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EXTREMAL COPOSITIVE MATRICES WITH

ZERO SUPPORTS OF CARDINALITY N − 2∗

ROLAND HILDEBRAND†

Abstract. Let A ∈ Cn be an exceptional extremal copositive n × n matrix with positive diagonal. A zero u of A is a

non-zero nonnegative vector such that uTAu = 0. The support of a zero u is the index set of the positive elements of u. A

zero u is minimal if there is no other zero v such that supp v ⊂ suppu strictly. Let G be the graph on n vertices which has an

edge (i, j) if and only if A has a zero with support {1, . . . , n} \ {i, j}. In this paper, it is shown that G cannot contain a cycle

of length strictly smaller than n. As a consequence, if all minimal zeros of A have support of cardinality n − 2, then G must

be the cycle graph Cn.
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1. Introduction. An element A of the space Sn of real symmetric n × n matrices is called copositive

if xTAx ≥ 0 for all vectors x ∈ Rn
+. The set of such matrices forms the copositive cone Cn. This cone plays

an important role in non-convex optimization, as many difficult optimization problems can be reformulated

as conic programs over Cn. For a detailed survey of the applications of this cone see, e.g., [3, 9].

Verifying copositivity of a given matrix is a co-NP-complete problem [12], and the complexity of the

copositive cone quickly grows with dimension. In this note, we focus on the extreme rays of Cn. A non-zero

matrix A ∈ Cn is called extremal if a decomposition A = A1 + A2 of A into matrices A1, A2 ∈ Cn is only

possible if A1 = λA, A2 = (1 − λ)A for some λ ∈ [0, 1]. The extremal matrix is called exceptional if it

is neither element-wise nonnegative nor positive semi-definite. The set of positive multiples of an extremal

matrix is called an extreme ray of Cn. The set of extreme rays is an important characteristic of a convex

cone. Its structure, first of all its stratification into a union of manifolds of different dimension, yields much

information about the shape of the cone. The extreme rays of a convex cone which is algorithmically difficult

to access are especially important if one wishes to check the tightness of inner convex approximations of

the cone. Namely, an inner approximation is exact if and only if it contains all extreme rays. Since the

extreme rays of a cone determine the facets of its dual cone, they are also important tools for the study of

this dual cone. The extreme rays of the copositive cone have been used in a number of papers on its dual,

the completely positive cone [4, 5, 7, 13, 14, 15].

A useful tool in the study of extremal copositive matrices are its zeros [2, 6]. A zero u of a copos-

itive matrix A is a non-zero nonnegative vector such that uTAu = 0. The support suppu of a zero

u = (u1, . . . , un)T ∈ Rn
+ is the subset of indices j ∈ {1, . . . , n} such that uj > 0. The zero support set,

i.e., the ensemble of zero supports of a copositive matrix is an informative characteristic of the matrix. In

particular, this combinatorial characteristic can assist the classification of the extreme rays of Cn. A zero u

of A is called minimal if there is no zero v of A such that supp v ⊂ suppu holds strictly.
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By [8, Corollary 4.14], an exceptional extremal copositive matrix in Cn cannot have zero supports with

cardinality ≥ n − 1. In this note we constrain the zero support set of exceptional extremal copositive

matrices with positive diagonal, in particular the subset of supports of cardinality n − 2. This subset can

be conveniently represented by a graph G on n vertices, a support {1, . . . , n} \ {i, j} defining an edge (i, j)

of G. We show that the graph G cannot contain cycles of length strictly smaller than n. This allows us to

completely describe the graph G for extremal copositive n × n matrices whose minimal zero supports have

all cardinality n − 2. Namely, in this case, the graph has to be the cycle graph Cn, and the study of the

corresponding extremal exceptional copositive matrices is reduced to the case treated in the paper [11].

2. Notations and preliminaries. We shall denote vectors with lower-case letters and matrices with

upper-case letters. Individual entries of a vector u or a matrix A will be denoted by ui, Aij , respectively.

For a matrix A and a vector u of compatible size, the i-th element of the vector Au will be denoted by (Au)i.

Inequalities u ≥ 0 on vectors will be meant element-wise, the inequality A � 0 means that A is positive

semi-definite. The cone of positive semi-definite real symmetric n× n matrices will be denoted by Sn+.

