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NEW CONTRIBUTIONS TO SEMIPOSITIVE AND

MINIMALLY SEMIPOSITIVE MATRICES∗
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Abstract. Semipositive matrices (matrices that map at least one nonnegative vector to a positive vector) and minimally

semipositive matrices (semipositive matrices whose no column-deleted submatrix is semipositive) are well studied in matrix

theory. In this article, this notion is revisited and new results are presented. It is shown that the set of all m × n minimally

semipositive matrices contains a basis for the linear space of all m× n matrices. Apart from considerations involving principal

pivot transforms and the Schur complement, results on semipositivity and/or minimal semipositivity for the following classes

of matrices are presented: intervals of rectangular matrices, skew-symmetric and almost skew-symmetric matrices, copositive

matrices, N -matrices, almost N -matrices and almost P -matrices.
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1. Introduction. Let Rm×n denote the set of all m × n matrices over the real numbers. We denote

Rn×1 by Rn. For x ∈ Rn we denote x ≥ 0 to signify the fact that all the components of x are nonnegative.

x > 0 means all the entries of x are positive. A similar definition is adopted for matrices, too. Matrix

A ∈ Rm×n is said to be semipositive, if there exists a vector x ≥ 0 such that Ax > 0. A matrix A ∈ Rm×n is

said to be minimally semipositive if it is semipositive and no column-deleted submatrix of A is semipositive.

In some places, this may be referred to as minimal semipositivity. By the continuity of a matrix as a linear

map, it follows that A is semipositive if and only if there exists a vector x ∈ Rn with x > 0 such that

Ax > 0 [9, Lemma 2.1]. Such a vector x is called a semipositivity vector of A. Let us also recall a result that

characterizes minimal semipostivity of square matrices. Let A ∈ Rn×n. Then A is minimally semipositive if

and only if A−1 exists and A−1 ≥ 0 [9, Theorem 3.4]. This latter statement is sometimes referred to as inverse

positivity of A. We thus have the following reformulation: A square matrix A is minimally semipositive if

and only if it is inverse positive. More generally, one has: Let A ∈ Rm×n. If A is semipositive and has

a nonnegative left inverse, then A is minimally semipositive. If A is minimally semipositive, then A has a

nonnegative left inverse (see [9, Theorem 3.6] and [22, Theorem 2.3]). The notion of a semipositive matrix

was considered by Stiemke [17] in connection with the problem of existence of positive solutions of linear

systems. Semipositive matrices are also known as Steimke matrices or S-matrices [7]. These matrices play

an important role in the field of linear complementarity problems [5], for instance. For more details, we refer

to [2, 7, 9, 22].

Let us briefly review some recent results on semipositive matrices. In [6], the authors, among other

results show that any matrix with at least two columns is a sum of two semipositive matrices (Theorem 2.1)
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and any matrix with at least two rows is a product of two semipositive matrices (Theorem 2.4). It is shown

there (Corollary 5.3) that any spectrum (of a real matrix) with at least two elements is the spectrum of a

semipositive matrix (see also Proposition 5.1 of [19]) and that any real matrix which is not a negative scalar

matrix, is similar to a semipositive matrix (Theorem 5.2). A matrix A ∈ Rn×n is semipositive if and only if

there exist positive matrices X and Y such that X is invertible and A = Y X−1 [19, Theorem 3.1]. Let us also

point to some of the recent results that were proved in [16]. The semipositive cone KA = {x ≥ 0 : Ax ≥ 0}
of a matrix A, is considered under the assumption that A is a semipositive matrix. The duality of KA is

studied and it is shown that KA is a proper polyhedral cone. The relation among semipositivity cones of two

matrices is examined via generalized inverse positivity. Perturbations and intervals of semipositive matrices

are discussed. Connections to certain matrix classes pertinent to linear complementarity theory are also

studied.

Here is an outline of the article. In Section 2, we collect needed definitions and results. Section 3

presents two results: Theorem 3.1, where we give a basis consisting of minimally semipositive matrices for

the linear space Rm×n, and Theorem 3.2, which shows that any matrix with at least as many rows as there

are columns, is the difference of two minimally semipositive matrices. It is natural ask whether a product

of semipositive or a product of minimally semipositive matrices is again semipositive or minimally semipos-

itive, respectively. We discuss these problems in Section 4, from Theorem 4.1 to Theorem 4.6. In Section 5,

we consider some problems involving interval matrices and semipositivity. For two matrices A,B ∈ Rm×n

such that A ≤ B (entrywise), consider the interval of matrices defined by [A,B] = {C : A ≤ C ≤ B}. We

establish the following result: If A and B are minimally semipositive matrices, then any C ∈ [A,B] is also

minimally semipositive. In Section 6, we establish semipositivity and/or minimal semipositivity for the Schur

complement and the principal pivot transform in Theorem 6.1. In Section 7, we study a number of matrix

classes primarily arising from the theory of linear complementarity problem, in the context of semipositiv-

ity/minimal semipositivity. Theorem 7.4 deals with skew-symmetric and almost skew-symmetric matrices.

A result for two classes of copositive matrices is presented in Theorem 7.7, while Theorem 7.14 presents a

sufficient condition for an N -matrix of the first category to be minimally semipositive. Theorem 7.19 shows

that almost N -matrices are not minimally semipositive, whereas Theorem 7.20 gives a characterization for

an almost P -matrix to be semipositive. A generalization of semipositivity is recalled and connections to

game theory are presented in the penultimate section. Two open questions are posed in the final section.

2. Preliminaries. For A ∈ Rn×n, let σ(A) denote the set of all eigenvalues of the matrix A and let

ρ(A) denote the spectral radius of A, viz., the maximum of the moduli of the eigenvalues of A. If ρ(A) < 1,

then I −A is invertible. The next result says something about the nonnegativity of (I −A)−1.

Theorem 2.1. [21, Theorem 3.16] Let A ∈ Rn×n. Then ρ(A) < 1 if and only if (I −A)−1 exists and

(I −A)−1 =

∞∑
k=0

Ak.

If, in addition A ≥ 0, then (I −A)−1 ≥ 0.

The next result concerns an upper bound for the spectral radius.

Theorem 2.2. [10, Theorem 16.2] For A ∈ Rn×n, suppose that the inequality Ax ≤ δx holds, for some

x > 0. Then ρ(A) ≤ δ.

Next, we turn our attention to the notion of the principal pivot transform.
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Definition 2.3. Let M =

(
A B

C D

)
∈ Rn×n be such that A is invertible. The principal pivot trans-

form of M with respect to A, denoted by ppt(M,A), is defined as ppt(M,A) =

(
A−1 −A−1B
CA−1 M/A

)
, where

M/A = D − CA−1B is the Schur complement of M in A.

