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THE HAFNIAN AND A COMMUTATIVE ANALOGUE

OF THE GRASSMANN ALGEBRA∗

DMITRY EFIMOV†

Abstract. A close relationship between the determinant, the pfaffian, and the Grassmann algebra is well-known. In

this paper, a similar relation between the permanent, the hafnian, and a commutative analogue of the Grassmann algebra is

described. Using the latter, some new properties of the hafnian are proved.
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1. Introduction. The hafnian was introduced by Caianiello in the middle of 20th century in the

work [1] connected with some questions of quantum field theory. The hafnian has a simple combinatorial

interpretation and can be used to enumerate the 1-factors (perfect matchings) of undirected graphs [2], [3]. Its

older and more famous “brother” is the pfaffian introduced by A. Cayley in the middle of 19th century. The

relationship between these polynomial functions is the same as between the determinant and the permanent.

The hafnian, unlike pfaffian, “ignores” the signs of permutations, and this difference significantly affects its

properties.

It is well known (see e.g. [4] and [5]) that one can use Grassmann algebra to formulate the definition and

properties of pfaffian. The aim of this paper is to show how one can give the definition of the hafnian and

derive its properties in a similar way by replacing the Grassmann algebra with a commutative associative

algebra with nilpotent (index 2) generators (a commutative analogue of the Grassmann algebra). Using this

approach, we succeeded to prove several properties of hafnian analogous to some well known properties of

pfaffian, which, to the best of our knowledge, have not been described in literature.

2. Definitions. First we give a definition of a commutative analogue of Grassmann algebra. Let K be

a field of characteristic zero, e.g., the field of real or complex numbers. Consider an n-dimensional vector

space V over K with basis ι1, ι2, . . . , ιn. Let Pn(ι) be a new vector space whose basis consists of all formal

products

ιk1ιk2 · · · ιkt , k1 < k2 < · · · < kt, 0 ≤ t ≤ n.

The empty product (p = 0) corresponds to 1. Thus, Pn(ι) is 2n-dimensional and each of its elements is

represented uniquely in the following form:

(2.1) p = p0 +
n∑
t=1

∑
k1<···<kt

pk1···ktιk1 · · · ιkt , p0, pk1···kt ∈ K.
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We endow Pn(ι) with the structure of a commutative associative unital algebra over K by the rule

(2.2) ιq1 · · · ιqs · ιr1 · · · ιrt =

{
0 if {q1, . . . , qs} ∩ {r1, . . . , rt} 6= ∅,
ιk1 · · · ιks+t

otherwise,

where {k1, . . . , ks+t} is the union of {q1, . . . , qs} and {r1, . . . , rt}, taken in increasing order. In terms of

generating elements and defining relations Pn(ι) is an algebra generated over K by 1 and the elements

ι1, . . . , ιn, subject to relations:

(2.3) ι2k = 0, ιkιl = ιlιk, (ιkιl)ιm = ιk(ιlιm), 1 ≤ k, l,m ≤ n.

Note that if we replace the first two relations in (2.3) by ιkιl = −ιlιk, we obtain the definition of the

Grassmann algebra.

Let m = λιk1 · · · ιkt , k1 < k2 < · · · < kt, λ ∈ K be a monomial. We say that the number t of generating

elements of Pn(ι) in m is the length of m. An element p ∈ Pn(ι) is called homogeneous of degree t, t ≤ n,

if its decomposition in the basis vectors (2.1) involves only monomials of length t. Each vector of the space

V can be considered as a homogeneous element of degree 1 of algebra Pn(ι).

Now we give two simple properties of the algebra Pn(ι), which will be used below.

Proposition 2.1. The square of a nonzero homogeneous element p of degree 1 in Pn(ι) is equal to zero

if and only if p is proportional to one of the generators ιk, k = 1, . . . , n with some coefficient in K.

Proof. The equality (αιk)2 = 0 follows directly from the multiplication rule (2.2) or from the defining

relations (2.3). Now let p =
n∑
k=1

αkιk be an arbitrary nonzero homogeneous element of degree one in Pn(ι).

