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ON THE NOTION OF SCALAR PRODUCT FOR FINITE-DIMENSIONAL
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EKATERINA PERVOVA†

Abstract. It is known that the only finite-dimensional diffeological vector space that admits a diffeologically smooth

scalar product is the standard space of appropriate dimension. In this note, a way to dispense with this issue is considered, by

introducing a notion of pseudo-metric, which, said informally, is the least-degenerate symmetric bilinear form on a given space.

This notion is applied to make some observations on subspaces which split off as smooth direct summands (providing examples

which illustrate that not all subspaces do), and then to show that the diffeological dual of a finite-dimensional diffeological

vector space always has the standard diffeology and in particular, any pseudo-metric on the initial space induces, in the obvious

way, a smooth scalar product on the dual.
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1. Introduction. One of the first surprising findings which one makes when encountering diffeology

for the first time is the inclusion L∞(V,W ) < L(V,W ), which says that the space of all (diffeologically)

smooth linear maps between two diffeological vector spaces, V and W , can be strictly smaller than that of

all maps that are simply linear1. Stemming from that, an even more surprising situation presents itself: A

(finite-dimensional) diffeological vector space that does not admit a smooth scalar product. This is a known

fact (see [1, p. 74, Ex. 70]), and easily established at that, yet, it is still surprising, in and of itself, and also

for how easily this can be illustrated, using the presence of just one non-differentiable (in the usual sense)

plot.

Thus, as mentioned in the above-given reference, any finite-dimensional diffeological vector space that

admits a smooth scalar product is necessarily the usual Rn, with its usual smooth structure (the diffeology

that consists of all usual smooth maps). The choices at this point are, to abandon the whole affair (meaning to

concentrate on infinite-dimensional spaces, where the similar situation does not seem to occur), to consider

a kind of pseudo-metrics (meaning the sort of least degenerate symmetric bilinear form that exists on a

given space), or, finally, to re-define scalar product as ones taking values in R endowed, not with the

standard diffeology, but with the piecewise-smooth diffeology. We concentrate on the second of the above

approaches, and it does lead to a few interesting conclusions, mainly regarding the diffeological dual and the

fact that a pseudo-metric induces an isomorphism of it with a specific subspace, which is a smooth summand.

Furthermore, it gives rise to a smooth scalar product on the dual, reflecting as much as possible of the usual

duality for the standard vector spaces.

Finally, a disclaimer: A lot of what is written here might be of a kind of implicit knowledge for people
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1Say what? It happens in functional analysis already? Well, whatever. I prefer to keep it simple (jokes apart, in diffeology

it happens in finite dimension already).
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working in the area. Part of the aim of this paper is to collect these facts in one place, and to make explicit

what is implicit elsewhere2.

2. Diffeology and diffeological vector spaces. We briefly recall the main definitions regarding

diffeological spaces and diffeological vector spaces.

Diffeological spaces and smooth maps. We first recall the notion of a diffeological space and that of a

smooth map between such spaces.

Definition 2.1. ([5]) A diffeological space is a pair (X,DX) where X is a set and DX is a specified

collection of maps U → X (called plots) for each open set U in Rn and for each n ∈ N, such that for all

open subsets U ⊆ Rn and V ⊆ Rm the following three conditions are satisfied:

1. (The covering condition) Every constant map U → X is a plot;

2. (The smooth compatibility condition) If U → X is a plot and V → U is a smooth map (in the usual

sense), then the composition V → U → X is also a plot;

3. (The sheaf condition) If U = ∪iUi is an open cover and U → X is a set map such that each restriction

Ui → X is a plot, then the entire map U → X is a plot as well.

Usually, instead of (X,DX) one writes simply X to denote a diffeological space.

Definition 2.2. ([5]) Let X and Y be two diffeological spaces, and let f : X → Y be any map. The

map f is said to be smooth if for every plot p : U → X of X the composition f ◦ p is a plot of Y .

The standard examples of diffeological spaces are smooth manifolds, with diffeology consisting of all

usual smooth maps Rk ⊃ U → M , for all k ∈ N and for all domains U in Rk. A less standard example is,

for instance, any Euclidean space Rn with the so-called wire diffeology, namely, the diffeology generated (see

the next paragraph) by the set C∞(R,Rn).