The following theorem is known as the domain-range exchange property of the principal pivot transform.

Theorem 2.4. [18, Theorem 3.1] Let M =

(
A B

C D

)
∈ Rn×n be a partitioned matrix such that A

is invertible. Given a pair of vectors x, y ∈ Rn partitioned as x =

(
x1
x2

)
, y =

(
y1
y2

)
conformally

with partition of M , define vectors u, v ∈ Rn such that u1 = y1, u2 = x2, v1 = x1 and v2 = y2. Then

H = ppt(M,A) is the unique matrix with the property that for every such x, y, one has y = Ax if and only

if Hu = v.

For more details about the principal pivot transforms we refer to [18]. The following result connecting

principal pivot transform and semipositive matrices was established in [19].

Theorem 2.5. [19, Theorem 3.2] Let M =

(
A B

C D

)
∈ Rn×n be a partitioned matrix such that A is

invertible. Then M is semipositive if and only if the principal pivot transform ppt(M,A) is semipositive.

Next, we discuss the notion of a certain generalized inverse. For A ∈ Rm×n, let AT , R(A) and N(A)

denote the transpose of A, the range space of A, and the null space of A, respectively. The Moore-Penrose

inverse of a matrix A ∈ Rm×n is the unique matrix X ∈ Rn×m satisfying (1) A = AXA, (2) X =

XAX, (3) (AX)T = AX, and (4) (XA)T = XA, and is denoted by A†. Given any matrix A ∈ Rm×n a

matrix X ∈ Rn×m satisfying XA = I is called a left inverse and is denoted by AL. If A is nonsingular, then

A−1 = A† = AL. For more details, we refer the reader to the books [1, 3].

3. Some general results. The purpose of this section is to present two results of general interest. In

the first result, we construct a basis consists of minimally semipositive matrices for the linear space of m×n
real matrices. This might be useful in studying linear preserver problems, where it is important to know

whether a collection of m× n matrices contains a basis for Rm×n. The second result states that any square

matrix is a difference of two minimally semipositive matrices.

Theorem 3.1. There is a basis of minimally semipositive matrices for Rm×n, m ≥ n.

Proof. Define the set B of matrices {Aij : i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}} as follows: For i ∈ {1, . . . ,m},
j ∈ {1, . . . , n}, if i = sn+ j for some integer s ≥ 0, define

(Aij)kl =


1 if i 6= k and k = tn+ l for some integer t ≥ 0,

2 if i = k and j = l,

0 otherwise

and if i 6= sn+ j, define

(Aij)kl =


1 if k = tn+ l for some integer t ≥ 0,

−2 if i = k and j = l,

0 otherwise.
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Now, let us explicitly write down the elements of the set B:

A11 =



2 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

0 0 · · · 0 1

1 0 · · · 0 0
...

...
. . .

...
...


, A22 =



1 0 · · · 0 0

0 2 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

0 0 · · · 0 1

1 0 · · · 0 0
...

...
. . .

...
...


, . . . ,

An−1n−1 =



1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 2 0

0 0 · · · 0 1

1 0 · · · 0 0
...

...
. . .

...
...


, Ann =



1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

0 0 · · · 0 2

1 0 · · · 0 0
...

...
. . .

...
...


,

An+1n =



1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

0 0 · · · 0 1

2 0 · · · 0 0
...

...
. . .

...
...


, . . . , A12 =



1 −2 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

0 0 · · · 0 1

1 0 · · · 0 0
...

...
. . .

...
...


, . . . ,

A13 =



1 0 −2 · · · 0 0

0 1 0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0

0 0 0 · · · 0 1

1 0 0 · · · 0 0
...

...
...

. . .
...

...


, . . .

Then for each i, j, the matrix Aij is minimally semipositive. For, each row of Aij contains exactly one

positive entry, and if we remove any column, then the column deleted submatrix contains a nonpositive row.

Also, it is easy to verify that B = {A11, . . . , Amn} spans Rm×n.

Next, we show a rather curious result that any matrix (with at least as many rows as there are columns)

is the difference of two minimally semipositive matrices. Clearly, this is a stronger result than Theorem 3.1.

Theorem 3.2. Let A ∈ Rm×n, m ≥ n. Then there exist minimal semipositive matrices B,C ∈ Rm×n

such that A = B − C.
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Proof. For i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}, if i 6= sn+ j for some integer s ≥ 0, define

bij =

{
aij if aij ≤ 0,

0 otherwise

and

cij =

{
−aij if aij > 0,

0 otherwise.

When i = sn+ j, choose bij and cij such that

bij >

n∑
k=1
k 6=j

|bik|, cij >

n∑
k=1
k 6=j

|cik| and aij = bij − cij .

It follows that A = B − C and that B and C are semipositive with a common semipositivity vector eT =

(1, . . . , 1)T . Note that each row of B,C contains exactly one positive entry. So, any column deleted submatrix

contains a nonpositive row. Thus, B and C are minimally semipositive.

Let us illustrate the construction of the previous result, by an example.

Example 3.3. Let A =


1 −2 3

4 0 −2

−5 −2 −1

1 7 4

 ∈ R4×3. Take

B =


5 −2 0

0 5 −2

−5 −2 8

13 0 0

 and C =


4 0 −3

−4 5 0

0 0 9

12 −7 −4

.

Then B,C are minimally semipositive and A = B − C.

4. Considerations involving products. In this section, we study products of semipositive matrices.

First, we show that semipositivity and minimal semipositivity are invariant under multiplication by per-

mutation and positive diagonal matrices (Theorem 4.1). Two results that characterize the semipositivity

of a product of two matrices, in terms of the semipositivity/minimal semipositivity of one of the factors

(Theorem 4.2 and Theorem 4.6) follow.

Theorem 4.1. Let A ∈ Rm×n. Suppose D1 ∈ Rm×m and D2 ∈ Rn×n are diagonal matrices with positive

diagonal entries and P1 ∈ Rm×m and P2 ∈ Rn×n be permutation matrices. We have:

(a) If A is semipositive, then P1D1AD2P2 is semipositive.

(b) If A is minimally semipositive, then P1D1AD2P2 is minimally semipositive.

Proof. (a) Suppose that A is semipositive. Then there exist positive vectors x ∈ Rn and y ∈ Rm such

that Ax = y. Let z = PT
2 D

−1
2 x. Then z > 0 and P1D1AD2P2z = P1D1y > 0. Thus, P1D1AD2P2 is a

semipositive matrix.

