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ALGEBRAIC METHODS FOR THE CONSTRUCTION OF ALGEBRAIC-DIFFERENCE

EQUATIONS WITH DESIRED BEHAVIOR∗
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Abstract. For a given system of algebraic and difference equations, written as an Auto-Regressive (AR) representation

A(σ)β(k) = 0, where σ denotes the shift forward operator and A (σ) a regular polynomial matrix, the forward-backward

behavior of this system can be constructed by using the finite and infinite elementary divisor structure of A (σ). This work

studies the inverse problem: Given a specific forward-backward behavior, find a family of regular or non-regular polynomial

matrices A (σ), such that the constructed system A (σ)β (k) = 0 has exactly the prescribed behavior. It is proved that this

problem can be reduced either to a linear system of equations problem or to an interpolation problem and an algorithm is

proposed for constructing a system satisfying a given forward and/or backward behavior.
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1. Introduction. Let R be the field of reals, R [σ] the ring of polynomials with coefficients from R
and R(σ) the field of rational functions. By R[σ]p×m, R(σ)p×m, Rpr(σ)p×m we denote the sets of p × m
polynomial, rational and proper rational matrices with real coefficients. We are going to study the behavior

of systems of linear algebraic and difference equations that are described by the matrix equation

Aqβ(k + q) + · · ·+A1β(k + 1) +A0β(k) = 0,

or equivalently,

A(σ)β(k) = 0, (1.1)

where k = 0, 1, . . . , N − q, β(k) ∈ Rr is the state of the system, σ denotes the forward shift operator

σiβ(k) = β(k + i), and

A(σ) = Aqσ
q +Aq−1σ

q−1 + · · ·+A1σ +A0 ∈ R[σ]r×r (1.2)

is a regular polynomial matrix with detA(σ) 6= 0 and Aq 6= 0, A0 6= 0. Systems described by (1.1) are called

(Auto-Regressive) AR-representations. The number q represents the maximum number of time shifts and is

called the lag of the system [17].

Systems of the form (1.1) often appear in systems theory, since they accurately model many economic,

biological and other discrete time phenomena. For example, the Leslie Population Growth Model in biology

and the Leontief Model of a multisector economy in economics [5] are both examples of singular systems,

which are easily seen to be a special case of AR systems (1.1).
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The solution space of system (1.1) consists of both forward and backward solutions and is denoted as

B := {β(k) : [0, N ]→ Rr | (1.1) is satisfied ∀k ∈ [0, N − q]} .

The forward solution space is the vector space that consists of solutions β(k) starting from given initial

conditions β(0), . . . , β(q − 1) and propagating forward in time, and is connected to the finite elementary

divisor structure of A(σ). The backward solution space is the vector space consisting of solutions β(k)

starting from given final conditions β(N), . . . , β(N − q + 1) and propagating backward in time, and it is

connected to the infinite elementary divisor structure of A(σ), see also [2,15,16]. The algebraic structure of

polynomial matrices has been studied in the early works of [6, 9, 10], and later in [1, 4, 7, 8, 11, 12, 22, 25, 30]

and the references therein.

The construction of the solution space of such systems has been previously studied by various authors,

initially in [10] and later in [2,15] whereas an extension of the method in [10] to non regular systems is given

in [14]. In this paper, we study the inverse problem, that is: Given a certain forward/backward solution

space, find a system of algebraic-difference equations with the prescribed solution space. A partial solution

to this problem has been described in [10, Section 8.3], where only the smooth behavior for continuous time

and the forward behavior for discrete time regular systems was studied. This method was later extended

in [13] for continuous time systems, to include both the smooth and impulsive behavior and in [19] for

discrete time systems to include both the forward and the backward behavior. Both these methods rely on

the computation of the Jordan Pairs of A(σ) and cannot be applied to non regular systems, that is, systems

with A(σ) ∈ R[σ]r×m and r 6= m or with A(σ) ∈ R[σ]r×r and detA(σ) = 0. In addition, they are much

less versatile in handling the free parameters of the matrices A0, . . . , Aq and require a deep understanding

of the structure of polynomial matrices. It should also be noted that the problem of constructing a system

with prescribed solutions has been studied in the field of behavioral systems theory by [3, 17, 26–29, 31–33],

although the approach used was different.

In this paper, we shall further extend the results of [10, 13, 19] for the case where both a forward and

backward behavior is under consideration, by using a novel methodology that can also be used to construct

non regular systems, a case that was not addressed in [10, 13]. The core of our proposed method lies in the

fact that the vectors that formulate a solution of the system (forward or backward), actually satisfy a certain

system of equations, which we are going to solve in terms of the unknown coefficients of A(σ), in order to

obtain the original system. Thus, the problem of constructing a system of linear algebraic and difference

equations is reduced to solving a linear system of equations.

The remaining of the paper is organized as follows. In Section 2, the necessary mathematical background

from the theory of polynomial matrices is presented. In Section 3, the forward and backward solution of

(1.1) is provided. In Section 4, an algorithm is proposed for the construction of a system with prescribed

forward and backward behavior. In Section 5, examples are provided to illustrate the results. Section 6

concludes the paper.

2. Algebraic structure of polynomial matrices. In this section, some background on polynomial

matrices is provided.

