4(k+3)2 , which

exceeds 2 since k ≥ 3. Thus if T is locally well-conditioned, then in fact l1 ≤ 3.
If l1 = 3 then necessarily l2 ≤ 2. Suppose that in addition to the branch at c0

that is a path of length 3, there are r branches at c0 that are paths of length 2, and
s pendant vertices at c0; here we admit the possibility that one of r and s is 0. In
particular, the number of vertices is 2r + s + 4. Suppose first that r = 0, so that
necessarily s ≥ 2. A straightforward computation shows that νc0 = (s+1)(17s+35)

4(s+3)2 ,

which is easily seen to exceed 2. Next suppose that r ≥ 1, and let u be the next
to pendant vertex on the branch at c0 containing 3 vertices. We find that µu =
32r2+32rs+8s2+62r+27s+21

2(2r+s+3)2 , which turns out to exceed 2. In either case we see that if
l1 = 3, then T is poorly conditioned.

We thus conclude that if T is locally well-conditioned, then l1 ≤ 2.
REMARK 3.7. Together Lemma 3.6, Example 2.7 and Example 3.3 show that

a tree of the form S(l1, . . . , lk) is locally well-conditioned if and only if li ≤ 2, i =
1, . . . , k.

Next, we handle the class R(l1, . . . , lk;m1, . . . ,mp).
LEMMA 3.8. Suppose that T = R(l1, . . . , lk;m1, . . . ,mp). Then T is locally

well-conditioned if and only if each li and mj is 1, and, up to relabeling of k and p,
either p = 3 and 3 ≤ k ≤ 4 or p = 2 and 2 ≤ k ≤ 6.

Proof. Let the endpoints of T ’s central edge be u0 and v0, with the paths of
length li, i = 1, . . . , k being attached at u0 and the paths of length mj , j = 1, . . . , p
being attached at v0. Reindexing if necessary, we assume that l1 ≥ . . . ≥ lk and that
m1 ≥ . . . ≥ mp. Applying Lemma 3.4 we find that m1 + l1 ≤ 4, l1 + l2 ≤ 5 and
m1 + m2 ≤ 5. Without loss of generality we take m1 ≥ l1, and we are led to two
cases: either m1 = 3,m2 ≤ 2 and l1 = 1 or m1, l1 ≤ 2.

Suppose first that m1 = 3. Then T has the form
R(1, . . . , 1; 3, 2, . . . , 2, 1, . . . , 1) where the number of 1’s in the first list of parameters
is k, the number of 2’s in the second list of parameters is t, and number of 1’s in the
second list of parameters is q. In particular the number of vertices is n = k+q+2t+5
and p = t + q + 1. Let y be the next to pendant vertex on the path of length 3 at
vertex v0. A computation shows that

µy =
2

4(n − 1)2
{(t + q + k + 2)(4n + 2k − 11) + (k + 1)(4n + 2k − 10) + q(4n − 12)

+ t(4n − 9) + 2t(4n − 8) + 2(4n − 12) + 2(2n − 5)}

=
(n − 3)(4n + 2k − 11) + (k + 1)(4n + 2k − 10) + 12n − 34 + t(8n − 2k − 14) + q(4n − 12)

2(n − 1)2

≥ 4n2 + 5n − 31

2(n − 1)2
,

the inequality following from the fact that k ≥ 2. Since 4n2+5n−31
2(n−1)2 > 2, we find that

T is poorly conditioned.
Next, suppose that m1 = 2; we see that T has the form

R(2, . . . , 2, 1, . . . , 1; 2, . . . , 2, 1, . . . , 1),
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where the number of 2’s in the first list of parameters is t, the number of 1’s in the
first list of parameters is q, the number of 2’s in the second list of parameters is s,
and number of 1’s in the second list of parameters is r. In particular, the number of
vertices is n = 2s+2t+ q+ r+2, k = t+ q and p = r+ s. Let y be a next to pendant
vertex on a path of length 2 at v0. We find that µy equals

(2n − 4)(2n − 3) + (2t + q + 1)(4t + 2q + 3) + 2t(4t + 2q + 4) + (4t + 2q)(q + r + s + 1) + 8s − r − 10

2(n − 1)2
.