(b) If A is minimally semipositive, then, A has a nonnegative left inverse, say, X. Then PT
2 D

−1
2 XD−11 PT

1

is a nonnegative left inverse of the matrix P1D1AD2P2 and hence, P1D1AD2P2 is minimally semipositive.
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Theorem 4.2. Let A ∈ Rn×n. We have:

(a) If A is minimally semipositive, then BA is semipositive for every semipositive matrix B ∈ Rm×n,

for any m ∈ N.

(b) If BA is semipositive for all semipositive matrices B ∈ Rm×n, for some m ∈ N, then A is minimally

semipositive.

Proof. (a) Let A be a minimally semipositive matrix and B be a semipositive matrix with a semipositivity

vector x. Then A−1 ≥ 0 and so A−1x is a semipositivity vector for BA. Thus, BA is semipositive.

(b) Suppose that BA is semipositive for every semipositive matrix B. We first prove that A is invertible.

Let x = (x1, . . . , xn)T be such that xTA = 0. Suppose that x 6= 0. With out loss of generality we can assume

x1 > 0. Let B be the matrix whose first row is the row vector xT and the remaining rows are equal to the

row vector eT = (1, . . . , 1). Since the first column of B is positive, the matrix B is semipositive. However,

by definition the first row of the matrix BA is zero so that BA is not semipositive. This is a contradiction.

Hence, A is invertible. Next, let us show that C = A−1 ≥ 0. On contrary, suppose that cij < 0 for some

i, j. Let B be the matrix whose first row is the negative of the ith row of C and all other rows equal to eT .

Since the jth column of B is positive, the matrix B is semipositive. However the first row of the matrix BA

is nonpositive, and hence, BA is not semipositive, contradiction to the assumption. Thus, A−1 ≥ 0, and

hence, A is minimally semipositive.

Remark 4.3. Let A =

 −3 −3 3

−3 −5 3

2 2 −1

. Then A is semipositive. We claim that A is not minimally

semipositive. By Theorem 4.2, it suffices to show that there exists a semipositive B such that BA is not

semipositive. One may verify that a choice is B =

(
−2 2 0

1 1 1

)
.

The proof of the next result is similar to part (b) of the theorem above and is skipped.

Theorem 4.4. Let A ∈ Rm×n be a semipositive matrix. If BA is semipositive for all semipositive

matrices B ∈ Rk×m, for some k ∈ N, then A is minimally semipositive.

Remark 4.5. If A ∈ Rm×n is minimally semipositive and B ∈ Rn×n is semipositive then BA need

not be semipositive. This is shown by the following choices: A =

(
1

1

)
and B =

(
1 −1

1 −1

)
. The post-

multiplication of a semipositive matrix by a positive matrix need not be semipositive. This is shown by

the matrices A =

(
1 −1

1 0

)
(which is semipositive) and (the positive matrix) B =

(
1 1

1 1

)
. In particular,

it follows that if A and B are semipositive matrices, then their product need not be semipositive. In the

next result, in item (a), we show that semipositivity is preserved under pre-multiplication by nonnegative

irreducible matrices. The case of minimal semipositivity is considered next. In item (c), we establish a

product result for rectangular matrices with the additional assumption that the product is semipositive.

Theorem 4.6. (a) Let A ∈ Rm×n be a semipositive matrix. If B ∈ Rm×m is a nonnegative irreducible

matrix, then BA is a semipositive matrix.

(b) Let A,B ∈ Rn×n be minimally semipositive matrices. Then AB is minimally semipositive.

(c) Let A ∈ Rm×n and B ∈ Rn×p be two minimally semipositive matrices such that AB is semipositive.

Then AB is a minimally semipositive matrix.
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Proof. (a) Let A be a semipositive matrix with semipositivity vector u. Since B is a nonnegative

irreducible matrix, we have BAu > 0. Thus, BA is semipositive.

(b) Since B−1A−1 ≥ 0 is the inverse of AB, by the remarks made in the introduction, it follows that

AB is minimally semipositive.

(c) Suppose that A and B are minimally semipositive matrices. Then there exist left inverses AL and BL

of A and B, respectively such that AL ≥ 0 and BL ≥ 0. Now BLAL is a left inverse of AB and BLAL ≥ 0.

Again, it follows that AB is minimally semipositive.

Remark 4.7. In (c) of Theorem 4.6, the assumption that AB is semipositive cannot be dropped. Let

A =

(
2 −1

−1 1

)
and B =

(
1

2

)
. Then A,B are minimally semipositive but AB =

(
0

1

)
is not semipositive.

5. Considerations involving intervals of matrices. This section concerns semipositivity or minimal

semipositivity of certain intervals of matrices.

Recall that matrix A ∈ Rm×n is said to be rectangular monotone, if Ax ≥ 0 implies x ≥ 0 for all x ∈ Rn.

It is known that, A is rectangular monotone if and only if A has a nonnegative left inverse [11]. From the

discussion in the introductory section, it now follows that if A is semipositive and rectangular monotone, then

A is minimally semipositive. Conversely, if A is minimally semipositive, then A is rectangular monotone.

Following [10], we define a bilateral interval as [A,B] = {C : A ≤ C ≤ B} for A ∈ Rm×n, B ∈ Rm×n

and A ≤ B. A unilateral interval is an interval of the type (−∞, B] so that C ∈ (−∞, B] if and only if

C ≤ B.

Let us recall the following rather well known result for a unilateral interval, which has been reformulated

using the terminology adopted here. Let int(Rn
+) denote the set of interior points of Rn

+.

Theorem 5.1. [10, Theorem 25.4] Let B ∈ Rn×n with C ∈ (−∞, B]. Let B be inverse positive. Then

C is inverse positive if and only if int(Rn
+) ∩ CRn

+ 6= ∅.

It is interesting to note that the condition int(Rn
+) ∩ CRn

+ 6= ∅ is equivalent to C being semipositive.

Thus, Theorem 5.1 may be rewritten as: Let C and B be real square matrices with C ≤ B, where B is

minimally semipositive. Then C is semipositive if and only if C is minimally semipositive. This bears a

striking resemblence to a very well known result for Z-matrices (matrices whose off-diagonal entries are

nonpositive), which states that a Z-matrix is semipositive if and only if it is minimally semipositive (see

[2] for a proof). In Theorem 5.3 below, we extend the necessity part (of the result for the matrix C stated

earlier) to rectangular matrices.

Let A,B ∈ Rm×n. If A is semipositive and A ∈ (−∞, B], then it is easy to see that B is a semipositive

matrix. Next, in Corollary 5.5, we show that this property extends to rectangular matrices that are minimally

semipositive.