For a subset I ⊂ {1, . . . , n}, we denote by AI the principal submatrix of A whose elements have row and

column indices in I, i.e., AI = (Aij)i,j∈I . Similarly for a vector u ∈ Rn we define the subvector uI = (ui)i∈I .

The index set {1, . . . , n} \ I will be denoted by Ī.

Let A ∈ Cn, and define the graph G on n vertices as follows. There exists an edge (i, j) in G if and only

if {1, . . . , n} \ {i, j} is the support of some zero of A. A cycle of length k in G is a subset of k ≥ 3 edges

(i1, i2), (i2, i3), . . . , (ik−1, ik), (ik, i1), where the i1, . . . , ik ∈ {1, . . . , n} are mutually distinct vertices.

We shall consider exceptional extremal matrices A ∈ Cn such that the graph G has a cycle of length k,

3 ≤ k ≤ n− 1. Without loss of generality we may assume that ij = j, j = 1, . . . , k. Define the index subsets

I0 = {k+ 1, . . . , n}, Ij = {1, . . . , n} \ {j, j+ 1}, j = 1, . . . , k− 1, and Ik = {1, . . . , n} \ {k, 1}. Then I1, . . . , Ik
are zero supports of A and I0 is their intersection. Let u1, . . . , uk be zeros of A with supports I1, . . . , Ik,

respectively. Define also the index subsets I ′j = Ij \ I0 ⊂ {1, . . . , k}, j = 1, . . . , k.

Let further Nn ⊂ Sn be the cone of element-wise nonnegative real symmetric n× n matrices.

We now collect some results from the literature that will be used later on.

Lemma 2.1. [8, Lemma 2.4] Let A ∈ Cn and let u be a zero of A. Then the principal submatrix Asuppu

is positive semi-definite.

Lemma 2.2. [8, Lemma 2.5] Let A ∈ Cn and let u be a zero of A. Then (Au)i = 0 for all i ∈ supp(u).

Lemma 2.3. [2, p. 200] Let A ∈ Cn and let u be a zero of A. Then Au ≥ 0.

The following result is a consequence of [8, Corollary 4.14].

Lemma 2.4. An exceptional extremal copositive matrix in Cn cannot have zero supports with cardinality

≥ n− 1.

The following result is a consequence of [11, Theorem 2.9].

Theorem 2.5. Assume above notations. Let k ≥ 5 and let B ∈ Sk be such that for every j = 1, . . . , k

there exists a nonnegative vector vj with supp vj = I ′j satisfying (vj)TBvj = 0. Then the following are

equivalent:

(i) B is copositive;
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(ii) BI′
j

is positive semi-definite for j = 1, . . . , k, (vk)TBv1 ≥ 0, and (vj)TBvj+1 ≥ 0 for j = 1, . . . , k−1.

The following result is a consequence of [10, Lemma 3.5].

Lemma 2.6. Let A be a copositive matrix and u, v minimal zeros of A such that suppu = supp v. Then

u, v are proportional.

Lemma 2.7. [10, Corollary 3.12] Let A be a copositive matrix and u, v minimal zeros of A with supports

suppu = I, supp v = J . Assume that J \ I = {k} consists of one element. Then every zero w of A with

support suppw ⊂ I ∪ J can be represented as a convex conic combination w = αu + βv with α, β ≥ 0. In

particular, up to multiplication by a positive constant, there are no minimal zeros w with suppw ⊂ I ∪ J
other than u and v.

The following result is a consequence of [10, Theorem 4.5].

Lemma 2.8. Let A ∈ Cn be exceptional extremal. Then the number of linearly independent minimal

zeros of A has to be at least n.

We shall now introduce the generalized Schur complement. For more information see [1].

Let A =

(
A11 A12

A21 A22

)
∈ Sn1+n2 be a real symmetric matrix partitioned into 4 blocks. Suppose that A22

is positive semi-definite, and ker A22 ⊂ ker A12. Let r be the rank of A22, and let F2 ∈ Rr×n2 be a factor

such that A22 = FT
2 F2. Since the row space of A12 is contained in the row space of A22 and the latter equals

the row space of F2, we find a r × n1 matrix F1 such that A12 = FT
1 F2.

Definition 2.9. Assume above conditions and notations. The difference B = A11 − FT
1 F1 ∈ Sn1 is

called the generalized Schur complement of A22 in A.

