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COMMUTATORS INVOLVING MATRIX FUNCTIONS∗

OSMAN KAN† AND SÜLEYMAN SOLAK‡

Abstract. Some results are obtained for matrix commutators involving matrix exponentials
([
eA, B

]
,
[
eA, eB

])
and their

norms.
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1. Introduction. The commutator of two matrices A and B is defined as [A,B] = AB−BA and plays

an important role in many branches of mathematics, mathematical physics, quantum physics and quantum

chemistry. Most of the studies on matrix commutators have been focused on norm inequalities in recent

years [1, 2, 3, 4]. Böttcher and Wenzel obtained a nice inequality for A,B ∈Mn (C)

(1.1) ‖[A,B]‖F ≤
√

2 ‖A‖F ‖B‖F ,

where ‖.‖F stands for the Frobenius norm [1].

Matrix functions are used in many areas of linear algebra and arise in numerous applications in science

and engineering. Square root, polynomial, trigonometric functions, exponential and logarithm of matrices

are widely used in matrix theory. The matrix exponential is by far most studied matrix function. There are

many various ways in the literature to compute it. One of them is as follows:

(1.2) exp(A) = I +A+
A2

2!
+ · · ·+ As

s!
+ · · · =

∞∑
s=0

As

s!

for A ∈Mn (C)[7].

Our motivation in the present study is to obtain some results concerning relations between [f(A), B],

[f(A), f(B)] and [A,B], where f(x) stands for ex, and to obtain inequalities for the Frobenius norms of

matrix commutators (1.1) such as

‖[f(A), B]‖F ≤ c ‖A‖F ‖B‖F and ‖[f(A), f(B)]‖F ≤ k ‖A‖F ‖B‖F .

Let us give some easy properties of matrix commutators and matrix exponential before we present our

main results. For A,B ∈Mn (C), we have

• [A+B,C] = [A,C] + [B,C]

• [AB,C] = A [B,C] + [A,C]B
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• [A,BC] = [A,B]C +B [A,C]

• [As, B] = sAs−1 [A,B], where [A, [A,B]] = 0

• e0 = I, where 0 denotes zero matrix

• eAeB = eA+B , if AB = BA

• eAeB = eBeA, if AB = BA

• eP−1AP = P−1eAP , where P is invertible

2. Main Results. In this section, we will present our results in two subsections.The results concerning

the relations between
[
eA, B

]
,
[
eA, eB

]
and [A,B] will be presented in Section 2.1 and the results related to

norm inequalities will be presented in Section 2.2.

2.1. Properties of Commutators Involving Exponential Matrices. Let us start with an easy-

to-prove lemma which we will use in main results.

Lemma 2.1. Let A be an arbitrary n-square matrix. Then

[
eA, B

]
=

∞∑
s=1

[As, B]

s!
.

Proof. We have
[
eA, B

]
= eAB − BeA. If we replace eA by its Taylor expansion (1.2) in the right

hand-side of the equation, we get[
eA, B

]
=

(
I +A+

A2

2!
+ · · ·+ As

s!
+ · · ·

)
B −B

(
I +A+

A2

2!
+ · · ·+ As

s!
+ · · ·

)
,

[
eA, B

]
=

(
B +AB +

A2

2!
B + · · ·+ As

s!
B + · · ·

)
−
(
B +BA+B

A2

2!
+ · · ·+B

As

s!
+ · · ·

)
,

[
eA, B

]
= AB −BA+

A2

2!
B −BA

2

2!
+ · · ·+ As

s!
B −BA

s

s!
+ · · · ,

[
eA, B

]
=

∞∑
s=1

[As, B]

s!
,

and this concludes the proof.

A nice corollary can be obtained for a special case of A.

Corollary 2.2. Let A be an n-square matrix satisfying [A, [A,B]] = 0. Then[
eA, B

]
= eA [A,B] .