Then p2 =
n∑
k<l

2αkαlιkιl. Thus, if at least two different coefficients αi and αj are not equal to zero, then p2

is not zero.

Proposition 2.2. Let p be a homogeneous element of degree m in Pn(ι). Then pd = 0 if d > n
m .

Proof. Let p =
∑
λk1k2···kmιk1ιk2 · · · ιkm , λk1k2···km ∈ K. Then each summand in pd is proportional to

the product of dm generating elements of Pn(ι): pd =
∑
µk1k2···kdmιk1ιk2 · · · ιkdm , µk1k2···kdm ∈ K. Since the

number of different generating elements is n, and dm > n, then each summand in pd has at least two of the

same generating elements. Taking into account (2.2) or (2.3), we get that each summand in pd is zero.

Let A = (aij) be an n× n matrix over K. Recall that the permanent of A is the number

(2.4) per(A) =
∑
σ

a1σ(1)a2σ(2) · · · anσ(n),

where the sum runs over all permutations of the set {1, 2, . . . , n}. We are going to show that there exists

a relation between the permanent and algebra Pn(ι) analogous to relation between the determinant and

Grassmann algebra. Consider m vectors in the space V (m ≤ n):

p1 = a11ι1 + a12ι2 + · · ·+ a1nιn,

p2 = a21ι1 + a22ι2 + · · ·+ a2nιn,

...
...

pm = am1ι1 + am2ι2 + · · ·+ amnιn.
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Let A be a rectangular matrix composed of the coordinates of these vectors:

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn

 .
Now let Ak1k2···km denote the matrix formed by the columns of A with numbers k1 < k2 < · · · < km. Then

it is not hard to see that

p1p2 · · · pm =
∑

k1<k2<···<km

per(Ak1k2···km)ιk1ιk2 · · · ιkm .

In particular, for m = n, we get

(2.5) p1p2 · · · pn = per(A)ι1ι2 · · · ιn.

The last relation is given in the monograph [3] of H. Mink, with reference to T. Muir.

We give now several equivalent definitions of the hafnian. Let A = (aij) be a symmetric matrix of order

n = 2m. Its hafnian is defined as

Hf(A) =
∑

(i1i2|···|in−1in)

ai1i2 · · · ain−1in ,

where the sum runs over all decompositions of the set {1, 2, . . . , n} into disjoint pairs

(i1, i2), . . . , (in−1in)

up to an order of pairs and an order of elements in each pair.

Equivalently, one can define the hafnian as:

Hf(A) =
1

(m!)2m

∑
σ∈Sn

aσ(1),σ(2) · · · aσ(n−1),σ(n).

Finally, we give a third way to define the hafnian using the algebra Pn(ι) (similar to definition of the

pfaffian of an antisymmetric matrix through Grassmann algebra). Consider the following element of degree

2 in Pn(ι):

a =

n∑
s,t=1
s<t

astιsιt =
1

2

n∑
s,t=1

astιsιt.

Then, as one easily verifies,

(2.6)
am

m!
= Hf(A)ι1 · · · ιn.

We assume that the hafnian of any matrix of odd order is zero.
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3. Properties of the hafnian. In this section, we will prove several properties of the hafnian using

formula (2.6). These properties are analogues of the corresponding well known properties of the pfaffian,

but, to the best of our knowledge, they have not yet been described in the mathematical literature.

The first property is intuitively clear, however we give a detailed proof.

Theorem 3.1. Let A be a symmetric block-diagonal matrix:

A =


A1 0 · · · 0

0 A2 · · · 0
...

...
. . .

...

0 0 · · · Ak

 .
Then

(3.7) Hf(A) = Hf(A1)Hf(A2) · · ·Hf(Ak).

Proof. Let the order of A be n. It is enough to consider the case n = 2m, since the case of odd n is trivial.

Let the blocks A1, A2, . . . , Ak have orders n1, n2, . . . , nk, respectively. The fact that the matrix A = (aij)

has the block-diagonal form means that one can divide the element a =
n∑

s,t=1
s<t

astιsιt into k summands as

follows:

a =

 n1∑
s,t=1
s<t

astιsιt +

n1+n2∑
s,t=n1+1

s<t

astιsιt + · · ·+
n∑

s,t=n−nk+1
s<t

astιsιt

 .