Definition 2.1. [23] A square polynomial matrix A(σ) ∈ R[σ]r×r is called unimodular if detA(σ) =

c ∈ R, c 6= 0. A rational matrix A(σ) ∈ Rpr(σ)r×r is called biproper if limσ→∞A(σ) = E ∈ Rr×r, with

rankE = r.
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Theorem 2.2. [9, 23] Let A(σ) be as in (1.2). There exist unimodular matrices UL(σ) ∈ R[σ]
r×r

,

UR(σ) ∈ R[σ]
r×r

such that

SC
A(σ)(σ) = UL(σ)A(σ)UR(σ) = diag (1, . . . , 1, fz(σ), fz+1(σ), . . . , fr(σ)) , (2.3)

with 1 ≤ z ≤ r and fj(σ)|fj+1(σ), for j = z, z + 1, . . . , r. SC
A(σ)(σ) is called the Smith form of A(σ), where

fj(σ) ∈ R [σ] are the invariant polynomials of A(σ). The zeros λi ∈ C of fj(σ), for j = z, z + 1, . . . , r, are

called finite zeros of A(σ). Assume that A(σ) has ` finite, distinct zeros. The partial multiplicities ni,j of

each zero λi ∈ C, for i = 1, . . . , ` satisfy

0 ≤ ni,z ≤ ni,z+1 ≤ · · · ≤ ni,r,

with fj(σ) = (σ − λi)ni,j f̂j(σ), for j = z, . . . , r and f̂j(λi) 6= 0. The terms (σ − λi)ni,j are called finite

elementary divisors of A(σ) at λi. The multiplicity of each zero is defined as ni =
∑r
j=z ni,j. We denote by

n the sum of the degrees of the finite elementary divisors of A(σ),

n := deg detA(σ) = deg

 r∏
j=z

fj(σ)

 =
∑̀
i=1

r∑
j=z

ni,j . (2.4)

Similarly, we can find UL(σ), UR(σ) ∈ R(σ)r×r having no poles and zeros at σ = λ0, such that

Sλ0

A(σ)(σ) = UL(σ)A(σ)UR(σ) = diag (1, . . . , 1, (σ − λ0)
nz , . . . , (σ − λ0)

nr ) .

Sλ0

A(σ)(σ) is called the local Smith form of A(σ) at the point λ0.

Theorem 2.3. [24] Let A(σ) be as in (1.2). There exist biproper matrices UL(σ), UR(σ) ∈ Rpr(σ)r×r

such that

UL(σ)A(σ)UR(σ) = S∞A(σ)(σ) = diag

σq1 , . . . , σqk︸ ︷︷ ︸
k

,

r−k︷ ︸︸ ︷
1

σq̂k+1
,

1

σq̂k+2
, . . . ,

1

σq̂r

 ,

with

q1 ≥ · · · ≥ qk ≥ 0, q̂r ≥ q̂r−1 ≥ · · · ≥ q̂k+1 > 0, (2.5)

and 1 ≤ k ≤ r. S∞A(σ)(σ) is called the Smith form of A(σ) at infinity. If p∞ is the number of qi’s in (2.5)

with qi > 0, then we say that A(σ) has p∞ poles at infinity, each one of order qi > 0. Also, if z∞ is the

number of q̂i’s in (2.5), then we say that A(σ) has z∞ zeros at infinity, each one of order q̂i > 0. It is proved

in [23] that q1 = q.

Definition 2.4. [23] The dual polynomial matrix of A(σ) is defined as

Ã(σ) := σqA

(
1

σ

)
= A0σ

q +A1σ
q−1 + · · ·+Aq. (2.6)

Theorem 2.5. [23] Let Ã(σ) be as in (2.6). There exist matrices ŨL(σ) ∈ R(σ)
r×r

, ŨR(σ) ∈ R(σ)
r×r

having no poles or zeros at σ = 0, such that

S0
Ã(σ)

(σ) = ŨL(σ)Ã(σ)ŨR(σ) = diag (σµ1 , . . . , σµr ) .

S0
Ã(σ)

(σ) is the local Smith form of Ã(σ) at σ = 0. The terms σµj are the finite elementary divisors of Ã(σ)

at zero and are called the infinite elementary divisors (i.e.d.) of A(σ).
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The connection between the Smith form at infinity of A(σ) and the Smith form at zero of the dual

matrix is given in [11,23]:

S0
Ã(σ)

(σ) = diag

1, σq−q2 , . . . , σq−qk︸ ︷︷ ︸
i.p.e.d.

, σq+q̂k+1 , . . . , σq+q̂r︸ ︷︷ ︸
i.z.e.d.

 ≡ diag (σµ1 , . . . , σµr ) , (2.7)

where by i.p.e.d. and i.z.e.d. we denote the infinite pole and infinite zero elementary divisors, respectively.

From the above formula it is seen that the degrees of the infinite elementary divisors of A(σ) are given by

µ1 = q − q1
(q=q1)

= 0,

µj = q − qj , j = 2, 3, . . . , k,

µj = q + q̂j , j = k + 1, . . . , r.

We denote by µ the sum of the degrees of the infinite elementary divisors of A(σ), that is

µ :=

r∑
j=1

µj . (2.8)

Lemma 2.6. [2, 10] Let A(σ) be as in (1.2). Let also n, µ be the sum of the degrees of the finite and

infinite elementary divisors of A(σ), as defined in (2.4) and (2.8). Then

n+ µ = rq. (2.9)

The above relation is of fundamental importance in the sequel, since it connects the dimension of the

forward and backward behavior (n and µ respectively) of the AR-representation (1.1) with the lag (q) and

the dimension (r) of A(σ).

It should also be noted that in the case where the matrix A(σ) is non-regular, the algebraic structure

of A(σ), and by extension the solution space of (1.1), is connected with additional invariants due to the left

and right null space of A(σ) (see [7, 14,20]).

3. The behavior of a system described by an AR-Reresentation. In this section, we present

the forward and backward behaviors of (1.1).

3.1. Finite elementary divisors and forward solution space. Let us assume that A(σ) has `

finite, distinct zeros λ1, . . . , λ` where λi ∈ C, i = 1, . . . , `, and let SC
A(σ)(σ) be as in (2.3). Assume that the

partial multiplicities of the zeros λi ∈ C are 0 ≤ ni,z ≤ ni,z+1 ≤ · · · ≤ ni,r. Let uj(σ) ∈ R[σ]
r

be the columns

of UR(σ) and u
(φ)
j (σ) := (∂φ/∂σφ)uj(σ). Let also

βij,φ := 1
φ!u

(φ)
j (λi), i = 1, 2, . . . , `, j = z, z + 1, . . . , r, φ = 0, 1, . . . , ni,j − 1.