Proof. In the previous lemma it was shown that
[
eA, B

]
=
∞∑
s=1

[As,B]
s! . On the other hand, we know that

[As, B] = sAs−1 [A,B] when [A, [A,B]] = 0. Combining both results, we get

[
eA, B

]
=

∞∑
s=1

sAs−1 [A,B]

s!
,

[
eA, B

]
=

∞∑
s=1

As−1 [A,B]

(s− 1)!
,
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[
eA, B

]
= eA [A,B] ,

and this concludes the proof.

Theorem 2.3. Let A and B be complex n-square matrices. Then

[
eA, eB

]
=

∞∑
s,t=1

[As, Bt]

s!t!
.

Proof. As
[
eA, eB

]
= eAeB − eBeA, replacing eA and eB by their Taylor expansions (1.2) in the right

hand-side of the equation, we get

eAeB − eBeA =

(
I +A+

A2

2!
+ · · ·

)(
I +B +

B2

2!
+ · · ·

)
−
(
I +B +

B2

2!
+ · · ·

)(
I +A+

A2

2!
+ · · ·

)

eAeB − eBeA = AB −BA+
A2B −BA2

2!
+
AB2 −B2A

2!
+
A2B2 −B2A2

2!2!
+ · · ·

eAeB − eBeA = [A,B] +

[
A2, B

]
2!

+

[
A,B2

]
2!

+

[
A2, B2

]
2!2!

+ · · ·

[
eA, eB

]
=

∞∑
s,t=1

[As, Bt]

s!t!
,

and this concludes the proof.

We can obtain nice corollaries related to this theorem by using some special A and B.

Corollary 2.4. Let A and B be n-square matrices such that A2 = 0, B2 = 0. Then[
eA, eB

]
= [A,B] .

Proof. This result is an immediate consequence of Theorem 2.3. Because A2 = 0, An = 0 for n ≥ 2 for

any square matrix, the Taylor expansion of eA is equal to I +A. Thus,[
eA, eB

]
= eAeB − eBeA[

eA, eB
]

= (I +A)(I +B)− (I +B)(I +A)[
eA, eB

]
= AB −BA = [A,B] .

Corollary 2.5. Let A and B be n-square matrices such that A2 = I, B2 = I. Then

[
eA, eB

]
=

∞∑
s=1

[A,B]

(2s− 1)!(2t− 1)!
.

Proof. In this case, it is obvious that An = A, Bn = B for odd n and An = I, Bn = I for even n because

A2 = I and B2 = I. So, the proof can easily be concluded using the Taylor expansions of eA and eB .

Our next two results are related to
[
eA, eB

]
, where A and B both commute with their commutator.

There are some studies related to exponential of matrices which commute with their commutator in the

literature. One of them is as follows.
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Lemma 2.6. [6] If A,B ∈Mn (C) commute with their commutator, then

eAeB = eA+B+ 1
2 [A,B].

Theorem 2.7. Let A and B be complex n-square matrices which commute with their commutator, then[
eA, eB

]
= 2eA+B sinh

(
[A,B]

2

)
.

Proof. Let A and B commute with their commutator, then

eAeB = eA+B+ 1
2 [A,B].

Since [A,B]=− [B,A], eBeA = eA+B− 1
2 [A,B],

eAeB = eA+B+ 1
2 [A,B]

eBeA = eA+B− 1
2 [A,B]

eAeB − eBeA = eA+B+ 1
2 [A,B] − eA+B− 1

2 [A,B].

It is clear that A+B commutes with ± 1
2 [A,B] because A and B commute with their commutator. So,

eA+B± 1
2 [A,B] = eA+Be±

1
2 [A,B][

eA, eB
]

= eA+Be
1
2 [A,B] − eA+Be−

1
2 [A,B][

eA, eB
]

= eA+B
(
e

1
2 [A,B] − e− 1

2 [A,B]
)
.