Both F1 and F2 are defined up to multiplication by a common orthogonal r × r matrix from the left,

and therefore, the generalized Schur complement is well-defined and does not depend on the choice of F1.

We then have the decomposition

(2.1) A = P +B′ =

(
FT

1

FT
2

)(
FT

1

FT
2

)T

+

(
B 0

0 0

)
of A into a rank r positive semi-definite matrix P and a remainder B′ which makes the generalized Schur

complement appear in its upper left sub-block, its other blocks being zero.

Lemma 2.10. Assume above conditions and notations. Let v ∈ Rn be orthogonal to the last n2 rows of

P . Then v ∈ ker P .

Proof. By assumption, we have FT
2 (F1 F2)v = 0. But F2 has full row rank, and hence, (F1 F2)v = 0. It

follows that also FT
1 (F1 F2)v = 0, and as a consequence Pv = 0.

The following lemma is a consequence of the Albert nonnegative definiteness conditions [1].

Lemma 2.11. Assume above conditions and notations. If A is positive semi-definite, then also the gen-

eralized Schur complement B is positive semi-definite.

3. Main result. First we shall extend Theorem 2.5 to the cases k = 3, 4.

Lemma 3.1. Theorem 2.5 holds also if k = 3 or k = 4.
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Proof. Assume the notations in the formulation of Theorem 2.5, and suppose that either k = 3 or k = 4.

Let us first prove the implication (i) ⇒ (ii). Assume (i). By Lemma 2.1, we have that BI′
j
� 0, and by

Lemma 2.3, we have Bvj ≥ 0. Hence, (vi)TBvj ≥ 0 for all i, j = 1, . . . , k, implying (ii). Let us now prove

the converse implication.

For k = 3 we have I ′1 = {3}, I ′2 = {1}, I ′3 = {2}. The zeros vj can then be chosen equal to the

basis vectors of R3. The conditions of Theorem 2.5 imply diagB = 0. Moreover, we have (v3)TBv1 = B23,

(v1)TBv2 = B13, (v2)TBv3 = B12. The assertion of Theorem 2.5 reduces to the equivalence of the conditions

(i) B ∈ C3;

(ii) Bij ≥ 0 for all i, j = 1, . . . , 3.

The implication (ii) ⇒ (i) is now evident.

For k = 4 we have I ′1 = {3, 4}, I ′2 = {4, 1}, I ′3 = {1, 2}, I ′4 = {2, 3}. Assume (ii). Since BI′
j
� 0 for all

j = 1, . . . , 4, we have in particular that diagB ≥ 0. Hence, Bjj = d2
j for some nonnegative dj , j = 1, . . . , 4.

Moreover, BI′
j
� 0 and (vj)TBvj = (vj)TI′

j
BI′

j
vjI′

j
= 0 together imply BI′

j
vjI′

j
= 0 for all j = 1, . . . , 4. In

particular, detBI′
j

= 0, which implies Bj,j+1 = ±djdj+1, j = 1, 2, 3, and B14 = ±d1d4. If one of these

off-diagonal elements of B is positive, then the corresponding product (vj)TBvj must also be positive by

the positivity of vjI′
j
. Hence, we have Bj,j+1 = −djdj+1, j = 1, 2, 3, B14 = −d1d4.

Let v3 = (α, β, 0, 0)T with α > 0, β > 0. Condition (v3)TBv3 = 0 can then be written as α2d2
1 −

2αβd1d2 + β2d2
2 = (αd1 − βd2)2 = 0. This implies αd1 = βd2. In a similar way, let v4 = (0, γ, δ, 0)T with

γ > 0, δ > 0, we then get γd2 = δd3. The condition (v3)TBv4 ≥ 0 then can be written as −αγd1d2 +

αδB13 + βγd2
2 − βδd2d3 ≥ 0. Equivalently we obtain αδ(B13 − d1d3) ≥ −αδd1d3 + αγd1d2 + βδd2d3 −

βγd2
2 = (αd1 − βd2)(γd2 − δd3) = 0, implying N13 = B13 − d1d3 ≥ 0. In an analogous manner we obtain

N24 = B24 − d2d4 ≥ 0. This yields

B =


d1

−d2

d3

−d4



d1

−d2

d3

−d4


T

+


0 0 N13 0

0 0 0 N24

N13 0 0 0

0 N24 0 0

 ,

and B can be decomposed into a sum of a matrix in S4
+ and a matrix in N 4. This implies B ∈ C4, completing

the proof.