Then, by (2.6), we get

Hf(A)ι1 · · · ιn =
am

m!
=

1

m!

 n1∑
s,t=1
s<t

astιsιt + · · ·+
n∑

s,t=n−nk+1
s<t

astιsιt


m

=
1

m!

∑
d1+···+dk=m

m!

(d1!) · · · (dk!)

 n1∑
s,t=1
s<t

astιsιt


d1

· · ·

 n∑
s,t=n−nk+1

s<t

astιsιt


dk

=
∑

d1+···+dk=m

1

d1!

 n1∑
s,t=1
s<t

astιsιt


d1

· · · 1

dk!

 n∑
s,t=n−nk+1

s<t

astιsιt


dk

.

Since d1 + · · ·+ dk = 1
2 (n1 + · · ·+ nk), so if di <

ni

2 , then there exists dj such that dj >
nj

2 . Note now that

if di >
ni

2 , then by Proposition 2.2, we have (
∑
astιsιt)

di = 0. Thus, the unique nonzero summand in the

last sum corresponds to the case di = ni

2 , i = 1, . . . , k. Now we have to consider the following two cases.

1. Some of ni are odd. Then, for each set {d1, . . . , dk} of the exponents, there exists a k such that

dk 6= nk

2 , and hence, as it was explained above, Hf(A)ι1 · · · ιn = 0. On the other hand, according to the

definition of the hafnian of a symmetric matrix of odd order, the right part of the equality (3.7) is also equal

to zero in this case.
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2. All of ni are even. Then, from the previous reasoning, we get:

Hf(A)ι1 · · · ιn =
1

(n1/2)!

 n1∑
s,t=1
s<t

astιsιt


n1/2

· · · 1

(nk/2)!

 n∑
s,t=n−nk+1

s<t

astιsιt


nk/2

= (Hf(A1)ι1 · · · ιn1
) · · · (Hf(Ak)ιn−nk+1 · · · ιn) = Hf(A1) · · ·Hf(Ak)ι1 · · · ιn.

To formulate the second property, we now introduce some notations. Let Qk,n denote the set of all

(unordered) k-element subsets of the set {1, 2, . . . , n}. Let A be a matrix of order n and α = {p1, . . . , pk} ∈
Qk,n. We let A[α] denote the submatrix of A formed by the rows and columns of A with numbers in α and

A(α) denote the submatrix of A formed from A by removing the rows and columns with numbers in α. Let

ια denote the element ιp1 · · · ιpk of Pn(ι). We assume that if α ∈ Q0,n, then ια = 1.

Theorem 3.2. Let A, B be symmetric matrices of even order n = 2m. Then

(3.8) Hf(A+B) =

m∑
k=0

∑
α∈Q2k,n

Hf(A[α])Hf(B(α)),

where Hf(A[α]) = 1, if α ∈ Q0,n, and Hf(B(α)) = 1, if α ∈ Qn,n.

Proof. Let A = (aij), B = (bij). Then

Hf(A+B)ι1 · · · ιn =
1

m!

(∑
s<t

(ast + bst)ιsιt

)m

=
1

m!

(∑
s<t

astιsιt +
∑
s<t

bstιsιt

)m

=
1

m!

m∑
k=0

(
m

k

)(∑
s<t

astιsιt

)k(∑
s<t

bstιsιt

)m−k

=

m∑
k=0

1

k!

(∑
s<t

astιsιt

)k
1

(m− k)!

(∑
s<t

bstιsιt

)m−k

=

m∑
k=0

 ∑
α∈Q2k,n

Hf(A[α])ια

 ∑
β∈Qn−2k,n

Hf(B[β])ιβ



=


m∑
k=0

∑
α∈Q2k,n

β∈Qn−2k,n

α∩β=∅

Hf(A[α])Hf(B[β])

 ι1 · · · ιn

=

 m∑
k=0

∑
α∈Q2k,n

Hf(A[α])Hf(B(α))

 ι1 · · · ιn.