Define the vector valued functions

βFi,j,φ(k) := λki β
i
j,φ + kλk−1i βij,φ−1 + · · ·+

(
k

φ

)
λk−φi βij,0, for λi 6= 0, (3.10)

βFi,j,φ(k) := δ(k)βij,φ + δ(k − 1)βij,φ−1 + · · ·+ δ(k − φ)βij,0, for λi = 0, (3.11)

where i = 1, 2, . . . , `, j = z, z + 1, . . . , r, φ = 0, 1, . . . , ni,j − 1, k ≥ φ, and δ(k) denotes the Kronecker delta

function.
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Theorem 3.1. [14] The vector valued functions βFi,j,φ(k), as defined in (3.10)–(3.11), are solutions of

(1.1).

Theorem 3.2. The vector valued functions βFi,j,φ(k) defined in (3.10)–(3.11) are solutions of (1.1) if

and only if the vectors βij,0, . . . , β
i
j,ni,j−1 satisfy the following system of equations:

(
A(ni,j−1)(λi)

(ni,j−1)! · · · A(λi)
) βij,0 · · · 0r×1

...
. . .

...

βij,ni,j−1 · · · βij,0


︸ ︷︷ ︸

Wi,j

= 0r×ni,j , (3.12)

with Wi,j ∈ Crni,j×ni,j .

Proof. By substituting βFi,j,φ(k) in (1.1) for φ = 0, . . . , ni,j−1, the above system of equations is straight-

forwardly derived.

3.2. Infinite elementary divisors and backward solution space. Let

S0
Ã(σ)

(σ) = ŨL(σ)Ã(σ)ŨR(σ) = diag (σµ1 , . . . , σµr )

be the Smith form of Ã(σ) at λ = 0, with Ã(σ) = A0σ
q + A1σ

q−1 + · · · + Aq, as defined in (2.6). Let also

ŨR(σ) =
(
ũ1(σ) · · · ũr(σ)

)
, where ũj(σ) ∈ R(σ)

r×1
and ũ

(i)
j (σ), Ã(i)(σ) are the ith derivatives of ũj(σ)

and Ã(σ) respectively, for i = 0, 1, . . . , µj − 1 and j = 2, . . . , r (since µ1 = 0). Let

xj,i := 1
i! ũ

(i)
j (0), i = 0, 1, . . . , µj − 1, j = 2, . . . , r, (3.13)

and define the vector valued functions

βBj,φ(k) := xj,φδ(N − k) + · · ·+ xj,0δ(N − (k + φ)), (3.14)

where j = 2, . . . , r, φ = 0, . . . , µj − 1.

Theorem 3.3. [14] The vector valued functions βBj,φ(k) defined in (3.14) are solutions of (1.1).

Theorem 3.4. The vector valued functions βBj,φ(k) defined in (3.14), are solutions of (1.1) if and only

if the vectors xj,0, . . . , xj,µj−1 in (3.13) satisfy the system of equations:

(
Aq · · · A0

)

xj,0 xj,1 · · · xj,q · · · xj,q+q̂j−1

0 xj,0 · · ·
...

...
...

...
. . . · · ·

...
...

...

0 · · · 0 xj,0 · · · xj,q̂j−1


︸ ︷︷ ︸

QBzj

= 0r×(q+q̂j), (3.15a)

with QBzj ∈ Rr(q+1)×(q+q̂j), for the case of infinite zero elementary divisors (i.z.e.d.), µj, j = k+ 1, . . . , r, or

(
Aq · · · Aqj+1

)

xj,0 xj,1 · · · xj,q−qj−1

0 xj,0 · · ·
...

...
. . . · · ·

...

0 · · · 0 xj,0


︸ ︷︷ ︸

Q
Bp
j

= 0r×(q−qj), (3.15b)
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with Q
Bp
j ∈ Rr(q+1)×(q−qj), for the case of infinite pole elementary divisors (i.p.e.d), µj, j = 2, . . . , k (see

(2.7)).

Proof. By substituting βBj,φ(k) in (1.1) for φ = 0, . . . , µj − 1, the above system of equations is straight-

forwardly derived.

4. Construction of a system with given forward and/or backward behavior. Theorem 3.2

states that in order for the vector valued function βFi,j,φ(k) in (3.10)–(3.11) to be a solution of A(σ)β(k) = 0,

the vectors βij,0, . . . , β
i
j,ni,j−1 need to satisfy (3.12). Solving the above system of equations, we can obtain the

matrices, A(ni,j−1)(λi) . . . , A
′(λi), A(λi), that represent the values of A(σ) and its derivatives at λi. Thus,

the evaluation of A(σ) is reduced to a Hermite interpolation problem. Alternatively, using the relation

A(ε)(λi)

ε!
=

(
q

ε

)
Aqλi

q−ε + · · ·+
(
ε+ 1

ε

)
Aε+1λi +

(
ε

ε

)
Aε

⇔ A(ε)(λi)

ε!
=
(
Aq · · · Aε

)
(
q
ε

)
λi
q−εIr
...

Ir

 ,

for ε = 0, . . . , ni,j − 1, we rewrite (3.12) as follows:(
Aq · · · A0

)
Qi,jWi,j = 0r×ni,j , (4.16)

where

Qi,j =



(
q

ni,j−1
)
λi
q−(ni,j−1)Ir · · · qλq−1i Ir λi

qIr
...

. . .
...

...(
ni,j
ni,j−1

)
λiIr

. . .
...

...

Ir 2λiIr λ2i Ir
...

. . . Ir λiIr
0r · · · 0r Ir


∈ Cr(q+1)×rni,j , (4.17)

with i = 1, 2, . . . , `, j = z, z + 1, . . . , r.