Lemma 3.2. Assume the notations of the previous section. Let 3 ≤ k ≤ n− 1 and let A ∈ Cn have zeros

with supports I1, . . . , Ik. Then the submatrix AI0 is positive semi-definite. If v ∈ Rn−k is a kernel vector of

AI0 , then v′ = (0, . . . , 0, vT )T ∈ Rn is a kernel vector of A, where v′ is obtained from v by appending k zeros

at the beginning.

Proof. By Lemma 2.1, the submatrices AI1 , . . . , AIk are positive semi-definite. It follows that AI0 is also

positive semi-definite, because it is a principal submatrix of AIj for all j = 1, . . . , k.

Let now v ∈ Rn−k be a kernel vector of AI0 and construct v′ ∈ Rn as in the statement of the lemma.

Let also w ∈ Rn−2 be the vector obtained by appending k− 2 zeros at the beginning of v. Let j ∈ {1, . . . , k}
be arbitrary, and consider the submatrix AIj . Then wTAIjw = vTAI0v = 0. But AIj � 0, hence, also

AIjw = 0. Now AIjw = (Av′)Ij , and hence, (Av′)Ij = 0 for all j = 1, . . . , k. However,
⋃k

j=1 Ij = {1, . . . , n},
and therefore, Av′ = 0 as claimed.
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By Lemma 3.2, the matrix A satisfies the assumptions needed for the definition of the generalized Schur

complement. Let B ∈ Sk be the generalized Schur complement of AI0 in A, and denote by r the rank of

AI0 . By (2.1), A can be decomposed into a sum

(3.2) A = P +B′, B′ =

(
B 0

0 0

)
,

where P is a positive semi-definite matrix of rank r.

Lemma 3.3. Assume above notations. Then for all j = 1, . . . , k, we have Puj = 0.

Recall that uj is a zero of A with support Ij , j = 1, . . . , k.

Proof. We have (Auj)Ij = 0 by Lemma 2.2. Since I0 ⊂ Ij , we get also (Auj)I0 = 0. Hence, the last

n− k rows of A are orthogonal to uj .

The last n− k rows of A coincide with the last n− k rows of P . Thus, also the last n− k rows of P are

orthogonal to uj . The assertion of the lemma now follows from Lemma 2.10.

Lemma 3.4. Assume above notations. The generalized Schur complement B is copositive.

Proof. We shall show that B satisfies conditions (ii) of Theorem 2.5.

Let us note vj = (uj)Ī0 for j = 1, . . . , k. Then by Lemma 3.3, we have 0 = (uj)TAuj = (uj)TPuj +

(uj)TB′uj = (vj)TBvj for all j = 1, . . . , k. Further, we get Auj = B′uj ≥ 0 by Lemmas 3.3 and 2.3, and

hence, (B′uj)Ī0 = Bvj ≥ 0. The inequality vi ≥ 0 then yields (vi)TBvj ≥ 0 for all i, j = 1, . . . , k. Note

also that supp vj = I ′j , j = 1, . . . , k. The submatrix BI′
j

is the Schur complement of AI0 in the positive

semi-definite matrix AIj . Hence, BI′
j
� 0 by Lemma 2.11.

Hence, the conditions (ii) of Theorem 2.5 are satisfied, and B ∈ Ck by Theorem 2.5 for k ≥ 5 and by

Lemma 3.1 for k = 3, 4.

We are now able to prove our main result.

Theorem 3.5. Let A ∈ Cn be an exceptional extremal copositive matrix. Let G be the graph on n vertices

which has an edge (i, j) if and only if A has a zero with support {1, . . . , n} \ {i, j}. Suppose G contains a

cycle of length k on the vertex subset I = {i1, . . . , ik}. Then all non-zero elements of A are contained in the

submatrix AI .

Proof. If k = n, then there is nothing to prove.

Suppose 3 ≤ k ≤ n − 1. Without loss of generality we may assume ij = j, j = 1, . . . , k, and adopt the

notations above. In particular, the subset I then equals Ī0.

Consider decomposition (3.2). By Lemma 3.4, the matrix B, and hence, also the matrix B′ is copositive.

Hence, A has been represented as a sum of a positive semi-definite and a copositive matrix. Since A is

extremal, these two matrices have to be proportional.