Generated diffeology. Let X be a set, and let A = {Ui → X}i∈I be a set of maps with values in X.

The diffeology generated by A is the smallest, with respect to inclusion, diffeology on X that contains A. It

consists of all maps f : V → X such that there exists an open cover {Vj} of V such that f restricted to each

Vj either is constant or factors through some element Ui → X in A via a smooth map Vj → Ui. Note that

this construction illustrates the abundance of diffeologies on a given set: We can build one starting from any

set of maps; in particular, given any map p : U → X, there is (usually more than one) diffeology containing

it.

Fine diffeology and coarse diffeology. Given a set X, the set of all possible diffeologies on X is partially

ordered by inclusion, namely, a diffeology D on X is said to be finer than another diffeology D′ if D ⊂ D′
(whereas D′ is said to be coarser than D). Among all diffeologies, there is the finest one, which turns out to

be the natural discrete diffeology and which consists of all locally constant maps U → X; and there is also

the coarsest one, which consists of all possible maps U → X, for all U ⊆ Rn and for all n ∈ N. It is called

the coarse diffeology.

2Putting an interesting statement as an exercise in a book is just an invitation for somebody to re-discover it in good faith.

Just sayin’.
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Subset diffeology. Let X be a diffeological space, and let Y ⊂ X be a subset of it. The subset diffeology

on Y is the coarsest diffeology on Y such that the inclusion map Y ↪→ X is smooth. What this means,

specifically, is that p : Rk ⊃ U → Y is a plot for the subset diffeology on Y if and only if its composition

with the inclusion map is a plot of X.

Products and sums of diffeological spaces. Let {Xi}i∈I be a collection of diffeological spaces, where I is a

set of indices. The product diffeology D on the product
∏
i∈I Xi is the coarsest diffeology such that for each

index i ∈ I the natural projection πi :
∏
i∈I Xi → Xi is smooth. Note, in particular, that for the product of

two spaces X1 ×X2 every plot is locally of form (p1, p2), where pi is a plot of Xi for i = 1, 2.

If we now consider the disjoint union
∐
i∈I Xi of the spaces Xi, this can be endowed with the sum

diffeology, which by definition is the finest diffeology such that all the natural injections Xi ↪→
∐
i∈I Xi are

smooth. The plots for this diffeology are those maps that are plots of one of the components of the sum.

Diffeological vector space. Let V be a vector space over R. The vector space diffeology on V is any

diffeology of V such that the addition and the scalar multiplication are smooth, that is,

[(u, v) 7→ u+ v] ∈ C∞(V × V, V ) and [(λ, v) 7→ λv] ∈ C∞(R× V, V ),

where V × V and R× V are equipped with the product diffeology. A diffeological vector space over R is any

vector space V over R equipped with a vector space diffeology.

Fine diffeology on vector spaces. The fine diffeology on a vector space R is the finest vector space

diffeology on it; endowed with such, V is called a fine vector space. As an example, Rn with the standard

diffeology is a fine vector space.

The fine diffeology admits a more or less explicit description of the following form: Its plots are maps

f : U → V such that for all x0 ∈ U there exist an open neighbourhood U0 of x0, a family of smooth maps

λα : U0 → R, and a family of vectors vα ∈ V , both indexed by the same finite set of indices A, such that

f |U0
sends each x ∈ U0 into

∑
α∈A λα(x)vα:

f(x) =
∑
α∈A

λα(x)vα for x ∈ U0.

A finite family (λα, vα)α∈A, with λα ∈ C∞(U0,R) and vα ∈ V , defined on some domain U0 and satisfying

the condition just stated, is called a local family for the plot f .

Fine vector spaces possess the following property [1, 3.9], which in general is not true: If V is a fine

diffeological vector space, and W is any other diffeological vector space, then every linear map V → W is

smooth, i.e., L∞(V,W ) = L(V,W ).