It follows that µy > 2 if and only if (4t+ 2q)(r + q + s+ 1) + (2t+ q + 1)(4t+ 2q +
3) + 2t(4t + 2q + 4) > 7r + 4s + 12t + 6q + 14. If 2t + q ≥ 4, this last inequality is
readily seen to hold, so we need only deal with the case that 2t+q ≤ 3. Recalling that
t+ q ≥ 2, we have just three possibilities: t = q = 1; t = 0, q = 2; and t = 0, q = 3.

If t = q = 1, then applying an analogous argument at a next to pendant vertex
on a branch of length 2 at u0, we find that if 2s+ r ≥ 4, then T is poorly conditioned.
The remaining case is that s = r = 1, and a direct computation reveals that µv0 > 2
in that case.

If t = 0 and q = 2 then r ≤ 2 implies that µy > 2, while if t = 0 and q = 3,
then r ≤ 29 implies that µy > 2. Suppose now that either t = 0, q = 2 and r ≥ 3, or
t = 0, q = 3 and r ≥ 30. A computation shows that µu0 = (q+1)

4(n−1)2 ((2n− 2q− 3)(2n−
q− 2)+ 14s+3r+3). Substituting in q = 2 or 3 into that last quantity and applying
the corresponding lower bounds on r, it follows readily that µu0 > 2. Consequently,
we find that T is poorly conditioned.

Finally ifm1 = 1, then T is a tree (with diameter 3) of the form R(1, . . . , 1; 1, . . . , 1),
where there are k 1’s in the first list of parameters and p 1’s in the second list of
parameters. In particular the number of vertices is n = k+ p+2, and without loss of
generality we assume that k ≥ p ≥ 2. First note that if x and y are pendant vertices,
then πxmy,x ≤ 2n+2k−1

2n−2 < 2. Thus in order that T is locally well-conditioned, we
need to determine the values of µu0 , νu0 , µv0 and νv0 . We have µu0 = k+1

4(n−1)2 ((k +
1)(2p+1)+(p+1)(2p+2)+p(2p+1)) and νu0 = k+1

4(n−1)2 (k(2p+2)+(k+1)(2p+1)+
(p+1)(2p+2)+ p), with analogous expressions holding for µv0 and νv0 . Since k ≥ p,
it follows that µu0 ≤ νu0 and that µv0 ≤ νv0 if k = p, while µv0 > νv0 if k ≥ p+ 1.

In the case that k = p then νu0 = νv0 , so T is locally well-conditioned if νu0 <
2, and poorly conditioned if νu0 > 2. It is readily seen that the former holds if
6k3−16k2−19k−5 < 0, and the latter holds if 6k3−16k2−19k−5 > 0. We conclude
that T is locally well-conditioned if k ≤ 3 and is poorly conditioned if k ≥ 4.

In the case that k ≥ p + 1, we find that T is locally well-conditioned provided
that νu0 , µv0 < 2, and is poorly conditioned if either νu0 or µv0 exceeds 2. We note
that νu0 > 2 if and only if

(k + 1)2(4p− 5) + (k + 1)(2p2 − 13p) > 8p2.

If p ≥ 4, then applying the fact that k ≥ p + 1, we find that νu0 > 2, so that T is
poorly conditioned. If p = 3, we find that µv0 > 2 if k ≥ 5, while if p = 3 and k = 4
then νu0 , µv0 < 2.

Now suppose that p = 2. The conditions νu0 , µv0 < 2 then reduce to

3(k + 1)2 − 18(k + 1) < 32
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and

4k2 − 15k − 57 < 0,

respectively. It readily follows that T is locally well-conditioned if k ≤ 6. On the
other hand if k ≥ 7, then 4k2 − 15k − 57 > 0, which yields νu0 > 2, so that T is
poorly conditioned.