Lemma 5.2. Let A ∈ Rm×n with A = U − V . Suppose that U has a nonnegative left inverse UL which

satisfies ULV ≥ 0 and ρ(ULV ) < 1. Then A is rectangular monotone.

Proof. By Theorem 2.1, it follows that (I − ULV ) is invertible and (I − ULV )−1 ≥ 0. Set X =

(I − ULV )−1UL. Then X ≥ 0 and XA = (I − ULV )−1UL(U − V ) = (I − ULV )−1(I − ULV ) = I.

Theorem 5.3. Let A,B ∈ Rm×n with A ∈ (−∞, B]. Suppose that B is rectangular monotone. If A is

semipositive, then A is rectangular monotone.
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Proof. Since A ≤ B, there exists T ≥ 0 such that A = B − T . Since B is rectangular monotone, there

exists BL ≥ 0 such that BLB = I. Also, BLT ≥ 0. Let x ∈ Rn
+ such that Ax ∈ int(Rm

+ ). Since A ≤ B, it

follows that Bx ∈ int(Rm
+ ). Since Bx and Ax are positive, there exists ε > 0 such that εBx ≤ Ax. Thus,

(B − A)x ≤ (1 − ε)Bx. Now TBLBx = Tx = (B − A)x. Hence, TBLBx ≤ (1 − ε)Bx. By Theorem 2.2,

ρ(BLT ) = ρ(TBL) ≤ (1− ε) < 1. Hence, by Lemma 5.2, A is rectangular monotone.

Remark 5.4. Suppose that there exist matrices A and B such that A ∈ (−∞, B], with A and B both

being rectangular monotone. This does not guarantee that A is semipositive (even if B is semipositive).

Let A =

1 0

0 1

0 0

 and B =

1 0

0 1

1 1

 . Then A and B are rectangular monotone, with B being semipositive.

However, since A has a zero row, it is not semipositive.

Corollary 5.5. Let A,B ∈ Rm×n with B being minimally semipositive. If A ∈ (−∞, B] and A is

semipositive, then A is minimally semipositive.

Proof. Since B is minimally semipositive, B is rectangular monotone. By Theorem 5.3, A is rectangular

monotone, and hence, A is minimally semipositive.

Corollary 5.6. Let A,B ∈ Rm×n be minimally semipositive matrices. If A ∈ (−∞, B], then C is

minimally semipositive for every C ∈ [A,B].

For the next result, we need the following notation. Let diag(t1, t2, . . . , tn) denote the diagonal matrix

whose entries are t1, t2, . . . , tn. For any A,B ∈ Rn×n, we define the following sets:

h(A,B) = {C : C = tA+ (1− t)B, t ∈ [0, 1]},

r(A,B) = {C : C = TA+ (I − T )B, T = diag(t1, t2, . . . , tn), ti ∈ [0, 1], 1 ≤ i ≤ n},
and

c(A,B) = {C : C = AT +B(I − T ), T = diag(t1, t2, . . . , tn), ti ∈ [0, 1], 1 ≤ i ≤ n}.
The first set is the set of all convex linear combinations of the matrices A and B; the second is the set of

all matrices each of whose rows is a convex linear combination of the corresponding rows of A and B. The

third set is the same as the second in whose definition, columns replace rows.

In what follows, we present semipositivity results for the first two sets and show that such an analogue

does not hold for the third.

Theorem 5.7. Let A,B ∈ Rm×n be semipositive matrices with a common semipositivity vector u. The

following hold:

(a) If C ∈ h(A,B), then C is semipositive with semipositivity vector u.

(b) If C ∈ r(A,B), then C is semipositive with semipositivity vector u.

Proof. It is enough to prove (b). Let u ∈ Rn be such that u > 0, Au > 0 and Bu > 0. Let C ∈ r(A,B)

so that C = TA + (I − T )B, where T = diag(t1, t2, . . . , tm), ti ∈ [0, 1], 1 ≤ i ≤ m. Now, (Cu)i = ti(Au)i +

(1− ti)(Bu)i > 0. Thus, C is a semipositive matrix (with the semipositive vector u).

Remark 5.8. Theorem 5.7 does not hold for the subset c(A,B). Let A =

(
1 0
1
2 0

)
and B =

(
2 −1

−1 2

)
.

It is easy to see that A and B are semipositive with the common semipositive vector (1, 1)T . We have

C =

(
3
2 0
−1
4 0

)
∈ c(A,B), which is not semipositive.
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6. Considerations involving block matrices. In this section, we study the semipositivity notions

for the principal pivot transform. Let us observe that if M is semipositive, then it does not imply that MT

or any principal submatrix of M is semipositive. Let M =

(
A B

C D

)
∈ Rn×n be a semipositive matrix

such that A is invertible. Then the Schur complement M/A = D − CA−1B need not be semipositive. For

example, consider the semipositive matrix M =

(
1 0

1 0

)
. Then MT =

(
1 1

0 0

)
, D = 0 and M/A = 0, are

not semipositive. Note however, that if M is a minimally semipositive matrix, then (MT )−1 = (M−1)T ≥ 0

and so MT is minimally semipositive. It may be shown by examples that if M is minimally semipositive,

then a principal submatrix of M need not be minimally semipositive. The principal pivot transform of a

minimally semipositive matrix need not be minimally semipositive. Consider the minimally semipositive

matrix M =

(
1 −1

0 1

)
. The principal pivot transform ppt(M,A) =

(
1 1

0 1

)
, with respect the sub

matrix A = (1), is not minimally semipositive.

In the first result to follow, we show that if M =

(
A B

C D

)
is minimally semipositive, then the Schur

complement M/A is minimally semipositive.

Theorem 6.1. Let M =

(
A B

C D

)
∈ Rn×n be a minimally semipositive matrix such that A ∈ Rr×r is

invertible. We then have the following:

(a) The Schur complement M/A is minimally semipositive.

(b) H = ppt(M,A) is semipositive. For an n× n matrix X, let X.j denote the submatrix of X obtained

by deleting the jth column. Let j ∈ {r + 1, . . . , n}. Then the matrix obtained from H, by deleting its jth

column, is not semipositive.

(c) Let C = 0. Then A and D are minimally semipositive.

Proof. (a) Since M is minimally semipositive, M−1 exists and M−1 ≥ 0. By the Banachiewicz-Schur

formula, M−1 can be written as(
A−1 +A−1B(M/A)−1CA−1 −A−1B(M/A)−1

−(M/A)−1CA−1 (M/A)−1

)
.

Thus, (M/A)−1 ≥ 0. Hence, M/A is minimally semipositive.