Smooth scalar products. The existing notion of a Euclidean diffeological vector space does not differ much

from the usual notion of the Euclidean vector space. A diffeological space V is Euclidean if it is endowed

with a scalar product that is smooth with respect to the diffeology of V and the standard diffeology of R;

that is, if there is a fixed map 〈, 〉 : V × V → R that has the usual properties of bilinearity, symmetricity,

and definite-positiveness and that is smooth with respect to the diffeological product structure on V × V
and the standard diffeology on R. As has already been mentioned in the introduction, for finite-dimensional
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spaces this implies that the space in question is just the usual Rn, for appropriate n (see [1]). For reasons of

completeness we recall the precise statement and give a detailed proof of this fact3.

Proposition 2.3. Let V be Rn endowed with a vector space diffeology D such that there exists a smooth

scalar product. Then every plot p of D is a smooth map in the usual sense.

Proof. Let A be an n × n non-degenerate symmetric matrix such that the associated bilinear form on

V is smooth with respect to the diffeology D, and let {v1, . . . , vn} be its eigenvector basis. Let λi be the

eigenvalue relative to the eigenvector vi.

Let p : U → V be a plot of D; we wish to show that it is smooth as a map U → Rn. Recall that 〈·|·〉A
being smooth implies that for any two plots p1, p2 : U → V the composition 〈·|·〉A ◦ (p1, p2) is smooth as a

map U → R. Let ci : U → V be the constant map ci(x) = vi; this is of course a plot of D. Set p1 = p and

p2 = ci; then the above composition map writes as λi〈p(x)|vi〉, where 〈·|·〉 is the canonical scalar product on

Rn.

Since A is non-degenerate, all λi are non-zero; this implies that each function 〈p(x)|vi〉 is a smooth map.

And since v1, . . . , vn form a basis of V , this implies that for any v ∈ V the function 〈p(x)|v〉 is a smooth

one. In particular, this is true for any ej in the canonical basis of Rn; and in the case v = ej the scalar

product 〈p(x)|ej〉 is just the j-th component of p(x). Thus, we obtain that all the components of p are

smooth functions, therefore p is a smooth map.

3. The degeneracy of smooth forms on non-standard spaces. As mentioned in the introduction,

no finite-dimensional diffeological vector space except for the standard one of a given dimension admits

smooth non-degenerate bilinear forms; so there is only one space for each dimension that does. For exposition

purposes, we start with a detailed illustration of how this happens, via an example (this part is however

easily deduced from the proof of Proposition 2.3 above). We then consider the degree of degeneracy of

smooth bilinear forms on a given vector space (what does it mean, for a given V , to be the least-degenerate

bilinear form on it?), going on to the question of subspaces which do, or do not, split off as smooth direct

summands, and finally considering the diffeological dual.

3.1. Pseudo-metrics. A pseudo-metric is, roughly speaking, the best possible substitute for the notion

of a smooth scalar product in the case of a finite-dimensional vector space whose diffeology is not the standard

one.

The first example. The following example, already considered in [2], is presented for illustrative purposes.

Example 3.1. Let V = Rn, and let v0 ∈ V be any non-zero vector. Let p : R → V be defined as

p(x) = |x|v0; let D be any vector space diffeology on V that contains p as a plot4. Suppose that A is a

symmetric n× n matrix, and assume that the bilinear form 〈v|w〉A = vtAw associated to A is smooth with

respect to D and the standard diffeology on R. We claim that A is degenerate.

Indeed, 〈v|w〉A being smooth implies, in particular, that for any two plots p1, p2 : R→ V of V the com-

position map 〈·|·〉A ◦ (p1, p2) : R→ R is smooth in the usual sense; this map acts as R 3 x 7→ (p1(x))tAp2(x).

Let w ∈ V be an arbitrary vector; denote by cw : R → V the constant map that sends everything to w,

3Special thanks go to Patrick Iglesias-Zemmour and Yael Karshon who made me first think of it; I would have missed it

otherwise.
4Such diffeology does certainly exist; for instance, the coarse diffeology would do.
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cw(x) = w for all x ∈ R. Such a map is a plot for any diffeology on V . But then (〈·|·〉A◦(p, cw))(x) = |x|vt0Aw;

the only way for this to be smooth is to have vt0Aw = 0, and since there was no assumption on w, this implies

that 〈v0|·〉A is identically zero on the whole of V , i.e., that A is degenerate. In other words, V does not

admit a smooth scalar product.