Our final lemma discusses the class Tp(l1,1, . . . , ln1,1; . . . ; l1,k, . . . , lnk,k).
LEMMA 3.9. Suppose that T is a tree on n vertices having two vertices a and

b with δ(a, b) = 2 and da, db ≥ 3 and that the maximum distance between such pairs
of vertices is 2. Then T is poorly conditioned.

Proof. From the hypothesis, T is of the form Tp(l1,1, . . . , ln1,1; . . . ; l1,k, . . . , lnk,k)
for some suitable lists of parameters. Note that by Corollary 3.2, ma,b

2(n−1) +
mb,a

2(n−1) = 2.
Suppose without loss of generality that db ≥ da ≥ 3. If dbma,b/(2n − 2) ≥ 4, then
T is poorly conditioned. Suppose then that dbma,b/(2n − 2) < 4. Then necessarily
damb,a/(2n−2) = da(2−ma,b/(2n−2)) > da(2−4/db) = 2da−4(da/db). In particular,
if da ≥ 4, then T is poorly conditioned. Similarly, if da = 3, we conclude that either
T is poorly conditioned or that 4 > 6− 12

db
, which yields db ≤ 5.

Thus, it suffices to consider the case that apart from the central vertex c1, there
is at most one vertex of degree more than 3, and that if such a vertex exists, its degree
at most 5. Further, we may also assume that at most one vertex distinct from c1 has
degree at least 3 and is adjacent to a 2−path, otherwise, by Lemma 3.4, T is poorly
conditioned.

In particular there is a vertex a with 3 ≤ da ≤ 5 which is adjacent to c1 and
to da − 1 pendant vertices. Note that if u is any vertex which is not one of the
pendants adjacent to a, then there is a vertex w adjacent to u such that mw,a ≥
mv,a = 2n− 2da − 1. Consequently, we see that µa ≥ da

2(n−1) (1−
da−1
2n−2 )(2n− 2da − 1).

It is now straightforward to determine that if n ≥ 11, that last expression exceeds 2
for each of da = 3, 4, 5.

Now suppose that n ≤ 10. In order to deal with the remaining cases, we give a
slight refinement of the argument above. Let vertex a be as above. Suppose that
there are p pendant vertices adjacent to v; note that necessarily 10 ≥ n ≥ da + p+4,
since db ≥ 3. As above we have mv,a = 2n− 2da− 1, and note that each vertex which
is distinct from a, not a pendant adjacent to a, and not a pendant adjacent to v, has
the property that it is adjacent to a vertex w such that mw,a ≥ 2n− 2da + 2. It now
follows that

µa ≥ da

4(n− 1)2
((2n− 2da − 1)(2n− da − 1) + 3(2n− 2da − 1− p)).(3.2)

Considering the cases da = 3, 4, 5 in conjunction with the constraint that 10 ≥
n ≥ da+p+4, we find that the right side of (3.2) exceeds 2 (and so the corresponding
tree is poorly conditioned) in all but two exceptional cases: da = 3, p = 0, n = 7,
and da = 4, p = 0, n = 8. Those last two cases correspond to T0(1, 1; 1, 1) and
T0(1, 1, 1; 1, 1), respectively, and direct computations reveal that those trees are also
poorly conditioned.
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The following characterization of locally well-conditioned trees is immediate from
our discussion in this section.

THEOREM 3.10. Let T be a tree. Then T is locally well-conditioned if and
only if it is isomorphic to one of the following forms:
i) A path on at most 5 vertices;
ii) S(l1, . . . , lk), where li ≤ 2, i = 1, . . . , k;
iii) R(l1, . . . , lk,m1, . . . ,mp), where each li and mj is 1, and where either p = 3 and
3 ≤ k ≤ 4, or p = 2 and 2 ≤ k ≤ 6.
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