In the case where ni,j > q, the derivatives of A(σ) of order higher than q in (3.12) will be equal to zero.

In this case, the matrices Qi,j ,Wi,j in (4.16) take the following simplified form

(
Aq · · · A0

)Ir · · · λqi Ir
...

. . .
...

0r · · · Ir


β

i
j,ni,j−q−1 · · · βi

j,0

...
. . .

βi
j,ni,j−1 · · · · · · βi

j,0

 = 0r×ni,j .

This system of equations can be used to solve the inverse problem. That is, given a time sequence in the

form of βFi,j,φ(k), we can always solve the system of linear equations (4.16) in terms of the unknown matrices

A0, A1, . . . , Aq in order to construct A(σ). Thus, the modeling problem has been reduced to solving a linear

system of equations over R.

Similarly to Theorem 3.2, Theorem 3.4 states that in order for a vector valued function βBj,φ(k) in (3.14)

to be a solution of A(σ)β(k) = 0, the vectors xj,0, . . . , xj,µj−1 need to satisfy (3.15). Solving this system

of equations in terms of the unknown matrices A0, A1, . . . , Aq we can construct the matrix A(σ) and thus
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the corresponding AR-Representation (1.1) with the prescribed behavior. Note that the solution of (3.15)

is actually based on the computation of the left kernel of a certain matrix or similarly from the right kernel

of its transpose. Matlab is using two methods for the computation of the right kernel of the transpose of

this matrix : a) finding an orthonormal basis of the null space of this matrix by using the singular value

decomposition method, b) finding a ”rational” basis for the null space by using the the reduced row echelon

form of the matrix.

Combining Theorems 3.2 and 3.4, in order to construct a system of algebraic and difference equations

that satisfies a desired forward and a backward behavior, we can solve both systems (4.16) and (3.15) and

find a solution that satisfies both. As a result, the system produced will have a solution space spanned by

the given vector valued functions. These results give rise to Algorithm 1.

Remark 4.1. In the case where, in Step 1, there exists no q such that n+ µ = rq, the resulting matrix

A(σ) will describe a system of algebraic-difference equations with βFi,j,φ(k) and βB
j̃,φ̃

(k) as part of its solution

space, which will include additional vector valued functions linearly independent from the ones that are given.

In this case, the choice of the free parameters of the matrices Ai will determine the value of the additional

zeros and thus, this choice will determine whether the constructed system will have certain properties, like

stability.

Remark 4.2. In Step 5, the resulting matrices may have a large number of independent entries aij .

If there are no other requirements on the system’s structure, then the only constraint in choosing the free

parameters is that the resulting matrix will have nonzero determinant. Nonetheless, several other structural

properties may be required for the constructed system, like the polynomial matrix having symmetric (Ai =

ATi ), skew-symmetric (Ai = −ATi ), or alternating (Ai = (−1)iATi or Ai = (−1)i+1ATi ) coefficients. Systems

with such structure often appear in continuous time, in the modelling of mechanical systems, see for example

[18,21].

Remark 4.3. Every matrix that is left unimodularly equivalent to the polynomial matrix A(σ) con-

structed in Algorithm 1 gives rise to a model with exactly the same forward behavior with (1.1). That is,

all matrices

A1(σ) = U(σ)A(σ),

where U(σ) is unimodular, satisfy A1(σ)βFi,j,φ(k) = 0. This is because multiplication by U(σ) does not alter

the finite zero structure of A(σ) and thus, the forward behavior of the corresponding system remains the

same (see [29]).

From the connection between the Smith form at infinity of A(σ) and the Smith form at zero of the

dual matrix Ã(σ) in (2.7), it can be seen that the infinite elementary divisors of A(σ), that generate the

backward solutions of (1.1), are connected to the finite elementary divisors of the dual matrix at λ = 0,

that in turn generate forward solutions for the dual system Ã(σ)β(k) = 0. More specifically, in [19] the

connection between these two behaviors was explicitly given by the following theorem.

Theorem 4.4. [19] The vector valued functions βBj,φ(k) defined in (3.14) are solutions of (1.1) if and

only if the vector valued functions

β̃j,φ(k) = xj,0δ(k − φ) + · · ·+ xj,φδ(k),

where j = 2, . . . , r, φ = 0, . . . , µj − 1, are solutions of the dual system Ã(σ)β(k) = 0.

Under the above consideration that the backward solutions of (1.1) give rise to forward solutions of its

dual system, Remark 4.3 can also be applied here, as follows.
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Algorithm 1 Construction of a system with a prescribed forward and/or backward behavior.

Suppose that a finite number of functions of the form

βFi,j,φ(k) := λki β
i
j,φ + kλk−1i βij,φ−1 + · · ·+

(
k

φ

)
λk−φi βij,0, (4.18a)

βFi,j,φ(k) := δ(k)βij,φ + δ(k − 1)βij,φ−1 + · · ·+ δ(k − φ)βij,0, (4.18b)

βB
j̃,φ̃

(k) := xj̃,φ̃δ(N − k) + · · ·+ xj̃,0δ(N − (k + φ̃)) (4.18c)

are given, with i = 1, 2, . . . , `, j = z, z+1, . . . , r, φ = 0, 1, . . . , ni,j−1 and k ≥ φ, j̃ = 2, . . . , r, φ̃ = 0, . . . , µj̃−1.

Step 1 Define n =
∑̀
i=1

r∑
j=z

ni,j and µ :=
r∑̃
j=2

µj̃ . If r|(n+ µ), then

q =
n+ µ

r
,

else

q = [
n+ µ

r
] + 1,

where [·] denotes the integer part of the given argument.

end if.

Step 2 Construct the matrices Qi,j ,Wi,j , defined in (3.12) and (4.17) and combine them as

Qi =
(
Qi,z · · · Qi,r

)
∈ Cr(q+1)×rni , Wi =

(
Wi,z · · · Wi,r

)
∈ Crni×ni , i = 1, . . . , `,

where ni =
∑r
j=z ni,j and

Q =
(
Q1 · · · Q`

)
∈ C(q+1)r×nr, W = blockdiag (W1, . . . ,W`) ∈ Cnr×n.