Note that in the above example we could have taken p(x) = f(x)v0 with f(x) any function R→ R that is

not differentiable in at least one point; this suggests that there are numerous diffeological vector spaces that

do not admit diffeologically smooth scalar products. In fact, Proposition 2.3 shows that the phenomenon

is much more general: In order to have a smooth scalar product, we must ensure that all plots are smooth

maps.

The signature of a smooth bilinear form. Suppose that V is a finite-dimensional diffeological vector

space; let A be a symmetric n× n matrix (with n = dimV ) such that the associated bilinear form 〈·|·〉A on

V is smooth. Let (λ+, λ−, λ0) be the signature of this form; recall that V ∗ stands for the diffeological dual

of V (see [6] and [7]), i.e., the set of all smooth linear functionals on V .

Lemma 3.2. Let V ∗ be the diffeological dual of V . Then

λ0 ≥ n− dim(V ∗).

Proof. Choose a basis {v1, . . . , vn} of eigenvectors of A such that the last λ0 vectors are those relative

to the eigenvalue 0. For i = 1, . . . , n − λ0 let vi ∈ V ∗ be the dual function, that is, vi(w) = 〈vi|w〉A (it

is obviously smooth since 〈·|·〉A is smooth, so is an element of V ∗). It remains to notice that by standard

reasoning the elements v1, . . . , vn−λ0 are linearly independent (they belong to non-zero eigenvalues), so

n− λ0 ≤ dim(V ∗), hence the conclusion.

Notice that we can always find a smooth bilinear (symmetric) form for which we have λ0 = n−dim(V ∗).

It suffices to take any basis {f1, . . . , fk} of V ∗ (with k = dim(V ∗)) and consider
∑
i fi⊗ fi; this is obviously

a symmetric bilinear form on V , and it being smooth follows from Theorem 2.3.5 of [6]. By an obvious

argument, we can see that all the eigenvalues are non-negative; indeed, (
∑
i fi⊗fi)(v⊗v) =

∑
i(fi(v))2 ≥ 0.

Finally, the multiplicity of the eigenvalue 0 is precisely n− k, since f1, . . . , fk form a basis of V ∗.

Thus, the following definition makes sense.

Definition 3.3. Let V be a diffeological vector space of finite dimension n. A diffeological pseudo-metric

on V is a smooth bilinear symmetric form on V such that the eigenvalue 0 has multiplicity n − dim(V ∗),

and all the other eigenvalues are positive.

A pseudo-metric is the best notion of a smooth5 metric that can exist for an arbitrary finite-dimensional

diffeological vector space; note that if a given space is standard, i.e., it is of the only type which admits a

smooth metric, then obviously a pseudo-metric is a usual Euclidean metric. Of course, one can look for true

metrics which are not smooth but are at least piecewise-differentiable, or simply continuous, something that

we will do in the section that follows; meanwhile, we explore whatever applications pseudo-metrics might

have.

Remark 3.4. While it is more usual to use scalar products for various constructions of (multi)linear

algebra, we do note that a number of them hold in part for symmetric bilinear forms. A specific example

5Which means a bilinear form that takes values in R with standard diffeology and is smooth with respect to the latter.
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would be a Clifford algebra, which is defined for a vector space endowed with a symmetric bilinear form that

a priori does not have to be a scalar product (an extension of this notion into the diffeological context was

considered in [3]). Obviously, if it is not then one cannot speak of unitary action on the exterior algebra, for

example; yet, various constructions hold.

3.2. Smooth direct sums and pseudo-metrics. One easily observed fact that distinguishes diffeo-

logical vector spaces from their usual linear counterpart is that, in the diffeological case, there are two types

of direct sum: One that is smooth (in the sense described just below) and the other that is not.

Smooth splittings as direct sums. In general, if we have a diffeological vector space V (of finite dimension)

that, as a usual vector space, decomposes into a direct sum V = V1 ⊕ V2, then a priori the following two

diffeologies are different:

• the given diffeology of V , and

• the vector space sum diffeology on V1 ⊕ V2 obtained from the subset diffeologies on V1 and V2
6.