(b) The first part is known, for instance Theorem 3.2 of [19]. By the domain-range exchange property,

we have M

(
x1
x2

)
=

(
y1
y2

)
if and only if H

(
y1
x2

)
=

(
x1
y2

)
. Let j ∈ {r + 1, . . . , n}. Suppose that

H.j is semipositive. Let u ∈ Rn−1 be such that u > 0 and H.ju > 0. Define the vector w ∈ Rn such that

wi = ui for all i 6= j and wj = 0. Then, w is a semipositive vector for the matrix H. Let Hw = z. Now,

by the domain-range exchange property, we get M

(
z1
w2

)
=

(
w1

z2

)
. Since wj = 0, the submatrix of M ,

obtained by deleting the column j, is semipositive. This contradicts the minimal semipositivity of M .

(c) Since M is a minimally semipositive matrix, M−1 exists and M−1 ≥ 0. Thus, A and D are also invertible.

So, M−1 can be written as
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M−1 =

(
A−1 −A−1BD−1

0 D−1

)
.

Thus, A−1 ≥ 0 and D−1 ≥ 0 so that A and D are minimally semipositive.

Remark 6.2. It is possible to consider an extension of the idea of the principal pivot transform involving

the Moore-Penrose inverse of the leading principal subblock. This leads to statements that are more general

than the results of this section.

7. Considerations involving other classes of matrices. The purpose of this section is to establish

semipositivity and/or minimal semipositivity of several classes of matrices. While the first two classes are

skew-symmetric and almost skew-symmetric matrices, the other classes are primarily studied in the context

of the linear complementarity problem.

We begin by showing how one could construct semipositive matrices by using skew-symmetric matrices

or almost skew-symmetric matrices as its blocks. This provides a class of examples for semipositive matrices,

other than the classes of positive definite matrices and irreducible nonnegative matrices.

First, we collect a couple of preliminary results that will be used in this section. The next result is

referred to as Ville’s theorem of the alternative and is an easy consequence of the Farkas’ lemma [12]. Note

that the second statement is precisely the semipositivity of AT .

Theorem 7.1. Let A ∈ Rm×n. Then exactly one of the following is true:

(a) There is an x ≥ 0, x 6= 0, such that Ax ≤ 0.

(b) There is a y ≥ 0 such that AT y > 0.

Definition 7.2. A ∈ Rn×n, n ≥ 2 is called an almost skew-symmetric matrix if its symmetric part

(A+AT

2 ) has rank one.

If A ∈ Rn×n, n ≥ 2 is almost skew-symmetric, then the symmetric part of A has exactly one nonzero

eigenvalue. Let δ(A) denote the nonzero eigenvalue of the symmetric part of A.

Theorem 7.3. [4, Theorem 3.2] Let A ∈ Rn×n, n ≥ 2 be an almost skew-symmetric matrix with δ(A) >

0. Then A is positive semidefinite.

Theorem 7.4. Let A ∈ Rn×n be a skew-symmetric matrix, or an almost skew-symmetric matrix with

δ(A) > 0. Define M =

(
I A

A I

)
. Then M is semipositive.

Proof. Let A be skew-symmetric. Suppose that there exists a vector z = (xT , yT )T ≥ 0, z 6= 0 such that

MT z ≤ 0. Then

x−Ay ≤ 0 and −Ax+ y ≤ 0.

Let v = x + y. Then v ≥ 0, v 6= 0 and v − Av ≤ 0. Thus, vT v − vTAv ≤ 0, so that vT v ≤ 0, since, A is

skew-symmetric and so vTAv = 0. This is a contradiction. By Theorem 7.1, there exists w ≥ 0 such that

Mw > 0. Hence, M is semipositive.

Next, let A be almost skew-symmetric with δ(A) > 0. Once again, suppose that there exists a vector

z = (xT , yT )T ≥ 0, z 6= 0 such that MT z ≤ 0. Then

x+AT y ≤ 0 and ATx+ y ≤ 0.
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Let v = x+ y. Then v ≥ 0, v 6= 0 and v+AT v ≤ 0. Thus, vT v+ vTAT v ≤ 0 and so one has vTAv < 0. This

however, is a contradiction, since by Theorem 7.3, A is positive semidefinite. By Theorem 7.1, there exists

w ≥ 0 such that Mw > 0. Hence, M is semipositive.

Remark 7.5. Let us note that there is a simpler way of proving the first part of Theorem 7.4, making

use of what is known as Tucker’s theorem for skew-symmetric matrices [20, Theorem 5]. Let A ∈ Rn×n be

a skew-symmetric matrix. Then there exists x ≥ 0 such that Ax ≥ 0 and Ax+ x > 0.

Let A be skew-symmetric. By Tucker’s theorem, there exists x ≥ 0 such that Ax ≥ 0 and Ax + x > 0.

Let y =

(
x

x

)
≥ 0. Then

My =

(
I A

A I

)(
x

x

)
=

(
x+Ax

x+Ax

)
> 0.

Thus, M is semipositive.

In what follows, we present results for matrix classes that are mainly studied in the context of the linear

complementarity problem. Let A ∈ Rn×n and q ∈ Rn. The linear complementarity problem LCP (A, q) is

to find if there exists x ∈ Rn such that

x ≥ 0, y = Ax+ q ≥ 0 and xT y = 0.

A is called a Q-matrix, if LCP (A, q) has a solution for all q ∈ Rn. We refer the reader to the book [5] for

more details on the properties of these matrices.

Let us recall that A ∈ Rn×n is called an N -matrix if all the principal minors of A are negative. In

particular, all the diagonal entries of an N -matrix are negative. An N -matrix A is said to be of the first

category, if A has at least one positive entry. Otherwise, A is said to be of the second category. A real

square matrix A is called an almost N -matrix, if all the proper principal minors of A are negative, while the

determinant of A is positive. An almost N -matrix A is said to be of the first category, if A as well as A−1 has

at least one positive entry. A ∈ Rn×n is called a P -matrix if all the principal minors of A are positive. It is

known that every P -matrix is a Q-matrix. A ∈ Rn×n is called an almost P -matrix if all the proper principal

minors of A are positive, whereas the determinant of A is negative. Note that all these classes of matrices

are invertible. Further note that, if A is an almost P -matrix, then A−1 is an N -matrix. We shall also be

interested in three classes of copositive matrices. A is called copositive, if one has xTAx ≥ 0 whenever x ≥ 0.