Step 3 Construct the matrices QBz
j̃

and/or Q
Bp

j̃
defined in (3.15) and combine them as

QB =
(
QB2 · · · QBr

)
∈ Rr(q+1)×µ,

that can be a combination of the matrices QBz
j̃

and Q
Bp

j̃
, depending on the form of βB

j̃,φ̃
(k) that are given.

Step 4 Solve the system of equations (
Aq · · · A0

)
QW = 0r×n,

and (
Aq · · · A0

)
QB = 0r×µ or

(
Aq · · · Aqk+1

)
QB = 0r×µ,

over R in terms of the unknown matrices Ai.

Step 5 Choose the free entries aij of each matrix Ai so that detA(σ) 6= 0. The output matrix A(σ) will

correspond to a system of the form A(σ)β(k) = 0, with (4.18) as its solutions.

Remark 4.5. Every polynomial matrix A1(σ) whose dual is left unimodularly equivalent to the dual of

the polynomial matrix A(σ) constructed in Algorithm 1 gives rise to a model with exactly the same backward
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behavior with (1.1). That is, all matrices A1(σ) such that:

Ã1(σ) = U(σ)Ã(σ),

where U(σ) is unimodular, satisfy A1(σ)βBj,φ(k) = 0.

Remark 4.6. In the case where backward propagating solutions due to the finite elementary divisors of

A(σ) are given, which are in the form

βBi,j,φ(k) := λN−ki βij,φ + kλ
N−(k−1)
i βij,φ−1 + · · ·+

(
k

φ

)
λ
N−(k−φ)
i βij,0, λi 6= 0, (4.19)

doing a simple reformulation, (4.19) can be rewritten as

βBi,j,φ(k) :=

(
1

λi

)k
λNi β

i
j,φ + k

(
1

λi

)k−1
λNi β

i
j,φ−1 + · · ·+

(
k

φ

)(
1

λi

)k−φ
λNi β

i
j,0,

which is their equivalent forward form.

Combining the results of Remarks 4.3 and 4.5, we conclude to the following.

Remark 4.7. Every polynomial matrix A1(σ) which is left unimodularly equivalent to the polynomial

matrix A(σ) constructed in Algorithm 1 and its dual matrix Ã1(σ) is left unimodularly equivalent to Ã(σ),

gives rise to a model with exactly the same forward and backward behavior.

Let Ai(σ)β(k) = 0, i = 1, 2 be two systems having the same forward and backward behavior. This

means that the two matrices will have the same number of finite and infinite elementary divisors n and µ.

Since these systems have also the same dimension r, from (2.9) it is derived that the two systems will also

have the same lag q. In the following theorem, we argue that these systems are connected by a nonsingular

transformation matrix U(σ) = U ∈ Rr×r .

Theorem 4.8. Two systems of the form

A1(σ)β(k) = 0, (4.20)

A2(σ)β(k) = 0, (4.21)

with the same lag q give rise to the same forward and backward behavior, if and only if their respective

polynomial matrices A1(σ), A2(σ) are connected by a left constant transformation matrix U ∈ Rr×r, with U

invertible.

Proof. First, assume that the systems (4.20) and (4.21) give rise to the same forward and backward

behavior. Then, according to Remark 4.7, it holds that

A1(σ) = U(σ)A2(σ), (4.22)

Ã1(σ) = V (σ)Ã2(σ), (4.23)

where U(σ), V (σ) ∈ R[σ]r×r are unimodular matrices. From (4.22), it holds that

A1(σ) = U(σ)A2(σ)
σ→ 1

σ⇒ A1

(
1

σ

)
= U

(
1

σ

)
A2

(
1

σ

)
×σq⇒ σqA1

(
1

σ

)
= σqU

(
1

σ

)
A2

(
1

σ

)
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⇒ Ã1(σ) = U

(
1

σ

)
Ã2(σ). (4.24)

Combining (4.23) with (4.24), we have(
V (σ)− U

(
1

σ

))
Ã2(σ) = 0.

Thus, the matrix
(
V (σ)− U

(
1
σ

))
must belong to the left kernel of Ã2(σ), which since Ã2(σ) is nonsingular,

is equal to the zero vector. So

V (σ) = U

(
1

σ

)
,

and since V (σ) ∈ R[σ]r×r and U
(
1
σ

)
∈ Rpr(σ)r×r, it holds that V (σ) = U

(
1
σ

)
= U = V ∈ Rr×r.

To prove the converse, assume that A1(σ), A2(σ) are left unimodularly equivalent and A1(σ) = UA2(σ).

Let β1(k) be any solution (forward or backward) of A1(σ)β(k) = 0. It holds that

A1(σ)β1(k) = 0 ⇒ UA2(σ)β1(k) = 0 ⇒ A2(σ)β1(k) = 0.

So every solution of (4.20) is a solution of (4.21). In the same fashion, let β2(k) be any solution (forward or

backward) of A2(σ)β(k) = 0. It holds that

A2(σ)β2(k) = 0 ⇒ U−1A1(σ)β2(k) = 0 ⇒ A1(σ)β2(k) = 0.

So, every solution of (4.21) is a solution of (4.20) and thus, systems (4.20) and (4.21) have exactly the same

solutions.

5. Examples. In this section, several examples are presented to illustrate the use of the proposed

algorithm.

Example 5.1. Let βF1,2,2(k), βF2,2,0(k) be the following vector valued functions

βF1,2,2(k) =

(
2

3

)
︸︷︷︸
β1
2,2

2k +

(
4

1

)
︸︷︷︸
β1
2,1

k2k−1 +

(
2

0

)
︸︷︷︸
β1
2,0

k(k − 1)

2
2k−2, λ1 = 2, βF2,2,0(k) =

(
1

−1

)
︸ ︷︷ ︸
β2
2,0

3k, λ2 = 3. (5.25)

We want to construct an AR-representation A(σ)β(k) = 0 that has the prescribed functions in its solution

space.