Example 3.5. Let us consider an example where the two might actually be different. Take V = R3

endowed with the vector space diffeology that is generated by the map p : R→ V acting by p(x) = |x|(e2+e3).

Set V1 = Span(e1, e2) and V2 = Span(e3). Observe that the subset diffeology on each of these subspaces is

just the standard diffeology of R2 and R respectively7. This means that the vector space sum diffeology on

their direct sum is again the standard one, which the diffeology on V is not; indeed, the projection on the

second coordinate is smooth (in the usual sense) for the standard diffeology, which does not happen for the

diffeology of V .

Standard subspaces that split off as direct summands. The example given in the previous paragraph

easily leads to some more general observations, such as the following.

Lemma 3.6. Let V be a finite-dimensional diffeological vector space, let V1 ≤ V be a subspace such that

the subset diffeology is standard, and let V = V1⊕V2 be its decomposition into a direct sum for some subspaces

V1, V2 ≤ V . This decomposition is smooth if and only if there exists a basis {v1, . . . , vk} of V1 such that the

projection8 on each vector vi is a smooth linear functional on V .

Proof. This is a consequence of Theorem 3.16 of [7]. Indeed, suppose that V = V1 ⊕ V2 is a smooth

decomposition. The projection on V1 is then smooth by definition, and by assumption that V1 is standard,

so is the projection of V1 onto any v ∈ V1. The projection of V onto the vector v, being the composition of

the two projections, is therefore smooth as well.

Suppose now that there exists a basis {v1, . . . , vk} of V1 as in the statement. Since V1 is standard and

all projections V on vi are smooth, the projection of V onto V1 is smooth as well, and it suffices to use the

6The vector space sum diffeology on a direct sum of diffeological vector spaces is the finest vector space diffeology that

contains the product diffeology; it is formed of all maps that locally are (formal) sums of plots of the summands.
7Let us prove this claim. Let q : U → V1 be a plot for the subset diffeology on V1; let qi : U → R be the projection

on Span(ei) ≤ V1 for i = 1, 2. It suffices to show that qi must necessarily be a smooth map (in the usual sense). Note

that by definition of the subset diffeology Q(u) = (q1(u), q2(u), 0) must be a plot for the diffeology of V . By definition

of the latter diffeology in the neighbourhood of zero it writes as Q(u) =
∑3

i=1 fi(u)ei +
∑k

j=1 hj(u) · (p ◦ Fj)(u), where

f1, f2, f3, h1, . . . , hk, and F1, . . . , Fk are usual smooth maps U → R; therefore up to smooth summands Q(u) writes as

(0,
∑

j hj(u)|Fj(u)|,
∑

j hj(u)|Fj(u)|), from which we conclude that
∑

j hj(u)|Fj(u)| ≡ 0 in the neighbourhood of u = 0. This

implies that q1, q2 are usual smooth maps, and the claim is proved for V1; the reasoning is analogous in the case of V2.
8By this we mean the map V → R acting by πi(

∑
i αivi + w) = αi, where w ∈ V2.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 34, pp. 18-27, February 2018.

Ekaterina Pervova 24

equivalence of conditions (1) and (3) of Theorem 3.16 of [7] to obtain the desired claim.

The maximal standard subspace relative to a pseudo-metric. As follows from the above discussion, a

pseudo-metric exists on any diffeological vector space (and we cannot do any better). On the other hand,

given a pseudo-metric 〈·|·〉A on a fixed diffeological vector space (V,D) of finite dimension, the subspace V0
of V spanned by all the eigenvectors belonging to the positive eigenvalues of 〈·|·〉A and considered with the

subset diffeology D0 induced by D is endowed, via the restriction of 〈·|·〉A, with a true metric; it follows then

from [1, p. 74, Ex. 70] that (V0,D0) is the standard Euclidean space of dimension n− λ0 = n− dim(V ∗).

Lemma 3.7. The subspace V0 splits off as a smooth direct summand.