A is referred to as a strictly copositive matrix, if xTAx > 0 whenever 0 6= x ≥ 0. A copositive matrix A is

called copositive plus if x ≥ 0, xTAx = 0 imply (A+AT )x = 0. Any strictly copositive matrix is copositive

plus. A necessary and sufficient condition for a copositive plus matrix to be strictly copositive is that, either

it is nonsingular or it is singular and has no nonnegative eigenvector associated with the zero eigenvalue.

Any positive semidefinite matrix is copositive plus, while any positive definite matrix is strictly copositive.

Finally, a copositive matrix A is referred to as a copositive star matrix if x ≥ 0, Ax ≥ 0 and xTAx = 0 imply

ATx ≤ 0. Copositive star matrices were introduced and studied in [8]. It is known that if A is a copositive

plus matrix, then it is a copositive star matrix. Also, a symmetric copositive star matrix is copositive plus.

We refer the reader to [8] for applications of copositive star matrices to the linear complementarity problem.

Next, we present results that are pertinent to semipositivity and/or minimal semipositivity for these

classes of matrices. The first result to follow, collects well known statements and also provides a proper

perspective.
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Theorem 7.6. Let A ∈ Rn×n.

(a) If A is a symmetric positive definite matrix then A is semipositive [9, Theorem 2.10].

(b) Let A be a P -matrix or an N -matrix of the first category. Then A is semipositive [14, Theorem 2].

(c) Let A be an almost N -matrix, of order n ≥ 4. Then A is semipositive if and only if A is (an almost

N -matrix) of the first category [13, Corollary 3.2].

In the background of this result, in this section, we show the following: Let A ∈ Rn×n be an N -matrix

of the first category, with n ≥ 3. We characterize its minimal semipositivity (Theorem 7.14). On the other

hand, we show that if A is an almost N -matrix, then A is never minimally semipositive (Theorem 7.19). A

characterization for the semipositivity of almost P -matrices (Theorem 7.20) is given.

First, we show that item (a) of Theorem 7.6 is true for a bigger class of matrices, viz. copositive matrices.

Theorem 7.7. Let A ∈ Rn×n.

(a) If A is strictly copositive, then A is semipositive. (see also the paragraph before Theorem 7.21)

(b) If A is a symmetric copositive plus matrix, which is not strictly copositive, then A is not semipositive.

Proof. (a) Since A is strictly copositive, so is AT . Suppose that there exists a vector x ≥ 0 such that

ATx ≤ 0. Then xTAx ≤ 0, a contradiction to the strict copositivity of A. By Theorem 7.1, there exists

y ≥ 0 such that Ay > 0. Hence, A is semipositive.

(b) Since A is not strictly copositive, there exists x ≥ 0 such that xTAx = 0. Thus, Ax = 0, since A

is copositive plus. By Theorem 7.1, there does not exist any y ≥ 0 such that Ay > 0. Hence, A is not

semipositive.

Remark 7.8. In (b), if we relax the symmetry assumption, then the conclusion does not hold. Let

A =

(
1 −1

1 0

)
. Then A is a non-symmetric copositive plus matrix. A is semipositive with a semipositive

vector x = (1, 0)T . Let B =

 1 1 0

−1 0 −1

0 1 0

. Then B is copositive-plus matrix and B is not symmetric.

B is also not semipositive.

Remark 7.9. It appears that, unlike the classes of strictly copositive matrices and copositive plus ma-

trices, there is nothing conclusive that one could say about the class of copositive star matrices. This is

shown by the following examples. Let A =

 1 1 0

−1 0 0

0 0 0

. Then A is a copositive star matrix which is not

semipositive. Let B =

(
1 −1

1 0

)
. Then B is a copositive star matrix which is also semipositive.

Remark 7.10. Given A ∈ Rn×n and q ∈ Rn, if the quadratic function f(z) = zT (Az + q), z ≥ 0 is

bounded below then LCP (A, q) has a solution [5, Corollary 3.7.12]. By Theorem 3.8.5 of [5], if A is strictly

copositive, then A is a Q-matrix.

Let A be a Q-matrix. Consider q = −e. Then there exists x ≥ 0 such that y = Ax − e ≥ 0 (and

xT y = 0). In particular, one has x ≥ 0 with Ax > 0, showing that A is semipositive. In view of the previous
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paragraph, we have an alternative proof of (a) of Theorem 7.7. Note however, that the argument here leads

to a stronger conclusion that a strictly copositive matrix is a Q-matrix.

Remark 7.11. Recall that matrix A ∈ Rn×n is said to be strictly semimonotone if the following impli-

cation holds [5, Definition 3.9.9]:

x ∈ Rn
+ \ {0} ⇒ there exists k such that xk > 0 and (Ax)k > 0.

Let A ∈ Rn×n be a strictly copositive matrix. Then all its principal submatrices are also strictly copositive.

By Theorem 7.7, all the principal submatrices of A are semipositive. By Corollary 3.9.13 of [5], A is strictly

semimonotone.

Next, we turn our attention to N -matrices. First, we prove certain fundamental properties of these

matrices. Though we expect that these must be known, we have not found a suitable reference for these

results. This also makes the article as self-contained as possible. In what follows, all the pairs of the

subscripts refer to distinct indices.

Let A = (aij) ∈ Rn×n and let 1 ≤ k1 < k2 < · · · < kr ≤ n. Then A[k1, k2, . . . , kr] denote the r × r
submatrix of A whose (i, j) entry is akikj

.

Theorem 7.12. Let A = (aij) ∈ Rn×n be an N -matrix of the first category. Then the following hold:

(i) All the entries of A are nonzero.

(ii) Each row and column of A contains atleast one positive entry.

(iii) Both aij and aji have the same sign.

(iv) If aij , aik > 0, then ajk, akj < 0.

(v) If aij , akj > 0, then aik, aki < 0.

Proof. (i) As mentioned earlier, all the diagonal entries are negative, since A is N-matrix. Suppose that

aij = 0, where i 6= j. Consider the principal submatrix

A[i, j] =

(
aii 0

aji ajj

)
.

Then det(A[i, j]) is positive, a contradiction. Hence, (i) holds.

(ii) As A is N -matrix of the first category, so is AT . By (b) of Theorem 7.6, A and AT are semipositive.

Thus, each row and column of A contains at least one positive entry.

(iii) Suppose that aij > 0 and aji < 0 for some i ∈ {1, . . . j−1, j+1, . . . n} and j ∈ {1, . . . i−1, i+1, . . . n}.
Consider the principal submatrix

A[i, j] =

(
aii aij
aji ajj

)
.

Then det(A[i, j]) is positive, a contradiction. Hence, (iii) is true.