Recall that the pfaffian has the following property. Let A be antisymmetric matrix of even order and B
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any matrix of the same order. Then

(3.9) Pf(BABt) = det (B)Pf(A).

We give below an analogue of this property for hafnian.

Theorem 3.3. Let A be a symmetric matrix of even order n = 2m. Let P be arbitrary permutation

matrix of order n, D arbitrary diagonal matrix of order n, and let C = PD. Then

(3.10) Hf(CACt) = per (C)Hf(A).

Proof. One can apply a scheme similar to that used in [5] for proving (3.9) with the only difference that

instead of Grassmann algebra it is necessary to use Pn(ι).

Assume first that all diagonal elements of D are nonzero. Consider elements ι′1, ι
′
2, . . . , ι

′
n in Pn(ι) such

that

(ι′1, ι
′
2, . . . , ι

′
n) = (ι1, ι2, . . . , ιn)C,

i.e.,

(3.11) ι′k =

n∑
p=1

cpkιp, k = 1, . . . , n.

By the definition of C, the right part of (3.11) contains only one nonzero summand, and thus, ι′k is propor-

tional to one of ιp:

ι′k = αιp, α ∈ K.

Therefore, the elements ι′k have the nilpotency property:

(ι′k)2 = 0, k = 1, . . . , n,

so one can use them, just as ιk, for the definition of the hafnian (see (2.6)). Let A = (aij), and consider the

element

(3.12) a =
1

2

n∑
i,j=1

aijι
′
iι
′
j .

Substituting (3.11) here, we obtain

(3.13) a =
1

2

n∑
i,j,p,q=1

aijcpicqjιpιq =
1

2

n∑
p,q=1

a′pqιpιq,

where a′pq =
n∑

i,j=1

cpiaijcqj . Let A′ = (a′pq), then A′ = CACt. Raising (3.12) and (3.13) to power m, we get

(3.14) am = (m!)Hf(A)ι′1ι
′
2 · · · ι′n = (m!)Hf(A′)ι1ι2 · · · ιn.

On the other hand, from (2.5), (3.11), and the assertion that the permanent of a matrix is invariant under

transpose, we have

(3.15) ι′1ι
′
2 · · · ι′n = per(C)ι1ι2 · · · ιn.
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Substituting (3.15) in (3.14), we get

Hf(A)per(C) = Hf(A′) = Hf(CACt).

If some diagonal element of D is zero, then C will have a zero row, and the matrix CACt will have a

zero row and a zero column with the same numbers. Hence, from the definition of the permanent and the

hafnian, we see that both sides of (3.10) are zeros.

Corollary 3.4. Let A be a symmetric matrix of even order, and P a permutation matrix of the same

order. Then

(3.16) Hf(PAP t) = Hf(A),

i.e., the hafnian of a matrix is not changed if its rows and columns are simultaneously subjected to the same

permutation.

Remark 3.5. The scheme used in the above proof can not be applied to arbitrary matrix C, as in this

case, by Proposition 2.1, the elements ι′k will not retain the nilpotency property. However, Theorem 3.3

does not completely describe the entire class of those C for which the property (3.10) holds. For example,

this property holds trivially for an arbitrary matrix C of order n having a zero row. In this connection, a

question arises as to whether there are any other types of matrices, in addition to the one above, for which

(3.10) holds?

4. Conclusion. In his first work [1], connected with hafnians, Caianiello already said, “It would be

quite interesting, and probably useful, to have a complete and systematic treatment of the relations among

pfaffians, hafnians, determinants and permanents.”. And we can say that one of the effective tools for

performing this task can be the Grassmann algebra and its commutative analogue - the algebra Pn(ι).

In general, the triple (the permanent, the hafnian, the algebra Pn(ι)) has more “obstinate” character in

comparison with the triple (the determinant, the pfaffian, the Grassmann algebra). Thus, the hafnian is

less harmonious and more difficult for the study than the pfaffian. But many properties of the pfaffian also

have analogues for the hafnian. One can often obtain them, drawing parallels between the triples mentioned

above.
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