Proof. Denote by V1 the subspace generated by all the eigenvectors relative to the eigenvalue 0. Obvi-

ously, V splits as the direct sum V = V0 ⊕ V1 in the usual sense; we need to check that this decomposition

is smooth, that is, that the diffeology on V coincides with the direct sum diffeology on V0 ⊕ V1. Now, by

Lemma 3.6, it suffices to check that the projection on each eigenvector in some basis of V0 is a smooth linear

functional on the whole of V .

The matrix A being symmetric, there exists an orthonormal (with respect to the usual scalar product

on Rn underlying V ) basis {v1, . . . , vn} of V composed of eigenvectors of A, where we can obviously assume

that the eigenvectors relative to all the positive eigenvalues (and so forming a basis of V0) are the first k

vectors, v1, . . . , vk. Let vi be one of these, relative to the eigenvalue λi, let π : V → R be the corresponding

projection, and let p : U → V be any plot of V ; we need to show that π ◦ p : U → R is smooth in the usual

sense. Write p(x) =
∑n
j=1 pj(x)vj ; recall that pi(x) = π ◦ p.

Since A defines a smooth bilinear form on V , and all the constant maps are plots, the assignment

x 7→ 〈vi|p(x)〉A defines a map U → R which is smooth in the usual sense. However, we have 〈v|p(x)〉A =∑n
j=1 λjpj(x)〈vi|vj〉 = λi||vi||2(π ◦ p)(x), where ||vi|| is the usual Euclidean norm of vi. Since neither it nor

λi are zero, we conclude that π ◦ p is smooth, as wanted.

Furthermore, the following is true.

Proposition 3.8. The subspace V0 is a maximal subspace of V with the subset diffeology that is standard

and which splits off as a smooth direct summand.

Proof. Suppose that V1 ⊃ V0 is a bigger subspace of V such that its subset diffeology is standard and

V1 also splits off as a smooth direct summand; let V = V1 ⊕ V ′1 be the corresponding smooth direct sum

decomposition. Define a new bilinear bilinear form ϕ on V by setting it to be the zero form on V ′1 , a scalar

product on V1, and V1 and V ′1 to be orthogonal. Since by assumption the decomposition is smooth and V1
has the standard diffeology, ϕ is smooth, and by construction it is symmetric and positive semi-definite.

Furthermore, it has rank dim(V1) > dim(V0), which contradicts Lemma 3.2, and we obtain the claim.

In other words, a pseudo-metric on V allows to extract, in a sense, from V its biggest standard part, on

which the diffeology includes essentially the usual smooth maps. Let us be more precise.

Corollary 3.9. Let V = W0 ⊕W1 be a smooth decomposition such that dim(W0) ≥ dim(V ∗), and the

subset diffeology on W0 is standard. Then there exists a pseudo-metric 〈·|·〉A on V such that W0 is the space

generated by the eigenvectors of A relative to the positive eigenvalues, and W1 is the space generated by the

eigenvectors relative to the eigenvalue 0.

In particular, dim(W0) = dim(V ∗). To summarize, all subspaces of V with standard sub-diffeology that
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in addition split off as smooth direct summands are associated to some pseudo-metric, provided they have

a sufficiently large dimension. We can actually show more: There is only one of them.

Proposition 3.10. The subspace V0 is an invariant of the finite-dimensional diffeological space V , i.e.,

it does not depend on the choice of a pseudo-metric 〈·|·〉A.

Proof. Let W0 6= V0 be another subspace of V of dimension k = dim(V ∗) such that the subset diffeology

on W0 is standard and W0 splits off as a smooth summand, V = W0 ⊕W1. Let w0 ∈ W0 \ V0; it writes

uniquely as w0 = v0 + v1. Note that by Lemma 3.6 the projections on both w0 and v0 are smooth linear

functionals; therefore so is the projection on v1. That would imply that Span(V0, v1) has standard diffeology

and splits off as a smooth summand; since its dimension is strictly greater than dim(V0) = dim(V ∗), this is

a contradiction.