Since e
1
2 [A,B] − e− 1

2 [A,B] can be written as sinh
(

[A,B]
2

)
in view of sinh(x) = ex−e−x

2 ,[
eA, eB

]
= 2eA+B sinh

(
[A,B]

2

)
.

Theorem 2.8. Let the complex n-square matrices A, B commute with their commutator, Then

[
eA, eB

]
=

∞∑
s,t=1

s−1∑
r=0

As−r−1Bt−1Ar

s! (t− 1)!
[A,B] .

Proof. We have [
As, Bt

]
= As−1

[
A,Bt

]
+
[
As−1, Bt

]
A

= As−1
[
A,Bt

]
+
(
As−2

[
A,Bt

]
+
[
As−2, Bt

]
A
)
A

= As−1
[
A,Bt

]
A0 +As−2

[
A,Bt

]
A+

[
As−2, Bt

]
A2.

If we continue reducing the power of A in the commutator, we get

[
As, Bt

]
=

∞∑
s,t=1

s−1∑
r=0

As−r−1
[
A,Bt

]
Ar.

On the other hand, we know that [A,Bt] = t [A,B]Bt−1 when [B, [A,B]] = 0. So,

[
As, Bt

]
=

∞∑
s,t=1

s−1∑
r=0

tAs−r−1Bt−1Ar [A,B] ,
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because of A and B commute with their commutator. Applying this equality to
[
eA, eB

]
, we get

[
eA, eB

]
=

∞∑
s,t=1

[As, Bt]

s!t!
,

[
eA, eB

]
=

∞∑
s,t=1

s−1∑
r=0

As−r−1Bt−1Ar

s! (t− 1)!
[A,B] .

This concludes the proof.

2.2. Norm Inequalities. In this section we will present our results related to the norm inequalities of

A,B ∈M2 (C) such as ‖[f(A), B]‖F ≤ c ‖A‖F ‖B‖F and ‖[f(A), f(B)]‖F ≤ k ‖A‖F ‖B‖F in the cases where

their eigenvalues are real and complex numbers respectively.

Lemma 2.9. Putzer’s Spectral Formula for 2× 2 matrices.

• If the 2× 2 matrix A has real distinct eigenvalues λ1 and λ2, then

eAt = eλ1tI +
eλ1t − eλ2t

λ1 − λ2
(A− λ1I) .

• If the 2× 2 matrix A has one double real eigenvalue λ1, then

eAt = eλ1tI + teλ1t (A− λ1I) .

• If the 2× 2 matrix A has complex eigenvalues λ1=λ2=a+ ib, b > 0, then

eAt = eat cos(bt)I +
eat sin(bt)

b
(A− aI) .

Theorem 2.10. Let the 2 × 2 matrix A have real distinct eigenvalues λ1 and λ2. Then the following

norm inequality holds, where c =
√

2
∣∣∣( eλ1−eλ2λ1−λ2

)∣∣∣.∥∥[eA, B]∥∥
F
≤ c ‖A‖F ‖B‖F .

Proof. Let the 2× 2 matrix A have real distinct eigenvalues. Then

[
eAt, B

]
=

(
eλ1tI +

eλ1t − eλ2t

λ1 − λ2
(A− λ1I)

)
B −B

(
eλ1tI +

eλ1t − eλ2t

λ1 − λ2
(A− λ1I)

)

[
eAt, B

]
= eλ1tB +

eλ1t − eλ2t

λ1 − λ2
(A− λ1I)B −

(
eλ1tB +

eλ1t − eλ2t

λ1 − λ2
B (A− λ1I)

)
[
eAt, B

]
=
eλ1t − eλ2t

λ1 − λ2
((A− λ1I)B −B (A− λ1I))

[
eAt, B

]
=
eλ1t − eλ2t

λ1 − λ2
[A,B]

∥∥[eAt, B]∥∥
F

=

∣∣∣∣eλ1t − eλ2t

λ1 − λ2

∣∣∣∣ ‖[A,B]‖F .
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If we combine this with (1.1), we get

∥∥[eAt, B]∥∥
F
≤
√

2

∣∣∣∣eλ1t − eλ2t

λ1 − λ2

∣∣∣∣︸ ︷︷ ︸
c

‖A‖F ‖B‖F .