Step 1 These vector valued functions correspond to the zeros λ1 = 2, λ2 = 3, with multiplicities n1 = 3,

n2 = 1. We have n = n1 + n2 = 3 + 1 = 4, µ = 0 and r = 2. From (2.9), it holds that n + 0 =

2q ⇒ q = 2. So the matrix A(σ) is A(σ) = A2σ
2 + A1σ + A0 ∈ R[σ]2×2, with expected Smith form

SC
A(σ)(σ) = diag

(
1, (σ − 3)(σ − 2)3

)
.

Of course, since we desire the vector βF1,2,2(k) to be a solution of (1.1), the vectors

βF1,2,0(k) =

(
2

0

)
︸︷︷︸
β1
2,0

2k, βF1,2,1(k) =

(
2

0

)
︸︷︷︸
β1
2,0

k2k−1 +

(
4

1

)
︸︷︷︸
β1
2,1

2k,

will also be solutions of the system. Yet, only the vector function (5.25) is required to construct the matrices

Q1, W1.
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Steps 2 & 3 Construct the matrices

Q1 =

I2 2 · 2I2 22I2
02 I2 2I2
02 02 I2

 , W1 =

β1
2,0 02×1 02×1
β1
2,1 β1

2,0 02×1
β1
2,2 β1

2,1 β1
2,0

 , Q2 =

32I2
3I2
I2

 , W2 = β2
2,0,

and combine them as

Q =
(
Q1 Q2

)
, W = blockdiag (W1,W2) .

Step 4 Solve the system (
A2 A1 A0

)
QW = 02×4,

where

Ai =

(
ai1 ai2
ai3 ai4

)
, i = 0, 1, 2. (5.26)

The resulting matrices are

A0 =

(
− 5a12

4 −
9a22
2 − 11a12

4 − 15a22
2

− 5a14
4 −

9a24
2 − 11a14

4 − 15a24
2

)
, A1 =

(
7a12
8 + 11a22

4 a12
7a14
8 + 11a24

4 a14

)
, A2 =

(
−a128 −

a22
4 a22

−a148 −
a24
4 a24

)
.

Step 5 Now we can choose values for a12, a14, a22, a24, such that Ai ∈ Rr×r and detA(σ) 6≡ 0, since the

wrong choice of the free variables may lead to linear dependence of the columns of A(σ). The determinant

of A(σ) is given by

detA(σ) =
1

8
(a14a22 − a12a24)(σ − 3)(σ − 2)3,

so by Remark 4.3, different choices of the free parameters, such that detA(σ) 6= 0, will lead to left unimod-

ularly equivalent matrices that satisfy A(σ)β(k) = 0.

For example, by choosing a12 = − 14a22
3 , a14 = − 38a22

3 , a24 = 7a22
3 , a22 6= 0, the constructed polynomial

matrix will have symmetric coefficients, Ai = ATi , for i = 0, 1, 2.

In the following example, the case where there is no lag q that satisfies (2.9) is studied.

Example 5.2. Let βF1,2,2(k) be the following vector valued function

βF1,2,2(k) =

(
2

3

)
︸︷︷︸
β1
2,2

(
1

2

)k
+

(
4

1

)
︸︷︷︸
β1
2,1

k

(
1

2

)k−1
+

(
2

0

)
︸︷︷︸
β1
2,0

k(k − 1)

2

(
1

2

)k−2
, λ1 =

1

2

We want to construct an AR-representation A(σ)β(k) = 0 that has the prescribed function in its solution

space.

Step 1 Since n = n1 = 3, µ = 0 and r = 2, from (2.9) we have n+ 0 = 2q ⇒ q = 3/2. So set q = [ 32 ] + 1 = 2

and the matrix A(σ) is A(σ) = A2σ
2 +A1σ +A0 ∈ R[σ]2×2.

Steps 2 & 3 Construct the matrices Q1 and W1, which are given by

Q1 =

I2 2 ·
(
1
2

)
I2

(
1
2

)2
I2

02 I2
(
1
2

)
I2

02 02 I2

 , W1 =

β1
2,0 02×1 02×1
β1
2,1 β1

2,0 02×1
β1
2,2 β1

2,1 β1
2,0

 .
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Step 4 Solve the system (
A2 A1 A0

)
Q1W1 = 02×3,

where A0, A1, A2 as in (5.26).

Step 5 The resulting matrices are

A0 =

(
a02
8 −

a12
16 −

3a22
32 a02

a04
8 −

a14
16 −

3a24
32 a04

)
, A1 =

(
a12
2 + a22

2 a12
a14
2 + a24

2 a14

)
, A2 =

(
−a022 −

3a12
4 −

5a22
8 a22

−a042 −
3a14
4 −

5a24
8 a24

)
,

and the matrix A(σ) has determinant

detA(σ) =
1

32
(−1 + 2σ)3g(σ),

where
g(σ) = 2a04a12 − 2a02a14 + 3a04a22 − 3a02a24 + (2a04a22 + 3a14a22 − 2a02a24 − 3a12a24)σ,

so the determinant is a polynomial of degree equal to 4. This means that the matrix has an extra zero and

thus an extra solution, as it was expected. The value of this additional zero of A(σ) will determine whether

the constructed system will be stable or not, since λ1 satisfies |λ1| < 1. The zero of g(σ) is given by

λ2 =
−2a04a12 + 2a02a14 − 3a04a22 + 3a02a24
2a04a22 + 3a14a22 − 2a02a24 − 3a12a24

,

so if the parameters of A0, A1, A2 are chosen so that |λ2| < 1, the constructed system will be stable.