3.3. The metric on V ∗ induced by a pseudo-metric on V . Here we consider a finite-dimensional

diffeological vector space V (we assume that its underlying vector space is identified with Rn), endowed with

a pseudo-metric 〈·|·〉A given by a symmetric matrix A. As for usual vector spaces, the pseudo-metric induces

a symmetric bilinear form on the diffeological dual V ∗ of V ; in this section we deal with this induced form.

The functional diffeology on V ∗. Recall [7] that in general, the diffeological dual V ∗ of V is not even

isomorphic to V , so not diffeomorphic to it; this occurs already in the finite-dimensional case (in addition

to [7], see Example 3.1 in [2]). Thus, it might well occur that while the diffeology on V is not standard, the

corresponding functional diffeology on its dual is. The following statement makes it precise.

Theorem 3.11. Let V be a finite-dimensional diffeological vector space, and let V ∗ be its diffeological

dual. Then the functional diffeology on V ∗ is standard (i.e., V ∗ is diffeomorphic to some Rk with standard

diffeology, for the appropriate k).

Proof. This is an easy consequence of Remark 3.6 and Property 8 (Section 5) of [7]. Indeed, let V0 be

the maximal standard subspace of V that splits off smoothly, and let V = V0 ⊕ V1 be the corresponding

smooth decomposition. It follows from Remark 3.6 of [7] that

V ∗ = (V0 ⊕ V1)∗ ∼= V ∗0 × V ∗1 = V ∗0 .

By Property (8) in [7], since V0 is fine and finite-dimensional, so is V ∗0 ; in particular, it is a standard space.

The subspace V0 and the diffeological dual. The proofs of Lemma 3.7 and of Theorem 3.11 suggest that

each pseudo-metric on V gives a natural identification between the corresponding V0 and V ∗ (that the two

spaces are a priori diffeomorphic is now obvious, since they are both standard spaces of the same dimension).

More precisely, the following is true.

Theorem 3.12. Let V be a finite-dimensional diffeological vector space, and let 〈·|·〉A be a pseudo-

metric on V . The restriction on the subspace V0 of the induced map Ψ : V → V ∗ (i.e., the map given by

v 7→ [w 7→ 〈w|v〉A]) is a diffeomorphism.

Proof. As has been already observed in the proof of Theorem 3.11, the subspace V0 admits an or-

thonormal (with respect to the canonical scalar product on Rn underlying V ) basis {v1, . . . , vk} composed

of eigenvectors of A; furthermore, if fi = Ψ(vi) for i = 1, . . . , k, then fi form a basis of V ∗. In particular,

the restriction of Ψ to V0 is a bijection with V ∗, hence an isomorphism.

Now, applying the reasoning from the proof of Lemma 3.7 we find that each plot p of V0 is of form

p(u) = p1(u)v1 + · · ·+ pk(u)vk for some smooth real-valued maps p1, . . . , pk. Hence, the composition Ψ ◦ p
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writes as (Ψ ◦ p)(u) = p1(u)f1 + · · · + pk(u)fk, which is obviously a plot of V ∗ (the maps p1, . . . , pk being

smooth, this is a plot for any vector space diffeology on V ∗), therefore Ψ is smooth. Vice versa, arguing as

in the proof of Theorem 3.11, every plot q of V ∗ writes as q(u) = q1(u)f1 + · · · + qk(u)fk for some smooth

real-valued maps q1, . . . , qk. Thus, the composition Ψ−1 ◦ q is of form (Ψ−1 ◦ q)(u) = q1(u)v1 + · · ·+ qk(u)vk,

which is a plot of V0. We conclude that Ψ is smooth with smooth inverse, hence the conclusion.

The induced metric on V ∗. It is now easy to see that any pseudo-metric on V induces a true metric

on V ∗, via the smooth surjection Ψ described in Theorem 3.12. Let us describe this precisely; notice first

of all that if f ∈ V ∗, then there is a single element v0 ∈ Ψ−1(f) such that v0 ∈ V0. Furthermore, every

other element in Ψ−1(f) is of form v0 + v1, where v1 ∈ V ⊥, the orthogonal of the whole V with respect

to the pseudo-metric 〈·|·〉A (equivalently, the subspace V1 spanned by all the eigenvectors relative to the

eigenvalue 0). Let now g ∈ V ∗ be another element of the dual V ∗, and let w0 + w1 ∈ Ψ−1(g). Then

obviously, 〈v0 + v1|w0 +w1〉A = 〈v0|w0〉A = 〈(Ψ|V0)−1(f)|(Ψ|V0)−1(g)〉A. The first equality implies that the

pushforward of the pseudo-metric 〈·|·〉A to V ∗ is well-defined (it could have been replaced by a reference to

[7], Proposition 3.12 (1), of which it is a partial instance); the second equality means that this pushforward

is a true metric. We summarize this discussion in the following statement.