The proof can be concluded by setting t = 1.∥∥[eA, B]∥∥
F
≤
√

2

∣∣∣∣eλ1 − eλ2

λ1 − λ2

∣∣∣∣︸ ︷︷ ︸
c

‖A‖F ‖B‖F .

Theorem 2.11. Let the 2 × 2 matrix A have a double real eigenvalue λ. Then the following norm

inequality holds, where c =
√

2eλ. ∥∥[eA, B]∥∥
F
≤ c ‖A‖F ‖B‖F .

Proof. We have [
eAt, B

]
=
(
eλtI + teλt (A− λI)

)
B −B

(
eλtI + teλt (A− λI)

)
[
eAt, B

]
=
(
eλtB + teλt (A− λI)B

)
−
(
eλ1tB + teλt (A− λI)

)
[
eAt, B

]
= teλt ((A− λI)B −B (A− λI))[
eAt, B

]
= teλt [A,B]∥∥[eAt, B]∥∥

F
= eλt |t| ‖[A,B]‖F .

If we combine this with (1.1), we get∥∥[eAt, B]∥∥
F
≤
√

2eλt |t|︸ ︷︷ ︸
c

‖A‖F ‖B‖F .

The proof can be concluded by setting t = 1.∥∥[eA, B]∥∥
F
≤
√

2eλ︸ ︷︷ ︸
c

‖A‖F ‖B‖F .

Theorem 2.12. Let A,B ∈ M2 (C) and A have complex eigenvalues λ1=λ2=a + ib, b > 0. Then the

following norm inequality holds, where c =
√

2ea
∣∣∣ sin(b)b

∣∣∣∥∥[eA, B]∥∥
F
≤ c ‖A‖F ‖B‖F .

Proof. Let the 2× 2 matrix A have complex eigenvalues λ1=λ2=a+ ib, b > 0. Then

[
eAt, B

]
=

(
eat cos(bt)I +

eat sin(bt)

b
(A− aI)

)
B −B

(
eat cos(bt)I +

eat sin(bt)

b
(A− aI)

)
,

[
eAt, B

]
= eat cos(bt)B +

eat sin(bt)

b
(A− aI)B −Beat cos(bt)− eat sin(bt)

b
B (A− aI) ,

[
eAt, B

]
=
eat sin(bt)

b
[(A− aI) , B] =

eat sin(bt)

b
[A,B] ,
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∥∥[eAt, B]∥∥
F

= eat
∣∣∣∣ sin(bt)

b

∣∣∣∣ ‖[A,B]‖F .

If we combine this with (1.1), we get

∥∥[eAt, B]∥∥
F
≤
√

2eat
∣∣∣∣ sin(bt)

b

∣∣∣∣︸ ︷︷ ︸
c

‖A‖F ‖B‖F .

The proof can be concluded by setting t = 1.∥∥[eA, B]∥∥
F
≤
√

2ea
∣∣∣∣ sin(b)

b

∣∣∣∣︸ ︷︷ ︸
c

‖A‖F ‖B‖F .

Theorem 2.13. Let the 2×2 matrices A and B have real distinct eigenvalues. Then the following norm

inequality holds ∥∥[eA, eB]∥∥
F
≤ k ‖A‖F ‖B‖F ,

where k =
√

2
∣∣∣( eλ1−eλ2λ1−λ2

)(
eµ1−eµ2
µ1−µ2

)∣∣∣, λ’s and µ’s are eigenvalues of A and B respectively.

Proof. We have

eAteBs =

(
eλ1tI +

eλ1t − eλ2t

λ1 − λ2
(A− λ1I)

)(
eµ1sI +

eµ1s − eµ2s

µ1 − µ2
(B − µ1I)

)
.