On the other hand, one may assume that by choosing the appropriate values of the free parameters in

order to eliminate the coefficient of σ in the extra polynomial g(σ) of the determinant, while still keeping

detA(σ) 6= 0, will give a simple solution to the problem of undesired behavior. This is not the case, since

this will lead to undesired backward behavior. For example, by choosing a24 = a22 = a04 = a12 = 0,

a02 = a14 = 1, we obtain

A(σ) =

(
1
8 −

σ2

2 1

− 1
16 + σ

2 −
3σ2

4 σ

)
,

with SC
A(σ)(σ) = diag

(
1, (2σ − 1)3

)
and S0

Ã(σ)
(σ) = diag (1, σ).

The Smith form of the dual matrix at σ = 0 implies that in this case the matrix A(σ) has an additional

infinite elementary divisor. As shown in the previous section, the existence of an infinite elementary divisor

implies the existence of additional backward behavior for the above system. Thus, we see that no matter

what the values of the free variables aij will be, the system will exhibit additional behavior.

As an alternative though, one may proceed to construct a non-regular system that satisfies the prescribed

behavior, that is, a system with A(σ) ∈ R[σ]r×m and r 6= m or with A(σ) ∈ R[σ]r×r and detA(σ) = 0.

Step 1 Under the assumption that the constructed system can be non-square, taking r=1 and n=3, we find

n = rq ⇒ q = 3 (see also [20]). So A(σ) = A3σ
3 +A2σ

2 +A1σ +A0 ∈ R[σ]1×2.

Steps 2 & 3 For the above system, the matrix W1 remains the same, while Q1 is

Q1 =


3 ·
(
1
2

)
I2 3 ·

(
1
2

)2
I2

(
1
2

)3
I2

I2 2 ·
(
1
2

)
I2

(
1
2

)2
I2

02 I2
(
1
2

)
I2

02 02 I2

 .



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 34, pp. 1-17, January 2018.

13 Algebraic Methods for the Construction of Algebraic-Difference Equations With Desired Behavior

Step 4 Solve the system (
A3 A2 A1 A0

)
Q1W1 = 01×3,

where Ai =
(
ai1 ai2

)
.

Step 5 The resulting matrices are

A3 =
(
a31 a32

)
, A2 =

(
−a022 −

3a12
4 −

5a22
8 −

3a31
2 −

7a32
16 a22

)
,

A1 =
(
a12
2 + a22

2 + 3a31
4 + 3a32

8 a12
)
, A0 =

(
a02
8 −

a12
16 −

3a22
32 −

a31
8 −

5a32
64 a02

)
,

and the constructed matrix A(σ) satisfies A(σ)β(k) = 0. What must be noted though is that since this

procedure has led to the construction of a non-regular system, the solutions βi(k) of the system could be

attributed to either its f.e.d. structure or its right null space. That is, as [14] demonstrates, non-regular

systems exhibit an infinite number of forward and backward solutions due to the right null space of A(σ).

So in this case, the constructed system will include additional behavior that is undesired.

In the following example, we study the case where the matrix A(σ) has complex zeros.

Example 5.3. Let β(k) be the following vector valued function

β(k) =

(√
2 cos( 2π

3 k + π
4 )

2 cos( 2π
3 k + π

6 )

)
.

We want to construct an AR-representation A(σ)β(k) = 0 that has the prescribed functions in its solution

space. This vector valued function can be equivalently written as β(k) = βF1,2,0(k) + βF2,2,0(k), where

βF1,2,0(k) =

(
1
2 + 1

2 i√
3
2 + 1

2 i

)
︸ ︷︷ ︸

β1
2,0

(
−1

2
+

√
3

2
i

)k
, λ1 = −1

2
+

√
3

2
i,

βF2,2,0(k) =

(
1
2 −

1
2 i√

3
2 −

1
2 i

)
︸ ︷︷ ︸

β2
2,0

(
−1

2
−
√

3

2
i

)k
, λ2 = −1

2
−
√

3

2
i.

So instead of β(k), we should equivalently consider the following two complex vector valued functions βF1,2,0(k)

and βF2,2,0(k).

Step 1 These vector valued functions correspond to the zeros λ1 = − 1
2 +

√
3
2 i, λ2 = − 1

2 −
√
3
2 i, with mul-

tiplicities n1 = 1, n2 = 1. Since n = n1 + n2 = 2, µ = 0 and r = 2, it holds that n + 0 = 2q ⇒ q = 1. So

A(σ) = A1σ +A0 ∈ R[σ]2×2, with expected Smith form SC
A(σ)(σ) = diag

(
1, 1 + σ + σ2

)
.

Steps 2 & 3 Construct the matrices

Q1 =

(
λ1I2
I2

)
, W1 = β1

2,0, Q2 =

(
λ2I2
I2

)
, W2 = β2

2,0,

and combine them as

Q =
(
Q1 Q2

)
, W = blockdiag(W1,W2). (5.27)
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Step 4 Solve the system (
A1 A0

)
QW = 02×2, (5.28)

where A0, A1, A2 as in (5.26). Since in (5.28), the matrices Q,W are complex, (5.27) is equivalent to solving

the two following systems

<
[(
A1 A0

)
QW

]
= 02×2, =

[(
A1 A0

)
QW

]
= 02×2,

where <,= denote the real and imaginary parts of the expression respectively.

Step 5 The resulting matrices are

A0 =

(
−(1 +

√
3)
(
a11 +

√
3a12

)
3+
√
3

2 a11 + (2 +
√

3)a12

−(1 +
√

3)
(
a13 +

√
3a14

)
3+
√
3

2 a13 + (2 +
√

3)a14

)
, A1 =

(
a11 a12
a13 a14

)
,

and the matrix A(σ) has determinant detA(σ) = −(a12a13 − a11a14)(1 + σ + σ2).