Corollary 3.13. Any pseudo-metric 〈·|·〉A on V induces a true metric on the diffeological dual V ∗ of

V , via the natural pairing that assigns to each v ∈ V the smooth linear functional 〈·|v〉A.

Using the reasoning employed so far, we can also establish the inverse of this statement, namely, that

every smooth metric (scalar product) on V ∗ is induced by a pseudo-metric on V . Indeed, let 〈·|·〉B be

smooth metric on V ∗, given by a k× k matrix B. Let {f1, . . . , fk} be an orthonormal basis of V ∗ composed

of eigenvectors of B9. As has already been noted, the form
∑k
i=1 fi⊗ fi gives a certain pseudo-metric 〈·|·〉A

on V ; it remains to check that this pseudo-metric does induce 〈·|·〉B on V ∗, and this follows from the fact

that {f1, . . . , fk} is an orthonormal basis.

3.4. A simple example of a pseudo-metric. Let us return to an above example, considering V = R3

endowed with the vector space diffeology generated by the plot p : R → V given by p(x) = |x|(e2 + e3).

Observe first that the diffeological dual of V is generated by maps e1 and e2− e3 (with {e1, e2, e3} being the

canonical basis of the usual dual of R3). In particular, dim(V ∗) = 2.

It is also easy to see that any smooth symmetric bilinear form on V is given by a matrix of form c a −a
a b −b
−a −b b

 for some a, b, c ∈ R (the vector (0, |x|, |x|) must be orthogonal to any other vector of

R3 with respect to the associated bilinear form). For this matrix to define a pseudo-metric, we must have

b, c > 0 and a2 < bc.

To give a specific example, we can take a = 1, b = c = 2, obtaining A =

 2 1 −1
1 2 −2
−1 −2 2

. The two

positive eigenvalues of A are λ1 = 3 +
√

3 and λ2 = 3 −
√

3; the corresponding (non unitary) eigenvectors

9Note that the basis {f1, . . . , fk} generates the standard diffeology on V ∗, in the sense that each plot q : U → V ∗ is locally

of form q(u) = q1(u)f1 + · · · + qk(u)fk for some smooth functions q1, . . . , qk : U → R. Indeed, each plot does write in this

manner, simply by virtue of {f1, . . . , fk} being a basis; furthermore, 〈·|·〉B being smooth, and each constant map being a plot,

implies that 〈q(u)|fi〉B = qi(u) is smooth in the usual sense as a map U → R.
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are v′1 =

 3 +
√
3

3 + 2
√
3

−3− 2
√
3

 and v′2 =

 3−
√
3

3− 2
√
3

2
√
3− 3

. We can however easily find that the subspace V0 can

be (better) described as V0 = Span(e1, e2 − e3); the restriction of 〈·|·〉A to V0, with respect to the basis

{e1, e2 − e3} has the matrix

(
2 2

2 8

)
. We also note that the subspace V1 (generated by eigenvectors

relative to 0) is Span
( 0

1

1

).

Finally, let us calculate the matrix of the induced metric on V ∗ with respect to its basis {e1, e2 − e3}.
For this, we need to find their pre-images with respect to Ψ|V0

(we just write Ψ for brevity). By an easy

calculation Ψ−1(e1) = 2
3e1 −

1
6 (e2 − e3) and Ψ−1(e2 − e3) = − 1

3e1 + 1
3 (e2 − e3). Calculating their pairwise

products with respect to the pseudo-metric 〈·|·〉A, we find the matrix 1
9

(
6 5

5 6

)
.
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