If P is a multiple of B′, then A is a multiple of B′, and the assertion of the theorem holds.

Suppose that P is not a multiple of B′. Then B′ = 0, because P and B′ are proportional. This implies

A = P � 0, contradicting the exceptionality of A. This completes the proof.

We shall now deduce a number of consequences from Theorem 3.5.
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Corollary 3.6. Let A ∈ Cn be an exceptional extremal copositive matrix with positive diagonal, and

let G be the graph defined in Theorem 3.5. Then G does not contain any cycle of length strictly smaller than

n. In particular, either G is the cycle graph Cn, or G is acyclic (i.e., a forest).

Proof. Since all diagonal elements of A are positive, there exists no proper subset I ⊂ {1, . . . , n} such

that all non-zero elements of A are contained in the submatrix AI . The claim of the corollary then follows

from Theorem 3.5.

Corollary 3.7. Let A ∈ Cn be an exceptional extremal copositive matrix. Let Gmin be the graph on

n vertices such that Gmin has an edge (i, j) if and only if there exists a minimal zero of A with support

{1, . . . , n} \ {i, j}. Then Gmin cannot contain a cycle of length strictly smaller than n.

Proof. For the sake of contradiction, suppose that Gmin contains a cycle C of length k < n. Let

I ⊂ {1, . . . , n} be the subset of vertex indices in the cycle, then Ī 6= ∅. By Theorem 3.5, all non-zero entries

of A are contained in the submatrix AI ∈ Ck.

Let now (i, j) be an edge in the cycle C and u a minimal zero of A with support {1, . . . , n}\{i, j}. Since

i, j ∈ I, we have Ī ⊂ suppu. On the other hand, suppu ∩ I 6= ∅, because the cycle C has length at least 3.

Consider the vector v ∈ Rn defined element-wise by

vl =

{
ul, l ∈ I,
0, l 6∈ I.

This vector is also a zero of A, and supp v ⊂ suppu. Since u is a minimal zero, we must have suppu =

supp v ⊂ I, leading to a contradiction with the inclusion Ī ⊂ suppu. This completes the proof.

Corollary 3.8. Let A ∈ Cn be an exceptional extremal copositive matrix. Suppose all minimal zeros

of A have supports of cardinality n − 2. Let Gmin be the graph defined in Corollary 3.7, and G the graph

defined in Theorem 3.5. Then Gmin and G coincide and equal the cycle graph Cn.

Proof. Assume the notations of the corollary. First we show that no three edges of Gmin can meet

in the same vertex. For the sake of contradiction, let i, j, k be distinct vertices such that (i, k) and (i, j)

are edges of Gmin. Then there exist minimal zeros u, v of A with supports I = {1, . . . , n} \ {i, k} and

J = {1, . . . , n} \ {i, j}, respectively. We have J \ I = {k}, and these minimal zeros satisfy the conditions

of Lemma 2.7. Hence, there are no minimal zeros w of A other than the multiples of u or v which have a

support satisfying suppw ⊂ {1, . . . , n} \ {i}. This means Gmin cannot have an edge (i, l) with l 6∈ {j, k},
proving our claim.

On the other hand, by Lemma 2.8, there must be at least n linearly independent minimal zeros of A,

which by Lemma 2.6 correspond to at least n distinct edges of Gmin. However, by the Dirichlet principle,

a graph with n vertices and at least n edges such that at most two edges join in each vertex must contain

exactly n edges such that there are exactly two edges joining at each vertex. Thus, Gmin is a disjoint union

of cycles.

By Corollary 3.7, no cycle can have a length strictly smaller than n. Thus, Gmin is the cycle graph Cn.

Now by Lemma 2.4, the zero supports of A have cardinality at most n− 2. On the other hand, no zero

can have a support of cardinality strictly less than n − 2, because there are no minimal zeros with such

supports. It follows that every zero of A is also a minimal zero, and the graphs Gmin and G coincide. This

concludes the proof.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 34, pp. 28-34, February 2018.

Roland Hildebrand 34

Copositive matrices such that the graph G defined in Theorem 3.5 or the graph Gmin defined in Corollary

3.7 is the cycle graph Cn have been studied in [11]. Therefore, the classification of all exceptional extremal

copositive matrices such that all their minimal zeros have supports of cardinality n− 2 reduces to the cases

considered in [11].
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