We can easily verify that the given vector valued functions are solutions of the system. As an example, by

choosing a11 = − 2(3+2
√
3)a13

3+
√
3

−2a14, a12 = a13, with
(
3 +
√

3
)
a213 + 2

(
3 + 2

√
3
)
a13a14 + 2

(
3 +
√

3
)
a214 6= 0,

the constructed system will have symmetric coefficients.

Example 5.4. Let βF1,2,1(k), βF2,2,1(k), βB2,3(k) be the following vector valued functions

βF1,2,1(k) =

(
1

1

)
︸︷︷︸
β1
2,1

+

(
3

1

)
︸︷︷︸
β1
2,0

k, λ1 = 1, βF2,2,1(k) =

(
2

0

)
︸︷︷︸
β2
2,1

2k +

(
4

1

)
︸︷︷︸
β2
2,0

k2k−1, λ2 = 2,

βB2,3(k)=

(
−1

0

)
︸ ︷︷ ︸
x2,3

δ(N − k) +

(
−1

−1

)
︸ ︷︷ ︸
x2,2

δ(N − k − 1) +

(
1

1

)
︸︷︷︸
x2,1

δ(N − k − 2) +

(
1

0

)
︸︷︷︸
x2,0

δ(N − k − 3).

We want to construct an AR-representation A(σ)β(k) = 0 that has the prescribed functions in its solution

space.

Step 1 These vector valued functions correspond to the zeros λ1 = 1, λ2 = 2 with multiplicities n1 = 2,

n2 = 2 and to an infinite elementary divisor of order µ2 = 4 (since µ1 = 0). Overall, µ = µ1 + µ2 = 4,

n = n1 + n2 = 2 + 2 = 4 and r = 2, so from (2.9) we have n + µ = 4 + 4 = 8 = rq ⇒ q = 4. So A(σ) =

A4σ
4+A3σ

3+A2σ
2+A1σ+A0 ∈ R[σ]2×2, with expected Smith forms SC

A(σ)(σ) = diag
(
1, (σ − 1)2(σ − 2)2

)
and S0

Ã(σ)
(σ) = diag

(
1, σ4

)
.

Steps 2 & 3 From the coefficients of β1(k) and β2(k), construct the matrices

Qi =


4λi

3 I2 λi
4 I2

3λi
2 I2 λi

3 I2
2λi I2 λi

2 I2
I2 λi I2
02 I2

 , Wi =

(
βi2,0 02×1
βi2,1 βi2,0

)
, i = 1, 2.

and combine them as

Q =
(
Q1 Q2

)
, W = blockdiag(W1,W2).
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From the coefficients of βB2,3(k), since q = 4 and µ1 = 0, we have that

µ2 = q − q2 = 4⇒ 4− q2 = 4⇒ q2 = 0,

so µ2 corresponds to an infinite pole elementary divisor. Thus, we will use (3.15b),

QB =


x2,0 x2,1 x2,2 x2,3
02×1 x2,0 x2,1 x2,2
02×1 02×1 x2,0 x2,1
02×1 02×1 02×1 x2,0

 .

Steps 4 & 5 Solving the systems(
A4 A3 A2 A1 A0

)
QW = 02×4,

(
A4 A3 A2 A1

)
QB = 02×4,

the resulting matrices are

A0 =

(
−a025 + 3a12

10 a02
−a045 + 3a14

10 a04

)
, A1 =

(
− 7a02

20 −
11a12
10 a12

− 7a04
20 −

11a14
10 a14

)
, A2 =

(
3a02
4 + a12 − 17a02

20 −
3a12
5

3a04
4 + a14 − 17a04

20 −
3a14
5

)
,

A3 =

(
− 3a02

10 −
3a12
10 − 3a02

20 −
2a12
5

− 3a04
10 −

3a14
10 − 3a04

20 −
2a14
5

)
, A4 =

(
0 3a02

10 + 3a12
10

0 3a04
10 + 3a14

10

)
,

and the determinant of A(σ) is detA(σ) = 3
40 (a04a12 − a02a14)(σ − 2)2(σ − 1)2.

It is easily checked that the given vector functions are solutions of the system A(σ)β(k) = 0. The values

for the free parameters of the matrices Ai can be chosen so that detA(σ) 6= 0. An example of a resulting

matrix is

A(σ) =

(
3
5 −

11σ
5 + 2σ2 − 3σ3

5 2σ − 6σ2

5 −
4σ3

5 + 3σ4

5
1
10 −

29σ
20 + 7σ2

4 −
3σ3

5 1 + σ − 29σ2

20 −
11σ3

20 + 3σ4

5

)
.

In addition, we can find a polynomial matrix A1(σ) and unimodular matrices U(σ), V (σ) such that

A1(σ) = U(σ)A(σ), Ã1(σ) = V (σ)Ã(σ),

so that A1(σ) satisfies A(σ)βi(k) = 0. An example is the matrix

A1(σ) =

(
7
10 −

73σ
20 + 15σ2

4 − 6σ3

5 1 + 3σ − 53σ2

20 −
27σ3

20 + 6σ4

5
13
10 −

117σ
20 + 23σ2

4 − 9σ3

5 1 + 5σ − 77σ2

20 −
43σ3

20 + 9σ4

5

)
,

with

U(σ) = U = V (σ) = V =

(
1 1

2 1

)
.

Moreover, there is no set of values for a04, a12, a02, a14 such that the constructed system has symmetric or

skew symmetric coefficients and nonzero determinant.

6. Conclusions. A novel method has been proposed for constructing an AR-Representation that satis-

fies a prescribed forward and backward behavior, given in the form of vector valued functions. It was shown

(see Example 5.2) that this method can also be used to construct non-regular systems. Thus, the proposed

method is more versatile than previous ones for continuous or discrete time systems (see [10, 13, 19]) that

only functioned for square matrices. The results presented in this work can also be extended with minor
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adjustments to the case of continuous time systems, where smooth and impulsive behaviors are of interest

and the constructed matrices may need to satisfy certain properties like having symmetric, skew-symmetric

or alternating coefficients.
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