Let eλ1t−eλ2s
λ1−λ2

= x and eµ1s−eµ2s
µ1−µ2

= y, where x and y are real numbers. Then we get

eAteBs = eλ1t+µ1s + eλ1ty (B − µ1I) + eµ1sx (A− λ1I) + xy (A− λ1I) (B − µ1I) ,

eBseAt = eλ1t+µ1s + eµ1sx (A− λ1I) + eλ1ty (B − µ1I) + xy (B − µ1I) (A− λ1I) ,[
eAt, eBs

]
= xy ((A− λ1I) (B − µ1I)− (B − µ1I) (A− λ1I)) ,[

eAt, eBs
]

= xy [(A− λ1I) , (B − µ1I)] = xy [A,B] ,∥∥[eAt, eBs]∥∥
F

= |xy| ‖[A,B]‖F .

If we combine this with (1.1), we get∥∥[eAt, eBs]∥∥
F
≤
√

2 |xy| ‖A‖F ‖B‖F ,

∥∥[eAt, eBs]∥∥
F
≤
√

2

∣∣∣∣(eλ1t − eλ2t

λ1 − λ2

)(
eµ1s − eµ2s

µ1 − µ2

)∣∣∣∣︸ ︷︷ ︸
k

‖A‖F ‖B‖F .

The proof can be concluded by setting s, t = 1.∥∥[eA, eB]∥∥
F
≤
√

2

∣∣∣∣(eλ1 − eλ2

λ1 − λ2

)(
eµ1 − eµ2

µ1 − µ2

)∣∣∣∣︸ ︷︷ ︸
k

‖A‖F ‖B‖F .
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Theorem 2.14. Let the 2 × 2 matrices A and B have real double eigenvalues, λ and µ, respectively.

Then the following norm inequality holds∥∥[eA, eB]∥∥
F
≤ k ‖A‖F ‖B‖F ,

where k =
√

2eλ+µ.

Proof. According to the hypothesis we have

eAteBs =
(
eλtI + teλt (A− λI)

)
(eµsI + seµs (B − µI)) ,

eAteBs = eλt+µsI + seλt+µs (B − µI) + teλt+µs (A− λI) + steλt+µs (A− λI) (B − µI) ,

eBseAt = eµs+λtI + teµs+λt (A− λI) + seµs+λt+ (B − µI) + steµs+λt (B − µI) (A− λI) ,[
eAt, eBs

]
= eAteBs − eBseAt = steλt+µs ((A− λI) (B − µI)− (B − µI) (A− λI)) ,[

eAt, eBs
]

= steλt+µs [(A− λI) , (B − µI)] ,[
eAt, eBs

]
= steλt+µs [A,B] ,∥∥[eAt, eBs]∥∥

F
= |st| eλt+µs ‖[A,B]‖F .

If we combine this with (1.1) we get,∥∥[eAt, eBs]∥∥
F
≤
√

2eλt+µs |st|︸ ︷︷ ︸
k

‖A‖F ‖B‖F .

The proof follows by setting s, t = 1.∥∥[eA, eB]∥∥
F
≤
√

2eλ+µ︸ ︷︷ ︸
k

‖A‖F ‖B‖F .

Theorem 2.15. Let the 2 × 2 matrices A and B have complex eigenvalues λ1=λ2=a + ib, b > 0 and

µ1=µ2=c+ id, d > 0, respectively. Then, the following norm inequality holds∥∥[eA, eB]∥∥
F
≤ k| ‖A‖F ‖B‖F ,

where k =
√

2ea+c
∣∣∣ sin(b) sin(d)bd

∣∣∣.
Proof. Expressing eAt and eBs using Putzer’s Spectral Formula for 2× 2 matrices with complex eigen-

values and then computing eAteBs − eBseAt as in the previous theorems, the result follows.
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