(iv) Suppose that aij , aik > 0, where j 6= k. Let ajk > 0. From (ii), akj > 0. Consider the 3 × 3

principal submatrix
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A[i, j, k] =

 aii aij aik
aji ajj ajk
aki akj akk

 .

Then det(A[i, j, k]) = aii(ajjakk − ajkakj)− aij(ajiakk − akiajk) + aik(ajiakj − akiajj) > 0, a contradiction.

Hence, (iv) is true.

(v) Similar to (iv).

Remark 7.13. From items (iv) and (v) above, it follows that for an N -matrix of the first category

(n ≥ 3), there is a row which contains a non-diagonal negative entry.

In the next result, we present a class of semipositive matrices, which turn out to be also minimally

semipositive. Suppose A =

(
a b

c d

)
∈ R2×2 is an N -matrix of the first category. Then a, d < 0 and by

item (ii) of Theorem 7.12, b, c > 0, so that A−1 > 0. Thus, A is minimally semipositive. In the next result,

we prove that A is minimally semipositive for n ≥ 3. Recall that, in the first place, by item (b) of Theorem

7.6, such matrices are semipositive.

Theorem 7.14. Let b, c ∈ Rn−1 be positive vectors and A =

(
α bT

c D

)
∈ Rn×n, n ≥ 3 be an N -matrix

of the first category. Then, A/α is minimally semipositive if and only if A is minimally semipositive.

Proof. The sufficiency part follows from Theorem 6.1. We prove the necessity part. Since A is N -matrix

of the first category, all its principal minors are negative. So are all the diagonal entries of the matrix adj(A).

Thus, the diagonal entries of A−1 = adj(A)
det(A) are positive. Suppose that the Schur complement (of α in A)

A/α = D − α−1cbT is minimally semipositive. Then (A/α)−1 ≥ 0. Since α < 0 and b, c > 0, it follows that

−α−1bT (A/α)−1 and −α−1(A/α)−1c are nonnegative. By the Banachiewicz-Schur formula,

A−1 =

(
α−1 + α−2bT (A/α)−1c −α−1bT (A/α)−1

−α−1(A/α)−1c (A/α)−1

)
≥ 0.

Hence, A is minimally semipositive.

Let us give two examples.

Example 7.15. Let α = −2, b =

(
1

2

)
, c =

(
3

5

)
and D =

(
−1 −3

−3 −2

)
. Then

A =

 −2 1 2

3 −1 −3

5 −3 −2


is N -matrix of the first category. The Schur complement (of α in A) A/α = 1

2

(
1 0

−1 6

)
is minimally

semipositive. Now A−1 = 1
3

 7 4 1

9 6 0

4 1 1

. Thus, A is minimally semipositive.

Example 7.16. Let A =

 −1 3 3

3 −2 −3

3 −3 −3

 and α = −1. Then A/α =

(
7 6

6 6

)
is not minimally
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semipositive. By the theorem above, it follows that A is not minimally semipositive.

Remark 7.17. By (b) of Theorem 4.1, minimal semipositivity is invariant under multiplication by per-

mutation matrices. Thus, if an N -matrix of the first category contains a row in which all the non-diagonal

entries are positive, and the Schur complement corresponding to that diagonal is minimally semipositive,

then A is minimally semipositive.

Remark 7.18. Let us consider the possibility of extending Theorem 7.14 by proposing the following

analogue: Let M =

(
A11 A12

A21 A22

)
be an N -matrix of the first category such that A12, A21 are positive

matrices and the Schur complement A22 − A21A
−1
11 A12 is minimally semipositive. One may ask if M is

minimally semipositive. We show that the answer is in the negative. Let A11 =

(
−1 −2

−1 −1

)
, A12 =(

1 2

2 1

)
, A21 =

(
2 1

2 3

)
, and A22 =

(
−1 −6

−3 −1

)
, so that

M =


−1 −2 1 2

−1 −1 2 1

2 1 −1 −6

2 3 −3 −1

 .

Then M is N -matrix of the first category and the Schur complement (of A in M) M/A =

(
4 −5

0 2

)
is

minimally semipositive. But

M−1 =


2.125 2.125 0.75 1.875

−0.875 0.125 −0.25 −0.125

0.375 1.375 0.25 0.625

0.5 0.5 0 0.5

 � 0

and so M is not minimally semipositive.

In the next result, we show that almost N -matrices are not minimally semipositive. Again, recall that

almost N -matrices of the first category are semipositive for n ≥ 4 (item (c) of Theorem 7.6).

Theorem 7.19. Let A ∈ Rn×n be an almost N -matrix. Then A is not minimally semipositive.

Proof. Let A be an almost N -matrix. Then det(A) > 0 and all its proper principal minors are negative.

So are all the diagonal entries of the matrix adj(A). Thus,

A−1 = adj(A)
det(A) � 0,

and so A is not minimally semipositive.

We close this section with a result for almost P -matrices. As was mentioned earlier, P -matrices are

semipositive (item (b), Theorem 7.6).

Theorem 7.20. Let A ∈ Rn×n be an almost P -matrix which is also semipositive. Then A−1 is N -matrix

of the first category. Conversely, if A−1 is an N -matrix of the first category, then A is semipositive and an

almost P -matrix.

Proof. Suppose that A is an almost P -matrix which is also semipositive. Since A is an almost P -matrix,
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as mentioned earlier, A−1 is N -matrix. Now A−1 is also semipositive, since A semipositive. Thus, each row

of A−1 contains a positive entry. Hence, A−1 is an N -matrix of the first category.

Conversely, suppose that A−1 is an N -matrix of the first category. Then A is an almost P -matrix. By

Theorem 7.6, A−1 is semipositive. Thus, A is semipositive.

7.1. A generalization of semipositivity and a game theory perspective. A two-person zero-sum

matrix game consisting of two players, may be described as follows: Player I chooses an integer i, 1 ≤ i ≤ m
and player II chooses an integer j, 1 ≤ j ≤ n, simultaneously, after which player I pays an amount aij
to player II. Here aij may be positive, negative or zero. A strategy for player I is a probability vector

(p1, p2, . . . , pm)T (meaning that pi ≥ 0 for all i and
m∑
i=1

pi = 1). So, a strategy for player I is that he will

choose integer i with probability pi. A celebrated result of John von Neumann is the statement that there

exist strategies p = (p1, p2, . . . , pm)T for player I and q = (q1, q2, . . . , qn)T for player II and a unique real

number v (called the value of the game) such that the following inequalities hold:

m∑
i=1

piaij ≤ v for each j = 1, 2, . . . , n

and
n∑

j=1

qjaij ≥ v for each i = 1, 2, . . . ,m.

In such a case, we refer to the matrix A = (aij) as a game and the value of the game is denoted by v(A).

The corresponding strategies p and q are called optimal strategies for the two players. In the game described

above, we may sometimes say that player I is the minimizer (i.e., he wants to give player II as least as

possible) and player II is the maximizer. It is well known that if there exists 0 6= x ≥ 0 such that Ax ≥ 0,

then v(A) ≥ 0; if there exists 0 6= y ≥ 0 with yTA ≤ 0, then v(A) ≤ 0.

A strategy p of a player is referred to as a mixed strategy if p > 0. A game is called completely mixed if

all the optimal strategies of both its players are mixed. This leads us to the relationship between the notion

of semipositivity and game theory. A matrix A is semipositive if and only if its value is positive. It also

follows that a semipositive matrix A is minimally semipositive, then (its value is positive and) the game A

is completely mixed. Let us note that the converse is not true as illustrated by the matrix A =

(
1 2

2 1

)
.

Here A is semipositive (so that its value is positive) but not minimally semipositive. However, the game A

is completely mixed.

With this point of view, now we may reformulate some of the results of this section. (a) of Theorem

7.7 states that if A strictly copositive, then v(A) > 0, while (b) is the same as saying that for a symmet-

ric copositive plus matrix A which is not strictly copositive, one has v(A) ≤ 0. Theorem 7.14 could be

paraphrased as: Let b, c ∈ Rn−1 be positive vectors and A =

(
α bT

c D

)
∈ Rn×n, n ≥ 3 be an N -matrix

of the first category. If A/α is minimally semipositive then A is completely mixed and conversely, if A is

minimally semipositive, then A/α is completely mixed. Further, we may give yet another proof of the first

part of Theorem 7.4. Let B be skew-symmetric. Then it follows that I +B is a positive definite matrix. If

there exists y ≥ 0 such that yT (I + B) ≤ 0, upon post-multiplication by y, a contradiction ensues. Thus,

v(I +B) > 0, showing that the matrix I +B is semipositive. Now, if A is skew-symmetric, then the matrix
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M =

(
I A

A I

)
could be written as I + B, where B is a skew-symmetric matrix. By what was proved

above, it follows that M is a semipositive matrix.

In this regard, it is pertinent to point to the fact that a game theoretic proof was given [15, Theorem

3] to item (a) of Theorem 7.7 and more importantly, to the following result characterizing invertibility of

M -matrices [15, Theorem 1]. This result is stated here to reinforce the fact that a rather distinguished class

of semipositive matrices is given by the class of all invertible M -matrices.

Theorem 7.21. Let A be a matrix all of whose off-diagonal entries are nonpositive. Then the following

statements are equivalent:

(a) There exists x > 0 such that Ax > 0.

(b) A is invertible and A−1 ≥ 0.

(c) A is an invertible M -matrix.

Next, let us recall a notion, more general than semipositivity [15, Definition 2]. Let S0 be the set of

real possibly rectangular matrices A for which one has Ax ≥ 0, for some 0 6= x ≥ 0. Let us simply refer to

such a matrix as generalized semipositive. Matrix A in S0 is referred to as irreducible in S0, if no column

deleted submatrix of A remains in S0. It is shown in [15, Theorem 5] that a real nonsingular square matrix

A is irreducible in S0 if and only if A−1 > 0. Thus, it follows that a nonsingular A, irreducible in S0, is

minimally semipositive. That the converse is not true is shown by A =

(
1 −1

0 2

)
. One may verify that A

is minimally semipositive but A is not irreducible in S0.

In this context, it must be mentioned that any singular irreducibleM -matrixA is generalized semipositive

[2, Chapter 6, Theorem 4.16]. Let us recall that a singular M -matrix A is of the form A = ρ(B)I−B, where

B ≥ 0 . Irreducibility here is in the usual sense (and not as in the previous paragraph), that the underlying

directed graph (associated with A) is strongly connected. A simple application of the Perron-Frobenius

Theorem shows that such a matrix A satisfies the condition: there exists x > 0 such that Ax = 0. It also

follows that one has the implication Ax ≥ 0 ⇒ Ax = 0. We leave the details and point to [2], for the

interested reader.

8. Concluding remarks. Let A =

(
1 −2

2 −3

)
. First, note that σ(A) = {−1}. By induction, it may

be shown that An = (−1)n
(

1− 2n 2n

−2n 1 + 2n

)
. Now, it is clear that any positive integer power of the

matrix A contains a positive column, and so all the matrices Ak, k ≥ 1 are semipositive. In fact, it is easy

to observe that all the odd powers of A have a common semipositivity vector (1, 0)T and all the even powers

of A have a common semipositivity vector (0, 1)T . This example serves two purposes. We detail this next.

It may be recalled that if all the positive integral powers of a matrix have a common semipositivity

vector, then the matrix has a positive eigenvalue [19, Corollary 5.3]. The matrix A shows that this result

does not hold when the assumption on the existence of a common semipositivity vector is relaxed. Now

consider a square minimally semipositive matrix. By a standard argument involving the Perron-Frobenius

theorem, it follows that such a matrix has a positive eigenvalue (and a nonnegative eigenvector, associated

to it). The matrix A shows that a semipositive matrix need not have this property, even if all its positive
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integral powers are semipositive.

As was mentioned earlier, if a matrix is inverse positive, then it is semipositive; in fact, minimally

semipositive. Let us note the following generalization of this result (whose proof is easy and hence skipped):

Suppose that the Moore-Penrose inverse of a matrix A ∈ Rm×n is nonnegative. Let A ∈ Rm×n. If A† ≥ 0

and int(Rm
+ ) ∩R(A) 6= φ, then A is semipositive.

Let us conclude with the following questions which have arisen from our study.

(1) Let A be an invertible M -matrix. Then A is minimally semipositive. Further, if A is irreducible,

then A−1 is a positive matrix. Unlike invertible M -matrices, irreducible minimal semipositive matrices with

positive diagonal entries need not have positive inverse. For example, let A =

 0.375 0.25 −0.125

−0.375 0.75 0.125

0.25 −0.5 0.25

 .

Then A−1 =

2 0 1

1 1 0

0 2 3

. Finding sufficient conditions under which the inverse of a minimal semipositive

matrix is positive appears to be an interesting problem. This will also yield a sufficient condition under

which a minimally semipositive matrix is irreducible in S0.

(2) The next question concerns Remark 7.18. Let M =

(
A11 A12

A21 A22

)
be an N -matrix of the first

category, where A12, A21 are positive matrices and the Schur complement A22 − A21A
−1
11 A12 is minimally

semipositive. When is M minimally semipositive?
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